


This page intentionally left blank 



This page intentionally left blank 



  Computer Networks: An 
Open Source Approach 

lin76248_FM_i-xiv.indd   ilin76248_FM_i-xiv.indd   i 24/12/10   6:14 PM24/12/10   6:14 PM



This page intentionally left blank 



   Computer Networks: An 
Open Source Approach 

      Ying-Dar   Lin  
 National Chiao Tung University  

   Ren-Hung   Hwang  
 National Chung Cheng University  

   Fred   Baker  
 Cisco Systems, Inc.   

lin76248_FM_i-xiv.indd   iiilin76248_FM_i-xiv.indd   iii 24/12/10   6:14 PM24/12/10   6:14 PM



     COMPUTER NETWORKS: AN OPEN SOURCE APPROACH 

 Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the 

Americas, New York, NY 10020. Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights 

reserved. No part of this publication may be reproduced or distributed in any form or by any means, 

or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill 

Companies, Inc., including, but not limited to, in any network or other electronic storage or 

transmission, or broadcast for distance learning. 

 Some ancillaries, including electronic and print components, may not be available to customers outside 

the United States. 

 This book is printed on acid-free paper. 

 1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5 4 3 2 1  

  ISBN 978-0-07-337624-0  

  MHID 0-07-337624-8   

 Vice President & Editor-in-Chief:  Marty Lange  

 Vice President EDP/Central Publishing Services: Kimberly Meriwether David
Global Publisher:  Raghothaman Srinivasan  

      Senior Marketing Manager: Curt Reynolds
Development Editor: Lorraine K. Buczek
Senior Project Manager: Jane Mohr
Design Coordinator: Brenda A. Rolwes
Cover Designer: Studio Montage, St. Louis, Missouri
Cover Image: The illustration “Packet Factory” was drafted by Ying-Dar Lin and then drawn by his 
12-year-old daughter, Melissa Hou-Yun Lin. It mimics routing and forwarding at the control plane (up 
to the 3rd fl oor) and the data plane (up to the 2nd fl oor), respectively.
Buyer: Susan K. Culbertson
Media Project Manager: Balaji Sundararaman
Compositor: Glyph International
Typeface: 10/12 Times LT Std
Printer: R. R. Donnelley

 All credits appearing on page or at the end of the book are considered to be an extension of the 

copyright page. 

  Library of Congress Cataloging-in-Publication Data
Lin, Ying–Dar.

    Computer networks : an open source approach / Ying-Dar Lin, Ren-Hung

Hwang, Fred Baker.

    p. cm.

    Includes bibliographical references and index.

     ISBN-13: 978-0-07-337624-0 (alk. paper)

     ISBN-10: 0-07-337624-8 (alk. paper)

    1. Computer networks—Management. 2. Computer networks—Computer programs. 3. Open 

source software. I. Hwang, Ren-Hung. II. Baker, Fred,

1952- III. Title.

  TK5105.5.L55 2011

  004.6—dc22

 2010047921     

 www.mhhe.com 

lin76248_FM_i-xiv.indd   ivlin76248_FM_i-xiv.indd   iv 24/12/10   6:14 PM24/12/10   6:14 PM

www.mhhe.com


  Dedication

Dedicated to Our Sweet Families .... 3 wives and 8 children.  

lin76248_FM_i-xiv.indd   vlin76248_FM_i-xiv.indd   v 24/12/10   6:14 PM24/12/10   6:14 PM



   About the Authors 

Ying-Dar Lin is Professor of Computer Science at National Chiao Tung Univer-

sity (NCTU) in Taiwan. He received his Ph.D. in Computer Science from UCLA 

in 1993. He spent his sabbatical year as a visiting scholar at Cisco Systems in San 

Jose in 2007–2008. Since 2002, he has been the founder and director of Network 

Benchmarking Lab (NBL, www.nbl.org.tw), which reviews network products with 

real traffi c. He also cofounded L7 Networks Inc. in 2002, which was later acquired 

by D-Link Corp. His research interests include design, analysis, implementation, 

and benchmarking of network protocols and algorithms, quality of services, network 

security, deep packet inspection, P2P networking, and embedded hardware/software 

co-design. His work on “multi-hop cellular” has been cited over 500 times. He is 

currently on the editorial boards of  IEEE Communications Magazine, IEEE Com-
munications Surveys and Tutorials, IEEE Communications Letters, Computer Com-
munications, and Computer Networks.  

Ren-Hung Hwang is Research Distinguished Professor of Computer Science as 

well as director of Ching-Jiang Learning Center at National Chung Cheng University 

in Taiwan. He received his Ph.D. in Computer Science from the University of 

Massachusetts, Amherst, in 1993. He has published more than 150 international jour-

nal and conference papers in the computer networking area. His research interests 

include ubiquitous computing, P2P networking, next-generation wireless networks, 

and e-Learning. He was the program chair of the 10 th  International Symposium on 

Pervasive Systems, Algorithms, and Networks (I-SPAN) held in KaoHsiung, Taiwan, 

2009. He is currently on the editorial board of the  Journal of Information Science 
and Engineering . He received the Outstanding Teaching Award from National Chung 

Cheng University in 2002 and several Outstanding Communication and Network 

Courseware Design Awards from the Ministry of Education, Taiwan from 1998 

to 2001. He currently also serves as a committee member of the IP Committee of 

TWNIC and the Criteria and Procedures Committee of the Institute of Engineering 

Education Taiwan (IEET). 

Fred Baker has been active in the networking and communications industry since 

the late 1970s, working successively for CDC, Vitalink, and ACC. He is currently 

a Fellow at Cisco Systems. He was IETF chair from 1996 to 2001. He has chaired 

a number of IETF working groups, including Bridge MIB, DS1/DS3 MIB, ISDN 

MIB, PPP Extensions, IEPREP, and IPv6 Operations, and served on the Internet 

Architecture Board from 1996 to 2002. He has coauthored or edited around 40 RFCs 

and contributed to others. The subjects covered include network management, 

OSPF and RIPv2 routing, quality of service (using both the Integrated Services and 

vi

lin76248_FM_i-xiv.indd   vilin76248_FM_i-xiv.indd   vi 24/12/10   6:14 PM24/12/10   6:14 PM

www.nbl.org.tw


 About the Authors vii

Differentiated Services models), lawful interception, precedence-based services 

on the Internet, and others. In addition, he has served as a member of the Board of 

Trustees of the Internet Society 2002–2008, having served as its chair from 2002 

through 2006. He is also a former member of the Technical Advisory Council of the 

Federal Communications Commission. He currently co-chairs the IPv6 Operations 

Working Group in the IETF, and is a member of the Internet Engineering Task Force 

Administrative Oversight Committee.     

lin76248_FM_i-xiv.indd   viilin76248_FM_i-xiv.indd   vii 24/12/10   6:14 PM24/12/10   6:14 PM



  Brief Contents 

Preface xvi  
1   Fundamentals 1  

2   Physical Layer 54  

3   Link Layer 125  

4   Internet Protocol Layer 223  

5   Transport Layer 339  

6   Application Layer 417  

7   Internet QoS 546  

8   Network Security 590  

  Appendices: 
A   Who’s Who 654  

B   Linux Kernel Overview 669  

C   Development Tools 683  

D   Network Utilities 707   

Index 723

viii

lin76248_FM_i-xiv.indd   viiilin76248_FM_i-xiv.indd   viii 24/12/10   6:14 PM24/12/10   6:14 PM



ix

   Contents 

Preface  xvii

 Chapter 1
 Fundamentals   1 

1.1    Requirements for Computer Networking    2 
1.1.1    Connectivity: Node, Link, Path    2  

  Historical Evolution: Link Standards    4  

  Historical Evolution: ATM Faded    6   
1.1.2    Scalability: Number of Nodes    6  

1.1.3    Resource Sharing    7 

  Principle in Action: Datacom vs. Telecom    10    

1.2    Underlying Principles    10 
1.2.1    Performance Measures    10 

  Principle in Action: Little’s Result    13   
1.2.2    Operations at Control Plane    14  

1.2.3    Operations at Data Plane    16  

1.2.4    Interoperability    20   

1.3    The Internet Architecture    21 
1.3.1    Solutions to Connectivity    22 

  Principle in Action: Constantly Challenged 
Statelessness    23   
1.3.2    Solutions to Scalability    25  

1.3.3    Solutions to Resource Sharing    27  

1.3.4     Control-Plane and Data-Plane 

Operations    29 

  Principle in Action: Flavors of the Internet 
Architecture    31    

1.4    Open Source Implementations    32 
1.4.1    Open vs. Closed    32  

1.4.2     Software Architecture in Linux 

Systems    33  

1.4.3    Linux Kernel    36  

1.4.4    Clients and Daemon Servers    36  

1.4.5    Interface Drivers    37  

1.4.6    Device Controllers    38   

1.5    Book Roadmap: A Packet’s Life    39 
1.5.1    Packet Data Structure: sk_buff    39  

1.5.2    A Packet’s Life in a Web Server    40  

1.5.3    A Packet’s Life in a Gateway    41 

  Performance Matters: From Socket to Driver 
within a Server    42  

  Performance Matters: From Input Port to 
Output Port within a Router    44  

  Principle in Action: A Packet’s Life in the 
Internet    45  

1.6    Summary    46    

  Common Pitfalls    47  

  Further Readings    48  

  Frequently Asked Questions    50  

  Exercises    51  

Chapter 2
  Physical Layer   54 

2.1    General Issues    55 
2.1.1    Data and Signal: Analog or Digital    55 

  Principle in Action: Nyquist Theorem vs. 
Shannon Theorem    57   
2.1.2    Transmission and Reception Flows    59  

2.1.3     Transmission: Line Coding and Digital 

Modulation    61  

2.1.4    Transmission Impairments    62 

  Historical Evolution: Software Defi ned 
Radio    63    

2.2    Medium    65 
2.2.1    Wired Medium    65  

2.2.2    Wireless Medium    68   

2.3    Information Coding and Baseband 
Transmission    70 
2.3.1    Source and Channel Coding    71  

2.3.2    Line Coding    72 

lin76248_FM_i-xiv.indd   ixlin76248_FM_i-xiv.indd   ix 24/12/10   6:14 PM24/12/10   6:14 PM



x Contents

  Open Source Implementation 2.1: 8B/10B 
Encoder    82    

   2.4    Digital Modulation and Multiplexing    84 
  2.4.1    Passband Modulation    84  

  2.4.2    Multiplexing    92   

   2.5    Advanced Topics    96 
  2.5.1    Spread Spectrum    96  

  2.5.2    Single-Carrier vs. Multiple-Carrier    106  

  2.5.3    Multiple Inputs, Multiple Outputs 

(MIMO)    109 

  Open Source Implementation 2.2: IEEE 
802.11a Transmitter with OFDM    112  

  Historical Evolution: Cellular Standards    116  

  Historical Evolution: LTE-Advanced vs. IEEE 
802.16m    117    

   2.6    Summary    118 

  Common Pitfalls    119  

  Further Readings    120   

  Frequently Asked Questions   122   

  Exercises    123   

  Chapter 3
  Link Layer   125 
   3.1    General Issues    126 

  3.1.1    Framing   127  

  3.1.2    Addressing   129  

  3.1.3    Error Control and Reliability   130   

  Principle in Action: CRC or Checksum?   133     

  Principle in Action: Error Correction 
Code   133     

  Open Source Implementation 3.1: 
Checksum   134     

  Open Source Implementation 3.2: Hardware 
CRC-32   135       
  3.1.4    Flow Control   137     

  3.1.5    Medium Access Control   138     

  3.1.6    Bridging   139     

  3.1.7    Link-Layer Packet Flows   139   

  Open Source Implementation 3.3: Link-Layer 
Packet Flows in Call Graphs   139         

   3.2    Point-to-Point Protocol   142   
  3.2.1     High-Level Data Link Control 

(HDLC)   143     

  3.2.2    Point-to-Point Protocol (PPP)   145     

  3.2.3     Internet Protocol Control Protocol 

(IPCP)   147   

  Open Source Implementation 3.4: PPP 
Drivers   148       
  3.2.4    PPP over Ethernet (PPPoE)   149       

   3.3    Ethernet (IEEE 802.3)   150   
  3.3.1    Ethernet Evolution: A Big Picture   150     

   Historical Evolution: Competitors to 
Ethernet   153     
 3.3.2    The Ethernet MAC   153   

  Open Source Implementation 3.5: 
CSMA/CD   161     

  Historical Evolution: Power-Line Networking: 
HomePlug   166       
  3.3.3    Selected Topics in Ethernet   167   

  Historical Evolution: Backbone Networking: 
SONET/SDH and MPLS   169         
   Historical Evolution: First-Mile Networking: 
xDSL and Cable Modem   171       

  3.4    Wireless Links   171   
  3.4.1   IEEE 802.11 Wireless LAN   172   

  Principle in Action: Why Not CSMA/CD in 
WLAN?   175     
  Open Source Implementation 3.6: IEEE 802.11 
MAC Simulation with NS-2   177       
  3.4.2    Bluetooth Technology   182     

 3.4.3    WiMAX Technology    186  

   Historical Evolution: Comparing Bluetooth 
and IEEE 802.11   187     
  Historical Evolution: Comparing 3G, LTE, and 
WiMAX   190         

   3.5    Bridging   191   
  3.5.1    Self-Learning   191   

  Historical Evolution: Cut-Through vs. Store-
and-Forward   193     
  Open Source Implementation 3.7: Self-
Learning Bridging   194       
  3.5.2   Spanning Tree Protocol   196   

  Open Source Implementation 3.8: Spanning 
Tree   198       
  3.5.3    Virtual LAN   200   

  Principle in Action: VLAN vs. 
Subnet   201         

   3.6    Device Drivers of a Network Interface   204   
  3.6.1    Concepts of Device Drivers   204     

lin76248_FM_i-xiv.indd   xlin76248_FM_i-xiv.indd   x 24/12/10   6:14 PM24/12/10   6:14 PM



 Contents xi

  3.6.2     Communicating with Hardware in a Linux 

Device Driver   205   

  Open Source Implementation 3.9: Probing I/O 
Ports, Interrupt Handling, and DMA   207     

  Open Source Implementation 3.10: 
The Network Device Driver in Linux   211     

  Performance Matters: Interrupt and DMA 
Handling within a Driver   214     

  Historical Evolution: Standard Interfaces for 
Drivers   215     

   3.7    Summary   215     

  Common Pitfalls   216     

  Further Readings   218     

  Frequently Asked Questions   219   

  Exercises   221       

  Chapter 4
  Internet Protocol Layer   223   
   4.1    General Issues   224   

  4.1.1    Connectivity Issues   224     

 4.1.2    Scalability Issues     225 

   Principle in Action: Bridging vs. 
Routing   226      
   4.1.3    Resource Sharing Issues   227     

  4.1.4     Overview of IP-Layer Protocols and Packet 

Flows   228   

  Open Source Implementation 4.1: IP-Layer 
Packet Flows in Call Graphs   229     

  Performance Matters: Latency within the 
IP Layer   230         

   4.2    Data-Plane Protocols: Internet Protocol   231   
  4.2.1    Internet Protocol Version 4   232   

  Open Source Implementation 4.2: IPv4 Packet 
Forwarding   238     

  Performance Matters: Lookup Time at Routing 
Cache and Table   241     

  Open Source Implementation 4.3: IPv4 
Checksum in Assembly   244     

  Open Source Implementation 4.4: IPv4 
Fragmentation   246       
  4.2.2    Network Address Translation (NAT)   248   

  Principle in Action: Different Types of 
NAT   250     

  Principle in Action: Messy ALG in 
NAT   253     

  Open Source Implementation 4.5: 
NAT   253     

  Performance Matters: CPU Time of NAT 
Execution and Others   258         

   4.3    Internet Protocol Version 6   259   

  Historical Evolution: NAT vs. IPv6   259       
  4.3.1    IPv6 Header Format   260     

  4.3.2    IPv6 Extension Header   261     

  4.3.3    Fragmentation in IPv6   262     

  4.3.4    IPv6 Address Notation   263     

  4.3.5    IPv6 Address Space Assignment   264     

  4.3.6    Autoconfi guration   266     

  4.3.7    Transition from IPv4 to IPv6   266       

   4.4    Control-Plane Protocols: Address 
Management   267   
  4.4.1    Address Resolution Protocol   268   

  Open Source Implementation 4.6: 
ARP   269       
  4.4.2    Dynamic Host Confi guration   271       

  Open Source Implementation 4.7: 
DHCP   275      

   4.5    Control Plane Protocols: Error 
Reporting   277   
  4.5.1    ICMP Protocol   277   

  Open Source Implementation 4.8: 
ICMP   280         

   4.6    Control Plane Protocols: Routing   283   
  4.6.1    Routing Principles   283   

  Principle in Action: Optimal Routing   285       
  4.6.2    Intra-Domain Routing   294   

  Open Source Implementation 4.9: RIP   297       
 4.6.3    Inter-Domain Routing   305   

   Open Source Implementation 4.10: 
OSPF   307     

  Performance Matters: Computation Overhead 
of Routing Daemons   309     

  Open Source Implementation 4.11: BGP   312         

   4.7    Multicast Routing   313   
  4.7.1    Shifting Complexity to Routers   313     

  4.7.2    Group Membership Management   315     

  4.7.3    Multicast Routing Protocols   316   

  Principle in Action: When the Steiner Tree 
Differs from the Least-Cost-Path Tree   318       

lin76248_FM_i-xiv.indd   xilin76248_FM_i-xiv.indd   xi 24/12/10   6:14 PM24/12/10   6:14 PM



xii Contents

  4.7.4    Inter-Domain Multicast   325   

  Principle in Action: IP Multicast or Application 
Multicast?   326     

  Open Source Implementation 4.12: 
Mrouted   326         

   4.8    Summary   328   

  Common Pitfalls   329     

  Further Readings   330     

  Frequently Asked Questions   332     

  Exercises   335       

  Chapter 5
  Transport Layer   339   
   5.1    General Issues   340   

  5.1.1    Node-to-Node vs. End-to-End   341     

  5.1.2    Error Control and Reliability   342     

  5.1.3     Rate Control: Flow Control and Congestion 

Control   343   

   5.1.4    Standard Programming Interfaces   344     

  5.1.5    Transport-Layer Packet Flows   344       

  Open Source Implementation 5.1: Transport-
Layer Packet Flows in Call Graphs   344      

   5.2    Unreliable Connectionless Transfer: UDP   347   
  5.2.1    Header Format   347     

  5.2.2     Error Control: Per-Segment 

Checksum   348   

  Open Source Implementation 5.2: UDP and 
TCP Checksum   349       
  5.2.3     Carrying Unicast/Multicast Real-Time 

Traffi c   350       

   5.3    Reliable Connection-Oriented Transfer: 
TCP   351   
  5.3.1    Connection Management   351     

  5.3.2    Reliability of Data Transfers   356     

  5.3.3    TCP Flow Control   358   

  Open Source Implementation 5.3: TCP Sliding-
Window Flow Control   362       
  5.3.4    TCP Congestion Control   363   

  Historical Evolution: Statistics of TCP 
Versions   364     

  Open Source Implementation 5.4: TCP Slow 
Start and Congestion Avoidance   367     

  Principle in Action: TCP Congestion Control 
Behaviors   370       

  5.3.5    TCP Header Format   371     

  5.3.6    TCP Timer Management   374   

  Open Source Implementation 5.5: TCP 
Retransmission Timer   375     

  Open Source Implementation 5.6: TCP Persist 
Timer and Keepalive Timer   377       
  5.3.7     TCP Performance Problems and 

Enhancements   378   

  Historical Evolution: Multiple-Packet-Loss 
Recovery in NewReno, SACK, FACK, and 
Vegas   385     
  Principle in Action: TCP for the Networks with 
Large Bandwidth-Delay Product   390         

   5.4    Socket Programming Interfaces   391   
  5.4.1    Socket   391     

  5.4.2     Binding Applications through UDP and 

TCP   391   

  Principle in Action: SYN Flooding and 
Cookies   394     
  Open Source Implementation 5.7: Socket Read/
Write Inside Out   394     

  Performance Matters: Interrupt and Memory 
Copy at Socket   397       
  5.4.3    Bypassing UDP and TCP   399   

  Open Source Implementation 5.8: Bypassing 
the Transport Layer   399     

  Open Source Implementation 5.9: Making 
Myself Promiscuous   401     

  Open Source Implementation 5.10: Linux 
Socket Filter   403         

   5.5    Transport Protocols for Real-Time 
Traffi c   404   
  5.5.1    Real-Time Requirements   404   

  Principle in Action: Streaming: TCP or 
UDP?   406       
  5.5.2    Standard Data-Plane Protocol: 

RTP   407     

  5.5.3     Standard Control-Plane Protocol: 

RTCP   408   

  Historical Evolution: RTP Implementation 
Resources   409         

   5.6    Summary   410   

  Common Pitfalls   410     

  Further Readings   411     

  Frequently Asked Questions   412     

  Exercises   413       

lin76248_FM_i-xiv.indd   xiilin76248_FM_i-xiv.indd   xii 24/12/10   6:14 PM24/12/10   6:14 PM



 Contents xiii

  Chapter 6
  Application Layer   417   

  Historical Evolution: Mobile Applications   419         

   6.1    General Issues   420   
  6.1.1    How Ports Work   420     

  6.1.2    How Servers Start   421     

  6.1.3    Classifi cation of Servers   421   

  Historical Evolution: Cloud Computing   426       
  6.1.4     Characteristics of Application Layer 

Protocols   426       

   6.2    Domain Name System (DNS)   427   
  6.2.1    Introduction   427     

  6.2.2    Domain Name Space   428     

  6.2.3    Resource Records   430     

  6.2.4    Name Resolution   433   

  Historical Evolution: Root DNS Servers 
Worldwide   434     

  Open Source Implementation 6.1: BIND   437         

   6.3    Electronic Mail (E-Mail)   440   
  6.3.1    Introduction   440     

  6.3.2    Internet Message Standards   442     

  6.3.3    Internet Mail Protocols   447   

  Historical Evolution: Web-Based Mail vs. 
Desktop Mail   453     

  Open Source Implementation 6.2: qmail   454         

   6.4    World Wide Web (WWW)   459   
  6.4.1    Introduction   459     

  6.4.2    Web Naming and Addressing   460     

  6.4.3    HTML and XML   463     

  6.4.4    HTTP   464   

  Principle in Action: Non-WWW Traffi c Over 
Port 80 or HTTP   466     

  Historical Evolution: Google Applications   467       
  6.4.5    Web Caching and Proxying   468   

  Open Source Implementation 6.3: Apache   470     

  Performance Matters: Throughput and 
Latency of a Web Server   473         

   6.5    File Transfer Protocol (FTP)   475   
  6.5.1    Introduction   475     

  6.5.2     The Two-Connection Operation Model: 

Out-of-Band Signaling   477   

  Historical Evolution: Why Out-of-Band 
Signaling in FTP?   478       

  6.5.3    FTP Protocol Messages   479   

  Open Source Implementation 6.4: 
wu-ftpd   482         

   6.6    Simple Network Management Protocol 
(SNMP)   485   
  6.6.1    Introduction   485     

  6.6.2    Architectural Framework   486     

  6.6.3    Management Information Base (MIB)   487     

  6.6.4    Basic Operations in SNMP   491   

  Open Source Implementation 6.5: 
Net-SNMP   493         

   6.7    Voice over IP (VoIP)   496   
  6.7.1    Introduction   497   

  Historical Evolution: Proprietary VoIP 
Services—Skype and MSN   498       
  6.7.2    H.323   498     

  6.7.3    Session Initialization Protocol (SIP)   501   

  Historical Evolution: H.323 vs. SIP   504     

  Open Source Implementation 6.6: 
Asterisk   505         

   6.8    Streaming   510   
  6.8.1    Introduction   510     

  6.8.2    Compression Algorithms   511     

  6.8.3    Streaming Protocols   512   

  Historical Evolution: Streaming with Real 
Player, Media Player, QuickTime, and 
YouTube   514       
  6.8.4     QoS and Synchronization 

Mechanisms   515   

  Open Source Implementation 6.7: Darwin 
Streaming Server   516         

   6.9    Peer-to-Peer Applications (P2P)   520   
  6.9.1    Introduction   520   

  Historical Evolution: Popular P2P 
Applications   522     

  Historical Evolution: Web 2.0 Social 
Networking: Facebook, Plurk, and Twitter   523       
  6.9.2    P2P Architectures   524     

  6.9.3     Performance Issues of P2P 

Applications   529     

  6.9.4    Case Study: BitTorrent   531   

  Open Source Implementation 6.8: 
BitTorrent   533         

   6.10   Summary   539   

  Common Pitfalls   540     

lin76248_FM_i-xiv.indd   xiiilin76248_FM_i-xiv.indd   xiii 24/12/10   6:14 PM24/12/10   6:14 PM



xiv Contents

  Further Readings   541     

  Frequently Asked Questions   543     

  Exercises   544       

  Chapter 7
  Internet QoS   546   

  Historical Evolution: The QoS Hype 
around 2000s   547     

   7.1    General Issues   548   
  7.1.1    Signaling Protocol   549     

  7.1.2    QoS Routing   549     

  7.1.3    Admission Control   549     

  7.1.4    Packet Classifi cation   549     

  7.1.5    Policing   550     

  7.1.6    Scheduling   550   

  Open Source Implementation 7.1: Traffi c 
Control Elements in Linux   551         

   7.2    QoS Architectures   553   
  7.2.1    Integrated Services (IntServ)   553     

  7.2.2    Differentiated Services (DiffServ)   556   

  Principle in Action: Why Both DiffServ and 
IntServ Failed   563     

  Principle in Action: QoS in Wireless Links   563         

   7.3    Algorithms for QoS Components   564   
  7.3.1    Admission Control   564   

  Open Source Implementation 7.2: Traffi c 
Estimator   566       
  7.3.2    Flow Identifi cation   568   

  Open Source Implementation 7.3: Flow 
Identifi cation   568       
  7.3.3    Token Bucket   570   

  Open Source Implementation 7.4: Token 
Bucket   571       
  7.3.4    Packet Scheduling   574   

  Open Source Implementation 7.5: Packet 
Scheduling   578       
  7.3.5    Packet Discarding   581   

  Open Source Implementation 7.6: Random 
Early Detection (RED)   583     

  Principle in Action: QoS Components in Daily 
Usage Today   585         

   7.4    Summary   586   

  Common Pitfalls   586     

  Further Readings   586     

  Frequently Asked Questions   588     

  Exercises   588       

  Chapter 8
  Network Security   590   
   8.1    General Issues   591   

  8.1.1    Data Security   591     

  8.1.2    Access Security   593     

  8.1.3    System Security   593       

   8.2    Data Security   594   
  8.2.1    Principles of Cryptography   595   

  Open Source Implementation 8.1: Hardware 
3DES   598       

  Principle in Action: Secure Wireless 
Channels   604     
  8.2.2     Digital Signature and Message 

Authentication   604   

  Open Source Implementation 8.2: MD5   606       
  8.2.3    Link Layer Tunneling   609     

  8.2.4    IP Security (IPSec)   609   

  Open Source Implementation 8.3: AH and ESP 
in IPSec   612       
  8.2.5    Transport Layer Security   614   

  Historical Evolution: HTTP Secure (HTTPS) 
and Secure Shell (SSH)   616       
  8.2.6    Comparison on VPNs   618       

   8.3    Access Security   618   
  8.3.1    Introduction   619     

  8.3.2    Network/Transport Layer Firewall   619   

  Open Source Implementation 8.4: Netfi lter and 
iptables   621       
  8.3.3    Application Layer Firewall   623   

  Open Source Implementation 8.5: FireWall 
Toolkit (FWTK)   624         

   Principle in Action: Wireless Access 
Control   627       

  8.4    System Security   627   
  8.4.1    Information Gathering   628     

  8.4.2    Vulnerability Exploiting   629     

  8.4.3    Malicious Code   632   

  Open Source Implementation 8.6: 
ClamAV   634       
  8.4.4    Typical Defenses   637   

  Principle in Action: Bottleneck in IDS   639     

lin76248_FM_i-xiv.indd   xivlin76248_FM_i-xiv.indd   xiv 24/12/10   6:14 PM24/12/10   6:14 PM



 Contents xv

  Principle in Action: Wireless Intrusions   640     

  Open Source Implementation 8.7: Snort   640     

  Open Source Implementation 8.8: 
SpamAssassin   645     

  Performance Matters: Comparing Intrusion 
Detection, Antivirus, Anti-Spam, Content 
Filtering, and P2P Classifi cation   647         

   8.5    Summary     649 

  Common Pitfalls      649  

  Further Readings      650  

  Frequently Asked Questions      652  

  Exercises        652    

   Appendices 

   A Who’s Who    654  
   A.1   IETF: Defi ning RFCs    655  

  A.1.1   IETF History    655  

  Historical Evolution: Who’s Who in IETF    656  
  A.1.2   The RFC Process    657  

  A.1.3   The RFC Statistics    658  

   A.2   Open Source Communities    660  
  A.2.1   Beginning and Rules of the Game    660  

  A.2.2   Open Source Resources    661  

  A.2.3   Websites for Open Source    663  

  A.2.4   Events and People    664  

   A.3   Research and Other Standards 
Communities    665  

   A.4   History    666  

  Further Readings    668  

      B  Linux Kernel Overview    669      
   B.1   Kernel Source Tree    670  

   B.2   Source Code for Networking    674  

   B.3   Tools for Source Code Tracing    677  

  Example: Trace of Reassembly of IPv4 
Fragments    677  

  Further Readings    682  

    C   Development Tools    683  
         C.1   Programming    684  

  C.1.1   Text Editor – vim and gedit    684  

  C.1.2    Compiler – gcc    685  

  C.1.3   Auto-Compile – make    688  

   C.2   Debugging    689  
  C.2.1   Debugger – gdb    689  

  C.2.2   GUI Debugger – ddd    690  

  C.2.3   Kernel Debugger – kgdb    693  

   C.3   Maintaining    694  
  C.3.1   Source Code Browser – cscope    694  

  C.3.2   Version Control – Git    696  

   C.4   Profi ling    699  
  C.4.1   Profi ler – gprof    700  

  C.4.2   Kernel Profi ler – kernprof    701  

   C.5   Embedding    702  
  C.5.1   Tiny Utilities – busybox    703  

  C.5.2    Embedding Development – uClibc and 

buildroot    704  

  Further Readings    705  

      D Network Utilities   707  
   D.1   Name-Addressing    707  

  D.1.1   Internet’s Who-Is-Who – 

host    708  

  D.1.2   LAN’s Who-Is-Who – arp    708  

  D.1.3   Who Am I – ifconfig    709  

   D.2   Perimeter-Probing    710  
  D.2.1   Ping for Living – ping    711  

  D.2.2   Find the Way – tracepath    711  

   D.3   Traffi c-Monitoring    713  
  D.3.1   Dump Raw Data – tcpdump    713  

  D.3.2   GUI Sniffer – Wireshark    714  

  D.3.3   Collect Network Statistics – 

netstat    714  

   D.4   Benchmarking    716  
  D.4.1   Host-to-Host Throughput – ttcp    716  

   D.5   Simulation and Emulation    717  
  D.5.1   Simulate the Network – ns    717  

  D.5.2   Emulate the Network – NIST Net    718  

   D.6   Hacking    720  
  D.6.1   Exploit Scanning – Nessus    720  

  Further Readings    722  

Index  723  

lin76248_FM_i-xiv.indd   xvlin76248_FM_i-xiv.indd   xv 24/12/10   6:14 PM24/12/10   6:14 PM



This page intentionally left blank 



    Preface 

  TRENDS IN NETWORKING COURSES 

  Technologies in computer networks have gone through many generations of evolution; 

many failed or faded away, some prevailed, and some are emerging today. The Internet 

technologies driven by TCP/IP currently dominate. Thus, a clear trend in organizing 

the content of courses in computer networks is to center around TCP/IP, adding  some
lower-layer link technologies and  many  upper-layer applications, while eliminating 

details about the faded technologies, and perhaps explaining why they faded away. 

 Textbooks on computer networking have also gone through several iterations 

of evolution, from traditional, and sometimes dry, protocol descriptions to the appli-

cation-driven, top-down approach and the system-aspect approach. One trend is to 

explain more of the  why , in addition to the  how , for protocol behaviors so that readers 

can better appreciate various protocol designs. The evolution, however, shall continue.   

  GAP BETWEEN DESIGN AND IMPLEMENTATION 

  Another less clear trend is to add practical fl avors to the protocol descriptions. Read-

ers of other textbooks might not know  where  and  how  the protocol designs could 

be implemented. The net result is that when they do their research in the graduate 

schools they tend to simulate their designs for performance evaluation, instead of 

real implementation with real benchmarking. When they join the industry, they need 

to start from scratch to learn the implementation environment, skills, and issues. Ap-

parently there is a  gap  between  knowledge  and  skills  for students trained by these 

textbooks. This gap could be bridged with  live running codes  easily accessible from 

the  open source  community.   

  AN OPEN SOURCE APPROACH 

  Almost all protocols in use today have implementations in the Linux operating sys-

tem and in many open source packages. The Linux and open source communities 

have grown, and their applications predominate in the networking world. However, 

the abundant resources available there are  not yet leveraged  by the regular textbooks 

in computer science, and more specifi cally in computer networks. We envision a 

trend in textbooks for several courses that could leverage open source resources to 

narrow the gap between domain knowledge and hands-on skills. These courses in-

clude Operating Systems (with Linux kernel implementations as examples of process 

xvii

lin76248_FM_i-xiv.indd   xviilin76248_FM_i-xiv.indd   xvii 24/12/10   6:14 PM24/12/10   6:14 PM



xviii Preface

management, memory management, fi le system management, I/O management, 

etc.), Computer Organizations (with verilog codes in www.opencores.org as ex-

amples of processors, memory units, I/O device controllers, etc.), Algorithms (with 

GNU libraries as examples of classical algorithms), and Computer Networks (with 

open source codes as examples of protocol implementations). This text might prove 

to be an early example of this trend. 

 Our open source approach bridges the gap by  interleaving  the descriptions of 

protocol behaviors with vivid sample implementations extracted from open source 

packages. These examples are explicitly numbered with, say, Open Source Imple-

mentation 3.4. The source sites from which complete live examples can be down-

loaded are referred to in the text, so students can access them on the Internet easily. 

For example, immediately after explaining the concept of longest prefi x matching in 

routing table lookup, we illustrate how the routing table is organized (as an ordered 

array of hash tables according to prefi x lengths) and how this matching is imple-

mented (as the  fi rst  matching, since the matching process starts from the hash table 

with the longest prefi xes) in the Linux kernel. This enables instructors to lecture on 

the design of routing table lookup and its implementation, and give sound hands-on 

projects to, for example, profi le the bottleneck of routing table lookup or modify 

hash table implementation. We argue that this interleaving approach is better than 

a  separating  approach with a  second  course or text. It benefi ts the  average  students 

most because it ties together design and implementation, and the majority of students 

would not need a second course. With other textbooks, instructors, teaching assis-

tants, and students have to make an extra effort to bridge this gap that has long been 

ignored, or in most cases, simply left untouched. 

 The protocol descriptions in this text are interleaved with 56 representative open 

source implementations, ranging from the Verilog or VHDL code of codec, modem, 

CRC32, CSMA/CD, and crypto, to the C code of adaptor driver, PPP daemon and 

driver, longest prefi x matching, IP/TCP/UDP checksum, NAT, RIP/OSPF/BGP rout-

ing daemons, TCP slow-start and congestion avoidance, socket, popular packages 

supporting DNS, FTP, SMTP, POP3, SNMP, HTTP, SIP, streaming, P2P, to QoS 

features such as traffi c shaper and scheduler, and security features such as fi rewall, 

VPN, and intrusion detection. This system-awareness is further fortifi ed by  hands-on 
exercises  right at the end of each open source implementation and at the end of each 

chapter, where readers are asked to  run, search, trace, profi le, or modify  the source 

codes of particular  kernel  code segments,  drivers , or  daemons.  Students equipped 

with such system-awareness and hands-on skills, in addition to their protocol domain 

knowledge, can be expected to do more sound research works in academia and solid 

development works in industry.   

   WHY  IS MORE IMPORTANT THAN  HOW  

  This text was written with the idea that it is more important to understand  why  a pro-

tocol is designed a certain way than it is to know  how  it works. Many key concepts 

and underlying principles are illustrated before we explain how the mechanisms or 

protocols work. They include statelessness, control plane and data plane, routing and 

lin76248_FM_i-xiv.indd   xviiilin76248_FM_i-xiv.indd   xviii 24/12/10   6:14 PM24/12/10   6:14 PM

www.opencores.org


 Preface xix

switching, collision and broadcast domains, scalability of bridging, classless and 

classful routing, address translation and confi guration, forwarding versus routing, 

window fl ow control, RTT estimation, well-known ports and dynamic ports, iterative 

and concurrent servers, ASCII application protocol messages, variable-length versus 

fi xed-fi eld protocol messages, transparent proxy, and many others. 

 Misunderstandings are as important as understandings, and they deserve special 

treatment to identify them. We arrange each chapter to start with general issues to 

raise fundamental questions. We have added sidebars about Principles in Action, 

Historical Evolution, and Performance Matters. We end with unnumbered sections 

on Common Pitfalls (for common misunderstandings in the reader community), Fur-

ther Readings, FAQs on big questions for readers to preview and review, and a set of 

hands-on and written exercises.   

  PREPARING THE AUDIENCE WITH SKILLS 

  Whether the instructors or students are familiar with Linux systems should not play a 

critical factor in adopting this textbook. The Linux-related hands-on skills are covered 

in Appendices B, C, and D. Three appendices equip readers with enough hands-on 

skills, including Linux kernel overview (with a tutorial on source code tracing), devel-

opment tools (vim, gcc, make, gdb, ddd, kgdb, cscope, cvs/svn, 
gprof/kernprof, busybox, buildroot), and network utilities (host, 
arp, ifconfig, ping, traceroute, tcpdump, wireshark, net-
stat, ttcp, webbench, ns, nist-net, nessus). Appendix A also 

has a section introducing readers to open source resources. There is also a section on 

“A Packet’s Life” in Chapter 1 to vividly illustrate the book’s roadmap. 

 Lowering the barrier of adopting open source implementations is considered. 

Instead of code listing and explanation, it is structured into Overview, Block Dia-

gram when needed, Data Structures, Algorithm Implementation, and Exercises. This 

provides for ease of adoption for both students and instructors.   

  PEDAGOGICAL FEATURES AND SUPPLEMENTS 

  Textbooks usually have a rich set of features to help readers and class support materi-

als to help instructors. We offer a set of features and a set of class support materials, 

summarized as follows:

    1. Fifty-six explicitly numbered Open Source Implementations for key protocols 

and mechanisms.  

   2. Four appendices on Who’s Who in Internet and open source communities, Linux 

kernel overview, development tools, and network utilities.  

   3. Logically reasoned  why ,  where , and  how  of protocol designs and implementations.  

   4. Motivating general issues at the beginning of each chapter with big questions to 

answer.  

   5. “A Packet’s Life” from the server and router perspectives to illustrate the book’s 

roadmap and show how to trace packet fl ows in codes.  

lin76248_FM_i-xiv.indd   xixlin76248_FM_i-xiv.indd   xix 24/12/10   6:14 PM24/12/10   6:14 PM



xx Preface

   6. “Common Pitfalls” illustrated at the end of each chapter, identifying common 

misunderstandings.  

   7. Hands-on Linux-based exercises in addition to written exercises.  

   8. Sixty-nine sidebars about historical evolution, principles, in action, and perfor-

mance matters.  

   9. End-of-chapter FAQs to help readers identify key questions to answer and re-

view after reading each chapter.  

   10. Class support materials, including PowerPoint lecture slides, solutions manual, 

and the text images in PowerPoint are available at the textbook Web site: 

www.mhhe.com/lin.  

      AUDIENCE AND COURSE ROADMAP 

  The book is intended to be a textbook in Computer Networks for senior undergradu-

ates or fi rst-year graduate students in computer science or electrical engineering. It 

could also be used by professional engineers in the data communication industry. 

For the undergraduate course, we recommend instructors cover only Chapters 1 

through 6. For the graduate course, all chapters should be covered. For instructors 

who lecture both undergraduate and graduate courses, two other possible differentia-

tions are heavier hands-on assignments and additional reading assignments in the 

graduate course. In either undergraduate or graduate courses, instructors could assign 

students to study the appendices in the fi rst few weeks to get familiar with Linux 

and its development and utility tools. That familiarity could be checked by either 

a hands-on test or a hands-on assignment. Throughout the course, both written and 

hands-on exercises can be assigned to reinforce knowledge and skills. 

 The chapters are organized as follows:

   � Chapter 1 offers background on the requirements and principles of net-

working, and then presents the Internet solutions to meet the requirements 

given the underlying principles. Design philosophies of the Internet, such 

as statelessness, connectionlessness, and the end-to-end argument are illus-

trated. Throughout the process, we raise key concepts, including connectiv-

ity, scalability, resource sharing, data and control planes, packet and circuit 

switching, latency, throughput, bandwidth, load, loss, jitter, standards and 

interoperability, routing and switching. Next we take Linux as an imple-

mentation of the Internet solutions to illustrate where and how the Internet 

architecture and its protocols are implemented into chips, drivers, kernel, and 

daemons. The chapter ends with a book roadmap and the interesting descrip-

tion of “A Packet’s Life.”  

  � Chapter 2 gives a concise treatment of the physical layer. It fi rst offers concep-

tual background on analog and digital signals, wired and wireless media, coding, 

modulation, and multiplexing. Then it covers classical techniques and standards 

on coding, modulation, and multiplexing. Two open source implementations 

illustrate the hardware implementation of Ethernet PHY using 8B/10B encoding 

and WLAN PHY using OFDM.  

lin76248_FM_i-xiv.indd   xxlin76248_FM_i-xiv.indd   xx 24/12/10   6:14 PM24/12/10   6:14 PM

www.mhhe.com/lin


 Preface xxi

  � Chapter 3 introduces three dominant links: PPP, Ethernet, and WLAN. Blue-

tooth and WiMAX are also described. LAN interconnection through layer-2 

bridging is then introduced. At the end, we detail the adaptor drivers that trans-

mit and receive packets to and from the network interface card. Ten open source 

implementations, including hardware design of CRC32 and Ethernet MAC, are 

presented.  

  � Chapter 4 discusses the data plane and control plane of the IP layer. The data 

plane discussion includes IP forwarding process, routing table lookup, check-

sum, fragmentation, NAT, and the controversial IPv6, while the control plane 

discussion covers address management, error reporting, unicast routing, and 

multicast routing. Both routing protocols and algorithms are detailed. Twelve 

open source implementations are interleaved to illustrate how these designs are 

implemented.  

  � Chapter 5 moves up to the transport layer to cover the end-to-end, or host-to-

host, issues. Both UDP and TCP are detailed, especially the design philosophies, 

behaviors, and versions of TCP. Then RTP for real-time multimedia traffi c is 

introduced. A unique section follows to illustrate socket design and implementa-

tion where packets are copied between the kernel space and the user space. Ten 

open source implementations are presented.  

  � Chapter 6 covers both traditional applications, including DNS, Mail, FTP, Web, 

and SNMP, and new applications, including VoIP, streaming, and P2P applica-

tions. Eight open source packages that implement these eight applications are 

discussed.  

  � Chapter 7 touches on the advanced topic of QoS, where various traffi c control 

modules such as policer, shaper, scheduler, dropper, and admission control are 

presented. Though the IntServ and DiffServ standard frameworks have not 

been widely deployed, many of these traffi c control modules are embedded in 

products that are used every day. Hence they deserve a chapter. Six open source 

implementations are presented.  

  � Chapter 8 looks into network security issues ranging from access security 

(guarded by TCP/IP fi rewall and application fi rewall), data security (guarded by 

VPN), and system security (guarded by intrusion detection and antivirus). Both 

algorithms (table lookup, encryption, authentication, deep packet inspection) 

and standards (3DES, MD5, IPsec) are covered. Eight open source implementa-

tions are added.  

       ACKNOWLEDGMENTS 

 The draft of this text has gone through much evolution and revision. Through-

out the process, many people have directly or indirectly contributed. First, many 

lab members and colleagues at National Chiao Tung University, National Chung 

Cheng University, and Cisco Systems, Inc., have contributed ideas, examples, and 

code explanations to this book. In particular, we would like to thank Po-Ching Lin, 

Shih-Chiang Weafon Tsao, Yi-Neng Lin, Huan-Yun Wei, Ben-Jye Chang, Shun-Lee 

Stanley Chang, Yuan-Cheng Lai, Jui-Tsun Jason Hung, Shau-Yu Jason Cheng, 

lin76248_FM_i-xiv.indd   xxilin76248_FM_i-xiv.indd   xxi 24/12/10   6:14 PM24/12/10   6:14 PM



xxii Preface

Chia-Yu Ku, Hsiao-Feng Francis Lu, and Frank Lin. Without their inputs, we would 

not have been able to embed many interesting and original ideas into this book. We 

also thank the National Science Council (NSC) in Taiwan, the Industrial Technology 

Research Institute (ITRI), D-Link Corporation, Realtek Semiconductor Corporation, 

ZyXEL Corporation, Cisco Systems, Inc., and Intel Corporation for supporting our 

networking research in the past few years. 

 Next, we wish to thank the following who reviewed drafts of all or parts of 

the manuscript: Emmanuel Agu, Worcester Polytechnic University; Tricha Anjali, 

Illinois Institute of Technology; Ladislau Boloni, University of Central Florida; 

Charles Colbourn, Arizona State University; XiaoJiang Du, Temple University; Jiang 

Guo, California State University, Los Angeles; Robert Kerbs, California State Poly-

technic University, Pomona; Fang Liu, The University of Texas-Pan American; Oge 

Marques, Florida Atlantic University; Mitchell Neilsen, Kansas State University; 

Mahasweta Sarkar, San Diego State University; Edwin Sloan, Hillsborough Com-

munity College; Ioannis Viniotis, North Carolina State University; Bin Wang, Wright 

State University; Daniel Zappala, Brigham Young University. Thanks also to Chih-

Chiang Wang, National Kaohsiung University of Applied Sciences, who polished the 

manuscript grammatically. 

 Finally, we would like to thank the folks at McGraw-Hill who coached us 

through the editorial and production phases. A special thanks should go to our Global 

Publisher, Raghu Srinivasan, our Developmental Editor, Lorraine Buczek, our 

production Project Manager, Jane Mohr, and Project Manager, Deepti Narwat. They 

have been very supportive coaches throughout this endeavor. 

lin76248_FM_i-xiv.indd   xxiilin76248_FM_i-xiv.indd   xxii 24/12/10   6:14 PM24/12/10   6:14 PM



McGraw-Hill Create™
Craft your teaching resources to match the way you teach! With McGraw-Hill 

Create™, www.mcgrawhillcreate.com, you can easily rearrange chapters, com-

bine material from other content sources, and quickly upload content you have 

written like your course syllabus or teaching notes. Find the content you need 

in Create by searching through thousands of leading McGraw-Hill textbooks. 

Arrange your book to fi t your teaching style. Create even allows you to personal-

ize your book’s appearance by selecting the cover and adding your name, school, 

and course information. Order a Create book and you’ll receive a complimentary 

print review copy in 3–5 business days or a complimentary electronic review 

copy (eComp) via email in minutes. Go to www.mcgrawhillcreate.com today and 

register to experience how McGraw-Hill Create™ empowers you to teach your
students your way.

McGraw-Hill Higher Education and Blackboard have teamed up.
Blackboard, the Web-based course-management system, has partnered with McGraw-

Hill to better allow students and faculty to use online materials and activities to 

complement face-to-face teaching. Blackboard features exciting social learning and 

teaching tools that foster more logical, visually impactful and active learning oppor-

tunities for students. You’ll transform your closed-door classrooms into communities 

where students remain connected to their educational experience 24 hours a day.

This partnership allows you and your students access to McGraw-Hill’s Create™ 

right from within your Blackboard course—all with one single sign-on. McGraw-

Hill and Blackboard can now offer you easy access to industry leading technology 

and content, whether your campus hosts it, or we do. Be sure to ask your local 

McGraw-Hill representative for details.

Electronic Textbook Options
This text is offered through CourseSmart for both instructors and students. 

CourseSmart is an online resource where students can purchase the complete text 

online at almost half the cost of a traditional text. Purchasing the eTextbook allows 

students to take advantage of CourseSmart’s web tools for learning, which include 

full text search, notes and highlighting, and email tools for sharing notes between 

classmates. To learn more about CourseSmart options, contact your sales representa-

tive or visit www.CourseSmart.com. 

McGraw-Hill Digital 
Offerings Include

xxiii

lin76248_FM_i-xiv.indd   xxiiilin76248_FM_i-xiv.indd   xxiii 24/12/10   6:14 PM24/12/10   6:14 PM

www.mcgrawhillcreate.com
www.mcgrawhillcreate.com
www.CourseSmart.com


This page intentionally left blank 



CC h a pp t e rr 1

 1

 Fundamentals 

   Computer networking  or  data communications  is a set of disciplines concerned 

with communication between computer systems or devices. It has its  require-
ments  and underlying  principles . Since the first node of ARPANET (Advanced 

Research Project Agency Network, later renamed Internet) was established in 1969, 

the store-and-forward  packet switching  technologies formed the Internet architec-

ture, which is a solution to meeting the requirements and underlying principles of 

data communications. This solution converged with the TCP/IP protocol suite in 

1983 and continued to evolve thereafter. 

 The Internet, or the TCP/IP protocol suite, is just one possible solution that 

happens to be the dominant one. There are other solutions that also meet the require-

ments and satisfy the underlying principles of data communications. For example, 

X.25 and Open System Interconnection (OSI) were also developed in the 1970s but 

were eventually replaced by TCP/IP. Asynchronous Transfer Mode (ATM), once 

popular in the 1990s, has compatibility difficulties with TCP/IP and thus faded away. 

Multi-Protocol Label Switching (MPLS) survived because it was designed from the 

beginning to be complementary to TCP/IP. 

 Similarly, there are many implementations of the Internet solution on all sorts of 

computer systems or devices. Among them, the open-source implementations share 

the same  open  and  bottom-up  spirit as the Internet architecture, offering the public 

practical accessibility to the software’s source code. In the bottom-up approach, 

volunteers contribute their designs or implementations while seeking support and 

consensus from the developer community, in contrast to the top-down approach 

driven by the authority. Being open-source and freely available, these implementa-

tions serve as solid  running  examples of how various networking mechanisms work 

in specific details. 

 In this chapter, we intend to acquaint readers with computer network fundamen-

tals used throughout this text. Section 1.1 identifies key requirements for data com-

munications by giving definitions of a computer network in terms of  connectivity ,
scalability , and  resource sharing . It also introduces the concept of packet switching. 

In Section 1.2, the underlying principles governing data communications are identi-

fied. Performance measures such as  bandwidth ,  offered load ,  throughput ,  latency ,
latency variation , and  loss  are defined first. We then explain the design issues in 

protocols  and  algorithms  used for processing  control packets  and  data packets . As 

the Internet is one possible solution to computer networking, Section 1.3 describes 

the Internet’s version of solutions to connectivity, scalability, and resource sharing as 

lin76248_ch01_001-053.indd   1lin76248_ch01_001-053.indd   1 24/12/10   4:11 PM24/12/10   4:11 PM



2 Computer Networks: An Open Source Approach

well as its control- and data-packet processing. Section 1.4 discusses how the open-

source implementations further realize the Internet solution in running systems, 

especially in Linux. We show why and how various protocol and algorithm modules 

are implemented into the  kernel ,  drivers ,  daemons,  and  controllers  of a computer 

system. We plot the  roadmap  for this book in Section 1.5 by showing  a packet’s life  

traversing through various modules in a Web server and in an intermediate intercon-

nection device. This section also lays a foundation for understanding the open-source 

implementations described in subsequent chapters. Contributors to the designs and 

open-source implementations of the Internet solution, along with other short-lived 

networking technologies, are reviewed in Appendix A as the supplementary materi-

als to this chapter. 

 After reading this chapter, you should be able to explain (1)  why  the Internet so-

lution was designed in the way it is, and (2)  how  this open solution was implemented 

in real systems. 

  1.1 REQUIREMENTS FOR COMPUTER NETWORKING 

  The set of requirements for computer networking can be translated into a set of 

 objectives  that must be met when designing, implementing, and operating a com-

puter network. Over the years, this set did change gradually, but its core requirements 

remain the same: “connecting an ever increasing number of users and applications 

through various shared media and devices such that they can communicate with 

each other.” This sentence indicates three requirements for data communications 

and the relevant issues to be addressed: (1)  connectivity : who and how to con-

nect, (2)  scalability : how many to connect, and (3)  resource sharing : how to uti-

lize the connectivity. This section presents these core requirements and discusses 

generic solutions to meeting these requirements in most computer networks (not just 

the Internet). 

  1.1.1 Connectivity: Node, Link, Path 
 A computer network, from the aspect of connectivity, can be viewed as “a  con-
nected graph  constructed from a set of  nodes  and  links , where any pair of nodes 

can reach each other through a  path  consisting of a sequence of concatenated nodes 

and links.” We need connectivity between human users to exchange messages or 

engage in conversation, between application programs to maintain the network 

operations, or between users and application programs to access data or services. 

Various media and devices can be used to establish connectivity between nodes, 

with the device being  hub ,  switch ,  router , or  gateway  and the media being  wired  

or  wireless . 

  Node: Host or Intermediary 

 A node in a computer network can be either a  host computer  or an  intermediary 
interconnection device . The former is an  end -point computer that  hosts  users and 

lin76248_ch01_001-053.indd   2lin76248_ch01_001-053.indd   2 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 3

applications, while the latter serves as an  intermediate  point with more than one 

link interface to interconnect host computers or other intermediaries. Devices such 

as hubs, switches, routers, and gateways are common examples of intermediaries. 

Unlike a computer-based host, an intermediary might be equipped with specially 

designed CPU-offloading hardware to boost the processing speed or to reduce the 

hardware and processing costs. As the link or wire speed increases,  wire-speed  

processing requires either faster CPU or special hardware, e.g., application specific 

integrated circuit (ASIC), to offload the CPU.  

  Link: Point-to-Point or Broadcast 

 A link in a computer network is called  point-to-point  if it connects exactly  two  nodes 

with one on each end, or  broadcast  if it connects more than two attached nodes. 

The key difference is that nodes attached to a broadcast link need to  contend  for the 

right to transmit. Nodes communicating over a point-to-point link usually transmit 

as they wish if it is a  full-duplex  link; take turns to transmit if it is a  half-duplex  link; 

or utilize two links to transmit, one for each direction, if it is a  simplex  link. That 

is, a full-duplex link and a half-duplex link support simultaneous bidirectional and 

one-at-a-time bidirectional, respectively, while a simplex link supports unidirectional 

communication only. 

 The physical appearance of a link can be  wired  or  wireless , be it point-to-point 

or broadcast. Usually links in local area networks (LANs), wired or wireless, are of 

broadcast type, while links in wide area networks (WANs) are point-to-point. This 

is because the multiple access methods used in broadcast links are usually more ef-

ficient over short distances, as we shall see in  Chapter 3 . However, exceptions do 

exist. For example, the satellite-based ALOHA system uses broadcast-type links for 

WANs. Ethernet, originally designed as broadcast links for LANs, has evolved into 

point-to-point in both LANs and WANs.  

  Wired or Wireless 

 For wired links, common media include twisted pairs, coaxial cables, and fiber 

optics. A twisted pair has two copper lines twisted together for better immunity to 

noise; they are widely used as the access lines in the plain old telephone system 

(POTS) and LANs such as Ethernet. A Category-5 (Cat-5) twisted pair, with a 

thicker gauge than the twisted pair for in-home POTS wiring, can carry 10 Mbps 

over a distance of several kilometers to 1 Gbps or higher over 100 meters or so. 

Coaxial cables separate a thicker copper line from a thinner nested copper wire 

with plastic shield, and are suitable for long-haul transmissions such as cable 

TV distribution of over 100 6-MHz TV channels for an area spanning 40 km 

wide. Through cable modems, some channels each can be digitized at the rate of 

30 Mbps for data, voice, or video services. Fiber optics has large capacity and it 

can carry signals for much longer distances. Fiber optic cables are used mostly for 

backbone networks (Gbps to Tbps) and sometimes for local networks (100 Mbps 

to 10 Gbps). 

 For wireless links, there are radio (10 4  ~ 10 8  Hz), microwave (10 8  ~ 10 11  Hz), 

infrared (10 11  ~ 10 14  Hz), and beyond (ultra-velvet, X ray, Gamma ray) in the 

lin76248_ch01_001-053.indd   3lin76248_ch01_001-053.indd   3 24/12/10   4:11 PM24/12/10   4:11 PM



4 Computer Networks: An Open Source Approach

increasing order of their transmission frequency. A low-frequency (below several 

GHz) wireless link is usually a broadcast one, which is  omnidirectional , while a 

high-frequency (over tens of GHz) wireless link could be point-to-point, which 

is more directional. As wireless data communication is still in its booming 

stage, the prevailing systems include wireless LANs (54 Mbps to 600 Mbps 

data transfer rate within a 100-m radius), general packet radio service (GPRS) 

(128 kbps within a few km), 3G (3rd Generation, 384 kbps to several Mbps 

within a few km), and Bluetooth (several Mbps within 10 m), all operating within 

800 MHz to 2 GHz microwave spectrum.  

 Historical Evolution: Link Standards 

 There are many link standards for data communications nowadays. We may 

classify links into the following categories:  local ,  last-mile , and  leased lines . 

Table 1.1 lists the names and data rates of these link standards. The local 

links are deployed for use in local area networks, where Category-5 (Cat-5)–

based Ethernet and 2.4 GHz wireless LANs are two dominant technologies. 

The former is faster and has dedicated transmission channels over the Cat-5 

twisted-pair wire, but the latter is simple to set up and has higher mobility. 

TABLE 1.1 Popular Wired and Wireless Link Technologies

Wired Wireless

Local Cat-5 twisted-pair Ethernet (10 

Mbps ~ 1 Gbps)

2.4 GHz band WLAN 

(2 ~ 54 Mbps ~ 600 Mbps)

Last-mile POTS (28.8 ~ 56 kbps) GPRS (128 kbps)

ISDN (64 ~ 128 kbps) 3G (384 kbps ~ several Mbps)

ADSL (16 kbps ~ 55.2 Mbps) WiMAX (40 Mbps)

CATV (30 Mbps)

FTTB (10 Mbps ~)

Leased-line T1 (1.544 Mbps)

T3 (44.736 Mbps)

OC-1 (51.840 Mbps)

OC-3 (155.250 Mbps)

OC-12 (622.080 Mbps)

OC-24 (1.244160 Gbps)

OC-48 (2.488320 Gbps)

OC-192 (9.953280 Gbps)

OC-768 (39.813120 Gbps)

lin76248_ch01_001-053.indd   4lin76248_ch01_001-053.indd   4 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 5

  Path: Routed or Switched? 

 Any attempt to connect two remote nodes must first find a path, a sequence of con-

catenated intermediate links and nodes, between them. A path can be either  routed  or 

switched . When node  A  wants to send messages to node  B , the messages are routed 

if they are transferred through non-preestablished and independently selected paths, 

perhaps through different paths. By routing, the destination address of the message 

is  matched  against a “routing” table to find the output link for the destination. This 

matching process usually requires several  table-lookup operations , each of which 

costs one  memory access  and one  address comparison . On the other hand, a switched 

path requires the intermediate nodes to establish the path and record the  state  infor-

mation of this path in a “switching” table before a message can be sent. Messages to 

be sent are then attached with an  index number  which points to some specific state 

information stored in the “switching” table. Switching a message then becomes easy 

indexing into the table with just one memory access. Thus, switching is much faster 

than routing but at the cost of setup overhead. 

 We can view a routed path as a  stateless  or  connectionless  concatenation of 

intermediate links and nodes, a switched path as a  stateful  or  connection-oriented  

concatenation. ATM has all its connections switched; that is, before the data begins 

to flow, a connection along a path between the source and the destination has to be 

established and memorized at all the intermediate nodes on the path. The Internet, in 

contrast, is stateless and connectionless, and Section 1.3 shall discuss the philosophy 

behind its connectionless design. 

The so-called last-mile or first-mile links span the “first mile” from a home 

or a mobile user to an Internet service provider (ISP). Among the items in 

this category, asymmetric digital subscriber line (ADSL), cable TV (CATV), 

and fiber-to-the-block (FTTB) are the most popular wired link technologies, 

and 3G and WiMAX (Worldwide Interoperability for Microwave Access) are 

the most popular wireless technologies for the present. POTS and Integrated 

Service Digital Network (ISDN) are outdated technologies. 

 For wired technology, FTTB is faster than the others, but also more expen-

sive. ADSL leverages traditional telephone lines, and its transfer rate degrades 

with increasing distance to the ISP. CATV leverages TV coaxial cables; it has 

less limitation in distance, but the bandwidth is shared with the TV programs’ 

signals. If you need site-to-site connectivity that does not go through the pub-

lic shared network, you can lease a dedicated line from a  carrier . In North 

America, for example, leased line services from carriers include copper-based 

Digital Signal 1 (DS1, T1) and DS3 (T3), and various optical STS-x (synchro-

nous transport signal, OC-x [optical carrier]) links. The latter option, though 

expensive, is becoming more popular since it can meet the increasing demand 

for bandwidth. 

lin76248_ch01_001-053.indd   5lin76248_ch01_001-053.indd   5 24/12/10   4:11 PM24/12/10   4:11 PM



6 Computer Networks: An Open Source Approach

    1.1.2 Scalability: Number of Nodes 
 Being able to connect 10 nodes is totally different from being able to connect mil-

lions of nodes. Since what could work on a small group does not necessarily work 

on a huge group, we need a  scalable  method to achieve the connectivity. Thus, a 

computer network, from the aspect of scalability, must offer “a scalable platform to a 

 large  number of nodes so that each node  knows  how to reach any other node.” 

  Hierarchy of Nodes 

 One straightforward method to connect a huge number of nodes is to organize them 

into many groups, each consisting of a small number of nodes. If the number of 

groups is very large, we can further cluster these groups into a number of  super-
groups , which, if necessary, can be further clustered into “ super-supergroups.”  This 

recursive clustering method creates a manageable tree-like hierarchical structure, 

where each group (or supergroup, “super-supergroup,” etc.) connects with only a 

small number of other groups. If such clustering is not applied, the interconnection 

network for a huge number of nodes may look like a chaotic mesh.  Figure 1.1  

 FIGURE 1.1 Hierarchy of nodes: 
grouping of billions of nodes in a 
three-level hierarchy.     

65,53665,536

4,294,967,296

256 256

x256

X65,536Supergroup

Group

Super-supergroup

256256

x256

 Historical Evolution: ATM Faded 

 ATM once was the presumed backbone switching technology for data commu-

nications. Unlike the Internet architecture, ATM adopted the concept of  stateful 
switching  from POTS: Its switches keep connection-oriented state information 

to decide how connections should be switched. Because ATM came up in the 

early 1990s, it had to find a way to coexist with the Internet architecture, the most 

dominant networking technology at that time. However, integrating connection-

oriented switching with a connectionless routing technology creates lots of over-

head. The integration of these two could take the form of internetworking the ATM 

domain with the Internet domain, or of a layered hybrid that uses ATM to carry the 

Internet packets. Both require finding existing ATM connections or establishing 

but later tearing down new ATM connections after sending out just a few packets. 

Moreover, the layered-hybrid approach brutally wrecks the stateless nature of the 

Internet architecture. Quickly or slowly, ATM is meant to be gone. 

lin76248_ch01_001-053.indd   6lin76248_ch01_001-053.indd   6 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 7

illustrates how 4 billion nodes could be organized and connected into a simple three-

level hierarchy, with 256 branches at the bottom and middle levels and 65,536 branches 

at the top level. As we shall see in Section 1.3, the Internet uses a similar clustering 

method where group and supergroup are termed subnet and domain, respectively. 

   LAN, MAN, WAN 

 It would be natural to form a bottom-level group with the nodes which reside within a 

small geographical area, say of several square kilometers. The network that connects the 

small bottom-level group is called a local area network (LAN). For a group of size 256, it 

would require at least 256 (for a ring-shaped network) and at most 32,640 point-to-point 

links (for a fully connected mesh) to establish the connectivity. Since it would be tedious 

to manage this many links in a small area, broadcast links thus come to play the dominant 

role here. By attaching all 256 nodes to a single broadcast link (with a bus, ring, or star to-

pology), we can easily achieve and manage their connectivity. The application of a single 

broadcast link can be extended to a geographically larger network, say metropolitan area 

network (MAN), to connect remote nodes or even LANs. MANs usually have a  ring  

topology so as to construct  dual buses  for fault tolerance to a link failure. 

 However, such a broadcast ring arrangement has put limitations on the degree 

of fault tolerance and on the number of nodes or LANs a network could support. 

Point-to-point links fit in naturally for unlimited, wide area connectivity. A wide area 

network (WAN) usually has a  mesh  topology due to the randomness in the locations 

of geographically dispersed network sites. A tree topology is inefficient in WAN’s 

case because in a tree network, all traffic has to ascend toward the root and at some 

branch descend to the destination node. If the traffic volume between two leaf nodes 

is huge, a tree network might need an additional point-to-point link to connect them 

directly, which then creates a loop in the topology and turns the tree into a mesh. 

 In  Figure 1.1 , a bottom-level group by default is a LAN implemented as a  hub  

or a  switch  connecting less than 256 hosts. A middle-level supergroup could be a 

campus or enterprise network with less than 256 LANs interconnected by  routers  

into a tree or meshed structure. At the top level, there could be tens of thousands of 

supergroups connected by point-to-point links as a meshed WAN.   

  1.1.3 Resource Sharing 
 With scalable connectivity established, we now address how to share this connectiv-

ity, i.e., the capacities of links and nodes, with network users. Again, we can define a 

computer network, from the aspect of resource sharing, as “a  shared  platform where 

 capacities  of nodes and links are used to transfer  communication   messages  between 

nodes.” This is where data communications and the traditional voice communica-

tions differ most from each other. 

  Packet Switching vs. Circuit Switching 

 In POTS, a  circuit  between the caller and the callee has to be found and  switched  first 

before a voice conversation can begin. During the whole course of the conversation, 

the 64-kbps circuit has to be maintained between the conversing parties, even if both 

remain silent all the time. This kind of  dedicated  resource allocation is called  circuit 

lin76248_ch01_001-053.indd   7lin76248_ch01_001-053.indd   7 24/12/10   4:11 PM24/12/10   4:11 PM



8 Computer Networks: An Open Source Approach

switching , which provides stable resource supplies and thus can sustain high quality 

in a  continuous  data stream such as video or audio signals. However, circuit switch-

ing is not suitable for data communications where interactive or file-transfer applica-

tions pump data whenever they want but remain idle most of the time. Apparently, 

allocating a dedicated circuit for such bursty traffic is very inefficient. 

 A more relaxed and efficient practice of resource sharing is to have all traffic com-

pete for the right of way. However, with this practice, congestion resulting from bursty 

data traffic thus becomes inevitable. So how do we handle such traffic congestion? We 

 queue  it up! Putting  buffer  space at nodes can absorb most congestion caused by tem-

porary data bursts, but if congestion persists for a long period of time, loss eventually 

will happen due to buffer overflow. This mode of  store-and-forward  resource sharing 

is called  packet switching  or  datagram switching , where messages in data traffic are 

chopped into  packets  or  datagrams , stored at the buffer queue of each intermediate 

node on the path, and forwarded along the path toward their destination. 

 POTS exercises circuit switching, whereas the Internet and ATM exercise 

packet switching. As explained in Section 1.1.1, ATM’s paths are “switched” while 

the Internet’s paths are “routed.” It thus might confuse readers that the Internet has 

“routed” paths in the packet “switching” network. Unfortunately, this community 

does not differentiate these networking technologies by name. To be precise, the 

Internet runs packet routing while ATM and POTS run packet switching and circuit 

switching, respectively. In some sense, ATM imitates circuit switching with connec-

tion setup for better communication quality.  

  Packetization 

 To send out a message, some header information must be attached to the message to 

form a  packet  so that the network knows how to handle it. The message itself is then 

called the  payload  of the packet. The header information usually contains the source and 

destination addresses and many other fields to control the packet delivery process. But 

how large can packets and payload be? It depends on the underlying link technologies. 

As we shall see in Section 2.4, a link has its limit on the packet length, which could 

cause the sending node to fragment its message into smaller pieces and attach a header 

to each piece for transmission over the link, as illustrated in  Figure 1.2 . The packet head-

ers would tell the intermediate nodes and the destination node how to deliver and how 

to reassemble the packets. With the header, each packet can be processed either totally 

independently or semi-independently when traversing through the network. 

 It is the  protocol  that defines and standardizes the header fields. By definition, 

a protocol is a set of standard rules for data representation, signaling, and error 

 FIGURE 1.2 Packetization: 
fragmenting a message into 
packets with added headers.     

H H H

Message

Packet
with

header

lin76248_ch01_001-053.indd   8lin76248_ch01_001-053.indd   8 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 9

detection required to send information over a communication channel. These standard 

rules define the header fields of protocol messages and how the receiving side should 

react upon receiving the protocol messages. As we shall see in Section 1.3, a message 

fragment might have been  encapsulated  with several layers of headers, each of which 

describes a set of protocol parameters and is added in front of its preceding header. 

   Queuing 

 As mentioned previously, network nodes allocate buffer queues to absorb the conges-

tion caused by the bursty data traffic. Therefore, when a packet arrives at a node, it 

joins a buffer queue with other packet arrivals, waiting to be processed by the proces-

sor in the node. Once the packet moves to the front of the queue, it gets served by the 

processor, which figures out how to process the packet according to the header fields. 

If the node processor decides to forward it to another data-transfer port, the packet 

then joins another buffer queue waiting to be transmitted by the transmitter of that 

port. When a packet is being transmitted over a link, it takes some time to propagate 

the packet’s data from one side to the other side of the link, be it point-to-point or 

broadcast. If the packet traverses through a path with 10 nodes and hence 10 links, 

this process will be repeated 10 times. 

  Figure 1.3  illustrates the queuing process at a node and the node’s out-link, 

which can be modeled as a  queuing system  with a  queue  and a  server . The server in 

a node is usually a processor or a set of ASICs whose service time depends on the 

clock rate of the nodal modules (e.g., CPU, memory, ASIC). On the other hand, the 

service time in a link is actually the sum of (1) the  transmission time , which depends 

on how fast the transceiver (transmitter and receiver) can pump the data and how 

large the packet is, and (2) the  propagation time , which depends on how long the 

transmitted signal has to propagate. The former stage at the node has only one server 

to process the packets, and the time the packet spends in this stage can be reduced 

by using faster transceivers. However, the latter stage at the link has a number of 

 parallel servers  (which is equivalent to the maximum number of allowed outstand-

ing packets in the link), and the time consumed here  cannot  be reduced regardless 

of the adopted technologies. Signals propagate through any links at a speed around 

2 × 10 8  m/sec. In conclusion, nodal processing time and transmission time, includ-

ing their queuing times, can be further reduced as the technologies evolve, but the 

propagation time would remain fixed since its value is bounded by the speed of light. 

 FIGURE 1.3 Queuing at a node 
and a link.     

Propagation

Buffer Transmitter

Buffer Processor

Packets

Node

Packets

Link

lin76248_ch01_001-053.indd   9lin76248_ch01_001-053.indd   9 24/12/10   4:11 PM24/12/10   4:11 PM



10 Computer Networks: An Open Source Approach

      1.2 UNDERLYING PRINCIPLES 

  As the underlying technology of data communications, packet switching has laid 

down the principles for data communications to follow. We can divide the set of 

principles into three categories:  performance , which governs the quality of services 

of packet switching,  operations , which details the types of mechanisms needed for 

packet handling, and  interoperability , which defines what should be put into standard 

protocols and algorithms, and what should  not . 

  1.2.1 Performance Measures 
 In this subsection, we provide fundamental background so that you can appreci-

ate the rules of the packet switching game. This background is important when 

analyzing the behavior of a whole system or a specific protocol entity. To design 

and implement a system or protocol without knowing,  beforehand or afterward , its 

performance measures under the common or extreme operational scenarios is not an 

acceptable practice in this area. Performance results of a system come either from 

mathematical analysis or system simulations  before  the real system is implemented, 

or from experiments on a test bed  after  the system has been implemented. 

 Principle in Action: Datacom vs. Telecom 

 Here is a good place to reemphasize the major differences between  datacom , 

i.e., data communications or computer networking, and  telecom , i.e., telecom-

munications, to finalize our discussions on the requirements for computer 

networking. Among connectivity, scalability, and resource sharing, they do 

not differ much from each other in scalability, but the main differences lie in 

the type of connectivity they employ and the way they share resources. The 

traditional telecom establishes only one type of connectivity between two com-

munication parties, supporting one single application (telephony). On the other 

hand, there exists a wide spectrum of applications in datacom, which demands 

various types of connectivity. The connectivity may be set between two clients 

(e.g. telephony), between a client and a server process (e.g. file download or 

streaming), between two server processes (e.g., mail relay or content update), 

or even among a group of individuals or processes. Each application might have 

a unique traffic profile, either bursty or continuous. Unlike homogeneous and 

usually continuous telecom traffic, which is carried by the circuit-switching 

technology at high efficiency, datacom traffic requires packet switching to 

utilize resource sharing. However, compared to the  buffer-less  circuit switching 

where the call-blocking or call-dropping probability is the only major concern, 

packet switching introduces more complex performance issues. As we shall see 

in the next section, datacom needs to control buffer overflow or loss, throughput, 

latency, and latency variation. 

lin76248_ch01_001-053.indd   10lin76248_ch01_001-053.indd   10 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 11

 How a system performs, as perceived by a user, depends on three things: (1) the 

hardware  capacity  of the system, (2) the  offered load  or input traffic to this system, 

and (3) the internal  mechanisms  or  algorithms  built into this system to handle the 

offered load. A system with a high capacity but poorly designed mechanisms would 

not scale well when handling a heavy offered load, though it might perform fairly 

well with a light offered load. Nevertheless, a system with excellent designs but a 

small capacity should not be put at a point with heavy traffic volume. The hardware 

capacity is often called  bandwidth , a common term in the networking area, be it a 

node, link, path, or even a network as a whole. The offered load of a system may vary, 

from light load, normal operational load, to extremely heavy load (say wire-speed 

stress load). There should be a close match between bandwidth and offered load, if 

the system is to stay in a  stable  operation while allowing the designed internal mecha-

nisms to play the tricks to gain more performance. For packet switching,  throughput  
(the output traffic as compared to the offered load of input traffic) appears to be the 

performance measure that concerns us most, though other measures such as  latency  

(often called  delay ),  latency variation  (often called  jitter ), and  loss  are also important. 

  Bandwidth, Offered Load, and Throughput 

 The term “bandwidth” comes from the study of electromagnetic radiation, and origi-

nally refers to the width of a band of frequencies used to carry data. However, in 

computer networking the term is normally used to describe the maximum amount of 

data that can be handled by a system, be it a node, link, path, or network, in a certain 

period of time. For example, an ASIC might be able to encrypt 100 million bytes per 

second (MBps), a transceiver might be able to transmit 10 million bits per second 

(Mbps), and an end-to-end path consisting of five 100 Mbps nodes and five 10 Mbps 

links might be able to handle up to 10 Mbps given no other interfering traffic along 

the path. 

 One may think of the bandwidth of a link as the number of bits transmitted and 

 contained  in the distance propagated by the signal in one second. Since the speed of 

light in a medium is fixed at around 2 × 10 8  m/sec, higher bandwidth means more 

bits contained in 2 × 10 8  m. For a transcontinental link of 6000 miles (9600 km, with 

a propagation delay of 9600 km/(2 × 10 8  m) = 48 ms) with a bandwidth of 10 Gbps, 

the maximum number of bits contained in the link is thus 9600 km/(2 × 10 8  m) × 

10 Gbps = 480 Mbits. Similarly, the “width” of a transmitted bit propagating on a 

link varies according to the link bandwidth, too. As shown in  Figure 1.4 , the bit width 

 FIGURE 1.4 Bit width in time and length for a 10-Mbps link where the transmitted data 
are encoded by the widely used Manchester code.     

1 1 1 0 0 1 0 1 1 0

0.1 ms in time and 20 m in length

lin76248_ch01_001-053.indd   11lin76248_ch01_001-053.indd   11 24/12/10   4:11 PM24/12/10   4:11 PM



12 Computer Networks: An Open Source Approach

in a 10-Mbps link is 1/(10 × 10 6 ) = 0.1 μs  in time , or 0.1 μs × 2 × 10 8  m/sec = 20 m, 

 in length . The signal wave of one bit actually occupies 20 meters in the link. 

 The offered load or input traffic can be  normalized  with respect to the bandwidth 

and used to indicate the  utilization  or how busy the system is. For a 10-Mbps link, an 

offered load of 5 Mbps means a normalized load of 0.5, meaning the link would be 

50% busy on the average. It is possible for the normalized load to exceed 1, though 

it would put the system in an unstable state. The throughput or output traffic may or 

may not be the same as the offered load, as shown in  Figure 1.5 . Ideally, they should 

be the same before the offered load reaches the bandwidth (see curve A). Beyond 

that, the throughput converges to the bandwidth. But in reality, the throughput might 

be lower than the offered load (see curve B) due to buffer overflow (in a node or link) 

or collisions (in a broadcast link) even before the offered load reaches the bandwidth. 

In links with uncontrolled collisions, the throughput may drop down to zero as the 

offered load continues to increase, as plotted by curve C in  Figure 1.5 . With careful 

design, we might prevent that from happening by having the throughput converge to 

a value lower than the bandwidth. 

   Latency: Node, Link, Path 

 In addition to throughput, latency is another key measure we care about.  Queuing 
theory , first developed by Agner Krarup Erlang in 1909 and 1917, tells us if both 

packet inter-arrival time and packet service time are  exponentially distributed  and 

the former is larger than the latter, plus infinite buffer size, the mean latency is the 

inverse of the difference between bandwidth and offered load, i.e.,

      T = 1/( m − l),  

where  m  is bandwidth,  l  is offered load, and T is mean latency. Though in reality ex-

ponential distribution does not hold for real network traffic, this equation gives us a 

basic relationship between bandwidth, offered load, and latency. From the equation, 

latency will be halved if both bandwidth and offered load are doubled, which means 

larger systems usually have lower latency. In other words, resources should  not  be 

split into smaller pieces, from the latency point of view. Again, if a system is split 

into two equally small systems to handle equally divided offered load, the latency for 

both smaller systems would be doubled. 

 The latency for a packet is actually the sum of queuing time and service time. 

The latter is relatively insensitive to the offered load, but the former is quite sensi-

tive to the offered load. The service time at a node is usually the CPU time spent in 

 FIGURE 1.5 Bandwidth, offered 
load, and throughput.     

Offered load

Throughput 

Bandwidth A: Ideal 

B: Reality

C: Collision

lin76248_ch01_001-053.indd   12lin76248_ch01_001-053.indd   12 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 13

processing a packet. On the other hand, the service time at a link consists of transmis-

sion time and propagation time. That is, at a node, 

      latency  =  queuing  +  processing . 

But at a link,

      latency  =  queuing  +  transmission  +  propagation . 

 Similar to Little’s result for a node, the  bandwidth delay product  (BDP) for a 

link tells how many bits are contained in a pipe in transit.  Figure 1.7  compares the 

number of bits contained in a long, fat pipe (link) to the number in a short, thin pipe. 

The delay here, denoted by  L , is the propagation time instead of transmission or 

 Principle in Action: Little’s Result 

 For a node, one interesting question is how many packets are contained in a node 

if we can measure its offered load and latency. The theorem developed by John 

Little in 1961 answered this: If the throughput equals the offered load, which 

means no loss, the mean  occupancy  (the mean number of packets in the node) 

equals the mean throughput multiplied by the mean latency. That is,

      N = l × T 

where  l  is mean offered load,  T  is mean latency, and  N  is mean occupancy. 

Little’s result is powerful because it does not have to assume the distribution of 

these variables. One useful application of this result is to estimate the buffer size 

of a black-box node. Suppose we can measure the maximum no-loss throughput 

of a node and its latency under such throughput; the occupancy obtained by 

multiplying them is approximately the minimum required buffer size inside the 

node. In  Figure 1.6 , the estimation of occupancy holds provided no loss happens. 

 FIGURE 1.6 Little’s result: How many packets in the box?     

1 packet/sec

Mean latency = 5 secs

1 packet/sec

Mean occupancy = 5 packets

 FIGURE 1.7 Bandwidth delay 
product: long, fat pipe vs. short, 
thin pipe.     

0 1 1 0 1 1 0 1 0 1 0 1 0 0 1
0 0 1 0 0 1 1 1 0 0 1 1 1 1 0
1 0 0 1 1 0 0 0 1 0 1 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 0 1 0 0

L

B

0 1 1 1 0 0 1 0
1 0 0 1 0 1 0 0

L'

B'

Long, fat pipe

Short, thin pipe

lin76248_ch01_001-053.indd   13lin76248_ch01_001-053.indd   13 24/12/10   4:11 PM24/12/10   4:11 PM



14 Computer Networks: An Open Source Approach

queuing time, and is determined by the length of the link. BDP is an important factor 

for designing traffic control mechanisms. Links or paths with a large BDP should ex-

ercise a more preventive control mechanism instead of a reactive one since it would 

be too late to react to congestion. 

   Jitter or Latency Variation 

 Some applications in data communications, packet voice, for example, need not only 

small but also consistent latency. Some other applications, video and audio streaming, 

for example, may tolerate very high latency and can even  absorb   latency variation  or 

 jitter  to some extent. Because the streaming server pumps  one-way  continuous traffic to 

clients, the perceived playout quality would be good provided the playout buffer at clients 

would not underflow—that is, get empty—or overflow. Such clients use a playout buffer 

to absorb the jitter by delaying the playout times of  all  packets to some  aligned  timeline. 

For example, if the jitter is 2 seconds, the client automatically delays the playout time of 

all packets to the packet playout timestamps plus 2 seconds. Thus, a buffer that can queue 

packets for 2 seconds must be in place. Though the latency is prolonged, the jitter is ab-

sorbed or reduced. For packet voice, such jitter elimination cannot be adopted completely 

because of the interactivity required between two peers. Here you cannot sacrifice latency 

too much for jitter elimination. Nevertheless, jitter is not an important measure at all for 

noncontinuous traffic.  

  Loss 

 The last but not the least performance measure is the packet loss probability. There 

are two primary reasons for packet loss:  congestion  and  error . Data communication 

systems are prone to congestion. When congestion occurs at a link or a node, packets 

queue up at buffers in order to absorb the congestion. But if congestion persists, buf-

fers start to overflow. Suppose a node has three links with equal bandwidth. When 

wire-speed traffic is incoming from both link 1 and link 2 heading to link 3, the node 

would have at least 50% packet loss. For such  rate mismatch , buffering cannot play 

any trick here; some sorts of control mechanisms must be used instead. Buffering 

works only for short-term congestion. 

 Errors that happen at links or nodes also contribute to packet loss. Though many 

wired links now have good transmission quality with very low bit error rate, most 

wireless links still have high bit error rates due to interference and signal degrada-

tion. A single bit error or multiple bit errors could render the whole packet useless 

and hence dropped. Transmission is not the only source of errors;  memory errors  at 

nodes may also account for a significant percentage, especially when the memory 

module has been on for years. When packets queue in nodal buffers, bit errors may hit 

the buffer memory so that the bytes  read out  are not the same as the bytes  written in .   

  1.2.2 Operations at Control Plane 
  Control Plane vs. Data Plane 

 Operating a packet-switching network involves handling two kinds of packets: 

 control  and  data . The control packets carry the messages meant for directing nodes 

on how to transfer data packets, while the data packets enclose the messages that 

lin76248_ch01_001-053.indd   14lin76248_ch01_001-053.indd   14 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 15

users or applications actually want to transfer. The set of operations for handling 

control packets is called the  control plane , while the one for data packets is called the 

 data plane . Though there are some other operations for management purposes that 

are hence called the management plane, here we merge them into the control plane 

for simplicity. The key difference between the control plane and the data plane is 

that the former usually happens in  background  with longer timescales, say hundreds 

of milliseconds ( ms ) to tens of seconds, while the latter occurs in  foreground  with 

shorter timescales and more real-time, say microseconds ( m s ) to nanoseconds ( ns ). 
The control plane often requires more complex computation per operation in order 

to decide, for example, how to route traffic and how to allocate resources so as to 

optimize resource sharing and utilization. On the other hand, the data plane has to 

process and forward packets on the fly so as to optimize throughput, latency, and 

loss. This subsection identifies what mechanisms should be in place for the control 

plane while leaving the data plane to the next subsection. Their design considerations 

are also raised here. 

 Again, the mission of the control plane in data communications is to provide 

good instructions for the data plane to carry data packets. As shown in  Figure 1.8 , to 

achieve that, the control plane of intermediary equipment needs to figure out where 

to route packets (to which links or ports), which usually requires exchange of control 

packets and complex route computation. In addition, the control plane may also need 

to deal with miscellaneous issues such as error reporting, system configuration and 

management, and resource allocation. Whether this mission is done well usually 

does not directly affect the performance measures as much as what the data plane is 

capable of. Instead, the control plane concerns more whether the resources have been 

utilized efficiently, fairly, and optimally. We now look at what mechanisms might be 

put into the control plane. 

   Routing 

 Most literatures do not differentiate  routing  and  forwarding . Here we define routing 

as finding where to send packets and forwarding as sending packets. Routing is thus 

to  compute  the routes and  store  them in tables which are  looked up  when forwarding 

packets. Routing is usually done in the background periodically, so as to maintain 

and update the  forwarding tables . (Note that many literatures refer to forwarding 

tables as routing tables. We use both terms in this text to mean the same thing.) 

It would be too late to compute the route when a packet arrives and needs to be 

 FIGURE 1.8 Some operations at the control plane and the data plane in an intermediary.     

Routing 
Error

reporting
Operations at
control plane 

Operations at
data plane 

System
cfg. and mgmt.

Resource
allocation

Forwarding
Classi-
fication

Error
control

Traffic
control

Quality
of service

Deep pkt.
inspection

lin76248_ch01_001-053.indd   15lin76248_ch01_001-053.indd   15 24/12/10   4:11 PM24/12/10   4:11 PM



16 Computer Networks: An Open Source Approach

forwarded right away. There would be time only for table lookup, but not for running 

a route computation algorithm. 

 Routing as route computation is not as simple as one might think at first glance. 

There are many questions to be answered before you come to design a routing 

algorithm. 

   Should the route be determined  hop-by-hop  at each intermediate router or com-

puted at the source host, i.e.  source-routed ?  

  What is the  granularity  of the routing decision:  per destination ,  per source-
destination ,  per flow , or even  per packet  in the extreme?  

  For a given granularity, do we choose  single-path  routing or  multiple-path  routing?  

  Is the route computation based on  global  or  partial  information of the network?  

  How to distribute the global or partial information? By  broadcasting  among all 

routers or  exchanging  between neighboring routers?  

  What is the optimal path by definition? Is it the  shortest , the  widest , or the  most 
robust  one?  

  Should the router support only one-to-one forwarding or one-to-many forwarding, 

that is,  unicasting  or  multicasting ?   

 All these must be carefully thought out first. We underline those design choices that 

are made by the Internet, but a different set of choices would be possible for other 

network architectures. We do not plan to elaborate here how these choices really 

work in the Internet. Here we merely raise the design issues of routing protocols and 

algorithms, while leaving the details to  Chapter 4 .  

  Traffic and Bandwidth Allocation 

 It is possible to consider routing from an even more performance-oriented perspec-

tive. If traffic volume and bandwidth resources could be measured and manipulated, 

we would be able to allocate a certain traffic volume and direct it through paths with 

certain allocated bandwidth. Allocating or assigning traffic has another label similar 

to routing, namely  traffic engineering . Both  bandwidth allocation  and traffic engi-

neering usually have specific optimization objectives, such as minimizing the aver-

aged end-to-end latency and optimal load balancing, given a set of system constraints 

to satisfy. Because such an optimization problem needs very complex computation, 

which might not be finished in real time, and also because only a few systems are 

capable of adjusting bandwidth allocation on the fly, traffic and bandwidth allocation 

are usually done off-line at the management plane or during the network planning 

stage.   

  1.2.3 Operations at Data Plane 
 Unlike the operations at the control plane, which may apply only to the control pack-

ets in the timescale of hundreds of milliseconds to tens of seconds, things at the data 

plane apply to  all  packets and proceed in microseconds or less. Forwarding packets 

appears to be the primary job at the data plane since a packet arriving to an interface 

port or link could be forwarded to another port. In fact, forwarding might be just one 

of the  services  offered at the data plane. Other services might be packet filtering, 

lin76248_ch01_001-053.indd   16lin76248_ch01_001-053.indd   16 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 17

encryption, or even content filtering. All these services require  classifying  packets by 

checking several fields, mostly in the header but maybe even in the payload, against 

the rules maintained by the control plane or preconfigured by administrators. Once 

matched, the matching rules tell what services the packet should receive and how to 

apply those services. 

 Forwarding itself cannot guarantee the healthy functioning of a network. In ad-

dition to forwarding and other value-added services already mentioned,  error control  
and  traffic control  are two other basic per-packet operations at the data plane; the 

former is to ensure the packet is transmitted intact without bit errors, while the latter 

is to avoid congestion and maintain good throughput performance. Without these two 

basic operations, forwarding alone would turn the network into congestion-prone, 

erroneous chaos. Here we take a closer look at these operations listed in  Figure 1.8 . 

  Forwarding 

 Depending on how routing at the control plane is determined, packet forwarding 

involves examining one or several header fields in a packet. It may just take the 

destination address field to look up the forwarding table, or it may take more fields 

in doing so. Decisions made in routing directly determine how forwarding can be 

done, including which header field to examine, which entry in the forwarding table 

to match, etc. It appears that how this game (forwarding) can be played is already 

settled by another game (routing) decided somewhere else, but in fact there is still 

much room for players here. Probably the most important question to answer for 

packet forwarding is how fast you need to forward packets. Suppose that a router 

node has four links, each of 10 Gbps capacity, and also that the packet size is small 

and fixed at 64 bytes. The maximum number of aggregated packets per second (pps) 

at the router would be 4 × 10 G/(64 × 8) = 78,125,000, which means this router would 

need to forward 78,125,000 pps (merely 12.8  ns  per packet) if  wire-speed forwarding  

is desired. This certainly poses challenges in designing the forwarding mechanism. 

 How to implement the  data structure  of the forwarding table and the  lookup  and 

 update  algorithms on this data structure are open to the designers. These designs de-

termine whether a node is capable of wire-speed forwarding. In some circumstances, 

specific ASIC might be needed to offload this job from CPU so as to achieve a for-

warding speed of millions of packets per second. While  speed  certainly is the goal of 

this game,  size  also matters. The data structure to store the forwarding table might be 

constrained. For 80,000 forwarding entries each of 2 to 3 bytes, one might try to store 

them into a tree or a hash table with no more than hundreds of kilobytes (KB) or in 

flat index tables of hundreds of megabytes (MB). An immediate observation is that 

there is a tradeoff between  time complexity  and  space complexity  in the forwarding-

table implementation.  

  Classification 

 As mentioned previously, many services need packet classification operations, a 

matching process that takes one or several fields in the packet header to match against 

a set of rules. A rule has two parts:  condition  and  action , specifying under what condi-

tion on the field(s) the action should be applied to the matching packet. Since each 

service has its own set of fields to examine against its own set of rules, a  classifier  and 

lin76248_ch01_001-053.indd   17lin76248_ch01_001-053.indd   17 24/12/10   4:11 PM24/12/10   4:11 PM



18 Computer Networks: An Open Source Approach

its associated rules, or  classification database , would be needed for a specific service. 

For the forwarding service, the forwarding table is its classification database. 

 A question similar to how fast you need to forward packets is how fast you need 

to classify packets. The speed here depends on two things: the number of fields (from 

one to several) and the number of rules (from several to tens of thousands), and both 

numbers directly affect the classifier’s throughput  scalability . Thus, designing a 

multi-field classification algorithm that can scale well with the number of fields and 

the number of rules is the goal. A design is less scalable if it has high throughput 

when the two numbers are small but much dropped throughput when either one is 

relatively large. Similar to forwarding, one may resort to ASIC hardware designs to 

achieve high throughput of packet classification.  

  Deep Packet Inspection 

 Both forwarding and classification examine packet header fields. But there are 

things, often malicious, hidden deep in the packet  payload . For example, intrusions 

and viruses reside deep in the application headers and payloads, respectively. Know-

ledge about these contents is usually abstracted into a database of  signatures , which 

is used to match against the payload of incoming packets. This matching process is 

called  deep packet inspection  (DPI) since it looks deep into the payload. Because the 

signatures are usually expressed in simple character strings or regular expressions, 

 string matching  is the key operation in DPI. 

 Again, how fast you can perform string matching is the major concern. This, 

compared to the one-dimensional forwarding and two-dimensional classification, is 

a  three-dimensional  problem where the  number  of signatures, the  length  of signa-

tures, and the  size  of character set of the signature strings are the parameters. It would 

be even more challenging to design an algorithm that scales both  up  and  down  well in 

this large  problem space . After all, it is an open design issue that also requires ASIC 

hardware solutions for high throughput.  

  Error Control 

 As discussed in Subsection 1.2.1, bit errors may hit packets. The errors might occur 

during packet transmission or when packets are stored in memory. Two fundamental 

questions need to be answered: (1)  detect  or  correct ? (2)  hop-by-hop  or  end-to-end?  

The first question concerns how the receiver of a packet in error detects and handles 

the error. Two approaches exist: The receiver may detect the error by the extra redun-

dant bits and notify the sender to retransmit, or it may detect and correct the error 

directly if the extra redundant bits can indicate the exact bits that are in error. The lat-

ter approach would require more redundant bits, and hence produce higher overhead. 

Whether to do error correction depends on the type of traffic being carried. For real-

time traffic, notifying the sender to retransmit is not an appealing approach. It is then 

feasible to simply drop packets in error without further actions if the application can 

tolerate a small percentage of loss; otherwise, error correction should be exercised. 

 The second question is all about  where  the error might occur: link or node? If bit 

errors only occur at links, error control can be placed at each link’s receiver to detect 

or also correct the errors. By doing so, a path would be error-free because all links 

can recover errors. However, if packets stored at nodes suffer from memory errors, 

lin76248_ch01_001-053.indd   18lin76248_ch01_001-053.indd   18 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 19

bit errors would be carried over undetected because the transmitting side and the 

receiving side of a link only watch for the transmission errors on this link. In other 

words, the  concatenated  hop-by-hop (link-by-link) error control is not enough, and 

an end-to-end error control is necessary as well. One might ask: Why not remove the 

hop-by-hop error control and keep only the end-to-end error control? From the error 

control’s point of view, it is fine to do that. The problem is the time needed to recover 

the error: Removing the hop-by-hop error control would prolong the error recovery 

process. Doing so may even create difficulty in recovering errors if the links’ bit 

error rate is too high because the probability of having an end-to-end error recovery 

succeed is the  product  of the probability of each link along the path succeeding in 

error recovery. This is actually the end-to-end argument to be detailed in Section 1.3.  

  Traffic Control 

 Another per-packet operation at the data plane is  regulating  the pumping process 

of a packet stream. Pumping packets too quickly may overflow the intermediate 

routers or the destination node, resulting in many retransmissions that intensify 

the congestion. Pumping too slowly may underflow their buffers, leading to low 

utilization of the bandwidth resources. Traffic control is a generic term for any 

mechanism for avoiding or resolving congestion, but congestion itself could be 

quite complicated. It could be an end-to-end (between a source and a destination 

on a path), hop-by-hop (between a sender and a receiver on a link), or hot-spot 

(a bottleneck node or link) phenomenon.  Flow control  is a kind of traffic control 

that maneuvers the sender-receiver synchronization to prevent a faster sender from 

overrunning a slower receiver. The sender and the receiver could be connected by a 

link or a path, so flow control could be either hop-by-hop or end-to-end. 

 As another kind of traffic control,  congestion control  deals with the more com-

plicated bottleneck congestion caused by a set of traffic sources. A bottleneck, either 

a node or a link, could have many packet flows passing through, each contributing 

partially to the congestion. Asking the sources to slow down or stop is an obvious 

resolution. However, there are details to work out. Who should slow down and by 

how much? What is the  policy  behind the process? We can have all or some sources 

reduce the transmission rate by the same or different amounts, but it should be the 

underlying policy to decide these.  Fairness  appears to be a sound policy, but how 

to define fairness and how to enforce the fairness policy in an efficient manner are 

design choices which vary from one network architecture to another.  

  Quality of Service 

 The network may work just fine with flow control and congestion control to maintain 

 satisfactory  operations. But there could be more stringent requirements that explic-

itly specify the  traffic parameters  such as rate and burst length and their expected 

 performance measures  such as latency and loss; that is, explicit  quality of service 
(QoS) . This has posed a great challenge to packet switching for decades! Various 

traffic control modules, such as  policer ,  shaper , and  scheduler , might be placed at the 

entry points or the core of a network to regulate traffic to meet the QoS objectives. 

Though several solution architectures have been proposed, none of them have been 

deployed in operational networks at large.  Chapter 7  addresses these developments in 

lin76248_ch01_001-053.indd   19lin76248_ch01_001-053.indd   19 24/12/10   4:11 PM24/12/10   4:11 PM



20 Computer Networks: An Open Source Approach

detail. Nevertheless, many traffic control modules have been embedded into various 

devices as  partial  QoS solutions.   

  1.2.4 Interoperability 
  Standard vs. Implementation-Dependent 

 There are two possible ways for various devices to talk with each other. One is to buy 

all devices from only one vendor. The other is to define  standard protocols  between 

devices so that as long as vendors follow these protocols, we can  interoperate  devices 

bought from different vendors. This kind of interoperability is a must, especially 

when we do not want to be bound to specific vendors after we buy the first batch of 

devices from them. On the other hand, vendors who dominate the market might wish 

to put some  proprietary protocols , which are defined by vendors themselves instead 

of standard organizations, into their devices in order to bind their customers. But if 

this is not carefully done, their market share might slip silently. 

 Then what should be defined as standards and what should not? Interoperabil-

ity serves as the criterion. For the packet handling process, some parts need to be 

standardized while the rest might be left for vendors to decide. The parts that need 

standardization are the ones that affect interoperability of devices from  different  
vendors. The formats of  protocol messages  certainly need to be standardized. How-

ever, many internal mechanisms (e.g., the data structure of a table and its lookup 

and update algorithms) that do not affect the interoperability with other devices are 

 implementation-dependent  (vendor-specific), and it is often these vendor-specific 

designs that make a difference in the resultant performance. This subsection points 

out where standard and implementation-dependent designs could play a part.  

  Standard Protocols and Algorithms 

 Protocols by default should be standardized, though some proprietary protocols do 

exist. Such proprietary protocols may become  de facto  standards if they dominate the 

market. When defining a  protocol specification  besides the architectural framework, 

two interfaces need to be defined:  peer interface  and  service interface . The peer in-

terface formats the protocol messages to be exchanged between systems supporting 

that protocol, while the service interface defines the function calls for other modules 

on the same node machine to access the services offered by a module. A protocol 

may have several types of messages, each with its own header format. A header con-

tains several fields of fixed or variable lengths. Of course, both the  syntax  (format) 

and  semantics  (interpretation) of each header field are standardized. A sender en-

codes information for the protocol handshake into the  header  of a protocol message, 

and appends data, if any, as the  payload  of this protocol message. 

  Control protocols  place control data in the header of protocol messages for the 

operation of the control plane. On the other hand,  data protocols  put all kinds of data, 

either user data or control data, in the payload of their protocol messages. Their head-

ers information only tells how the packets should be forwarded. 

 In addition to the syntax and semantics of protocol messages, some algorithms 

at the control and the data plane should be standardized, too. For example, routing 

algorithms at the control plane must be agreed upon by all participating routers if 

lin76248_ch01_001-053.indd   20lin76248_ch01_001-053.indd   20 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 21

they are to reach a  consistent  view of the shortest path. If two neighboring routers, 

say  A  and  B , use different routing algorithms to compute their shortest path to des-

tination  X , it is possible that  A  would point to  B  as the next hop of the shortest path 

to  X , and vice versa for  B , which results in packets destined for  X  looping between  A  

and  B  once these packets arrive at  A  or  B . Error detection or correction algorithms at 

the data plane are similar examples. If the sender and the receiver used different al-

gorithms for data  encoding  and  decoding , respectively, things would not work at all.  

  Implementation-Dependent Design 

 Unlike a protocol specification, there exists much flexibility in a  protocol implemen-
tation . Not every part of an algorithms at the control and the data plane needs to be 

standardized. For example, realizing a routing algorithm, e.g., Dijkstra’s, requires a 

data structure to store the network topology and an algorithm on that data structure 

to find the shortest paths to all destinations, but the implementation does not need 

to be standardized. One may design a more efficient method to compute than the 

one stated in a textbook. Another example is the table lookup algorithm in packet 

forwarding. It is always an interesting challenge to design a data structure to store a 

large number of entries and to design its lookup and update algorithms so that they 

can beat the best current design in terms of speed and size.  

  Layered Protocols 

 Actually, the interoperability issue occurs not only between two systems but also be-

tween two protocols. One single protocol is not enough to drive a system. In fact, it is 

a  protocol stack  that drives the whole system. A protocol stack consists of a  layered  

set of protocols, where each layer covers parts of data communication mechanisms 

and provides services to the upper layers. It is a natural evolution to  abstract  a com-

plex system into  modular  entities, i.e., layered protocols here, such that the lower 

layers hide the details from and provide services to their upper layers. 

 As two systems need to use the same protocol to communicate, protocols at 

different layers also need a service interface such as  send  and  recv  to exchange data 

within one system. When a common interface is used between these two protocols, 

the system has more flexibility to replace any protocols in the protocol stack when 

needed. For example, when two remote-end hosts  X  and  Y  have a protocol stack of 

 A - B - C , where  A  is the upper layer and  C  is the protocol for a specific link, it should 

be possible for  X  to replace  C  with  D , say the protocol for a more reliable link, while 

still keeping its  A  and  B  unchanged to interoperate with the corresponding  A  and  B  

in  Y . However, since  X  runs  C  and  Y  runs  D  on two separate links, there should be an 

intermediary device, say Z, between  X  and  Y  to bridge them together.     

  1.3 THE INTERNET ARCHITECTURE 

  Given the principle constraints of packet switching, the Internet has its solutions to 

achieving the three requirements of data communications, namely connectivity, scal-

ability, and resource sharing as identified in Section 1.1. All the solutions picked for 

the Internet architecture have philosophical justification. Nevertheless, there exist 

lin76248_ch01_001-053.indd   21lin76248_ch01_001-053.indd   21 24/12/10   4:11 PM24/12/10   4:11 PM



22 Computer Networks: An Open Source Approach

other data communication architectures, such as the faded Asynchronous Transfer 

Mode (ATM) and the emerging Multi-Protocol Label Switching (MPLS). They all 

have something in common and something unique, compared to the Internet archi-

tecture; of course, they also have a set of philosophies to justify their architectural de-

sign choices. Whether a particular solution prevails often depends on (1) who comes 

first, and (2) who best satisfies the three requirements. The Internet apparently came 

first back in 1969 and has met the requirements satisfactorily, though consistently 

under pressure to undergo fundamental changes. 

 This section reveals key solutions adopted in the Internet architecture. To resolve 

connectivity in addition to stateless routing, the  end-to-end argument  serves as a key 

philosophy in defining  where  a mechanism should be placed, or what should be done 

 inside  and  outside  the network. Under the guidance of this argument the protocol 

layers are defined; then the concepts of  subnet  and  domain  emerged to support the 

needed scalability. As the trickiest issue in packet switching, resource sharing has been 

resolved by a  common best-effort carrier  service, Internet Protocol (IP), plus two  end-
to-end services : Transmission Control Protocol (TCP) and User Datagram Protocol 

(UDP). TCP offers end-to-end congestion control to share bandwidth  politely  and a 

reliable  loss-free  service, while UDP offers a plain uncontrolled and unreliable service. 

  1.3.1 Solutions to Connectivity 
 Two disjoint end points are connected through a path with nodes and links. To decide 

how to establish and maintain this end-to-end connectivity in the Internet, one must 

make three decisions: (1)  routed or switched connectivity , (2)  end-to-end or hop-by-
hop  mechanisms to maintain the correctness (reliable and orderly delivery of packets) 

of this connectivity, and (3) how to  organize the tasks  in establishing and maintaining 

this connectivity. For the Internet it was decided to  route  this connectivity, maintain 

its correctness at the  end-to-end  level, and organize the tasks into four  protocol layers . 

  Routing: Stateless and Connectionless 

 Although switching is faster than routing, as discussed in Subsection 1.1.1, it re-

quires the switching devices to memorize the  state  information, i.e., the mapping of 

(input port, incoming virtual circuit number) to (output port, outgoing virtual circuit 

number) in the  virtual circuit table , of all passing connections. Unlike the continuous 

voice traffic in telecom, data traffic is usually  bursty . It would be inefficient, in terms 

of  memory usage , to keep the state information of a connection which is  long-lived 
but bursty,  since the state information is kept in memory for a long time but used only 

occasionally. Similarly, it is inefficient, in terms of  initial time delay , to establish the 

state information for a  short-lived  connection, which costs large overhead for just a 

few packets. In short, switching is less efficient than routing for data communications 

in terms of space and time overhead. 

 However, routing does not win in all aspects. As introduced in Subsection 1.1.1, 

routing in the Internet takes the full destination address of a packet to match against 

the entries in the forwarding table (sometimes called routing table), which requires 

the matching process to traverse a large data structure and hence costs several mem-

ory accesses and match instructions. Switching, on the other hand, takes the virtual 

lin76248_ch01_001-053.indd   22lin76248_ch01_001-053.indd   22 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 23

circuit number of a packet to index into the virtual circuit table, and hence requires 

only  one  memory access. 

 Many network architectures, including ATM, X.25, Frame Relay, and MPLS, 

have adopted switching. They can be viewed as the data communication solutions 

from the telecommunication industry, with their common root from POTS, which 

is of course a switching system.  Figure 1.9  puts all these architectures onto the 

 FIGURE 1.9 The spectrum of statefulness.     

Statefulness Statelessness

Circuit
switching

Hard-state
switching

Hard-state
switching

Soft-state
switching Routing

POTS ATM X.25

Frame relay

MPLS Internet

 Principle in Action: Constantly Challenged 
Statelessness 

 One would say that the most unique choice made by the Internet architecture 

is  stateless routing . The decision in its very beginning has led it to a  stateless
connectionless  network where all packets are routed independently without 

establishing paths in the intermediate routers in advance. Stateless means that 

routers do not keep any state information to track the packet streams passing 

through. With the simplicity of stateless routing (along with other key design 

choices to be touched on in this section), the Internet scales pretty well and of-

fers flexible connectivity and economical resource sharing to all applications in 

data communications. 

 Actually, whether the Internet should remain purely stateless raises a lot of 

controversy. In fact, many new demands, especially those on quality of service 

(QoS) and multicasting, have drawn many proposals that would put stateful-

ness elements into the Internet architecture, as we shall see in  Chapter 4  and 

 Chapter 7 , respectively. QoS and multicasting are not the only two that call for 

infrastructural changes. As another pressing demand,  wire-speed forwarding ,
due to the rapid increase in link bandwidth, calls for packet switching instead 

of routing. MPLS aims to speed up the Internet by switching more packets but 

routing less. As stated before, switching is faster than routing because the former 

just needs simple  indexing  into the  virtual circuit table , while the latter requires 

much more complex  matching  during table lookup. Unlike ATM, which is  hard-
state switching , MPLS is  soft-state switching , meaning that it can turn back to 

stateless routing if the switching entry for a packet stream expires or does not 

exist. Whether MPLS can be massively deployed onto the original Internet archi-

tecture is still under research, but the new demands, QoS for guaranteed perfor-

mance, multicasting for group communications or distributions, and wire-speed 

forwarding for much faster infrastructure, will not quit until they can be satisfied. 

lin76248_ch01_001-053.indd   23lin76248_ch01_001-053.indd   23 24/12/10   4:11 PM24/12/10   4:11 PM



24 Computer Networks: An Open Source Approach

spectrum of statefulness, where the state means not only the table entries memorized 

in nodes but also link bandwidth reserved for streams of flows or connections. POTS 

is purely circuit switching with both kinds of states previously mentioned, while the 

rest are packet switching. Among the latter group, the Internet and MPLS are routing 

and “soft-state” switching, respectively, and the others are “hard-state” switching. 

ATM is more stateful than X.25 and Frame Relay because it provides bandwidth al-

location to individual connections. 

   The End-to-End Argument 

 To provide reliable and orderly delivery of packets from sources to destinations, 

error and traffic control should be exercised on a hop-by-hop basis or an end-to-end 

basis, i.e., for all links or only at end hosts. The  hop-by-hop argument  says that if 

the transmissions on all links are reliable and orderly, the reliability and order will 

be guaranteed for the end-to-end transmissions. However, this argument is true only 

when nodes are error free. Because a path consists of nodes and links, guaranteeing 

the correctness of link operations does not cover the correctness of node operations 

and hence that of the end-to-end delivery along the path. Error and traffic control 

mechanisms are still needed at the end hosts to guard against the nodal errors. The 

end-to-end argument, which says do not put it in a lower layer unless it can be com-

pletely done there, thus wins here. Though some hop-by-hop error and traffic control 

still can be put at links, they are merely for  performance optimization  to detect and 

recover the error earlier. The end-to-end mechanisms still serve as the primary guards 

to guarantee the correctness of the connectivity. 

 The end-to-end argument has also pushed complexity toward the network  edge  

and kept the network core simple enough to scale well. Processing of application-

aware services should be done only at the end hosts,  outside  instead of  inside  the 

network, while leaving one single carrier service inside the network. We shall see this 

in the solutions to resource sharing.  

  The Four-Layer Protocol Stack 

 Abstraction in designing a complex data communication system leads to layered 

protocols where lower layers hide the details from the upper layers. But how many 

layers are needed and what exactly to put in each layer? The four-layer Internet archi-

tecture is sometimes called the TCP/IP architecture after its two important protocols, 

which represent two layers. The bottom layer is the link layer, which may consist of 

many protocols for various links. A link layer protocol is  hardware dependent  and 

implemented by a combination of hardware (adaptor card) and software (adaptor 

driver). Based on the link layer, the IP layer consists of one single protocol (IP) to 

provide the  host-to-host connectivity  (end-to-end connectivity vs. hop-by-hop con-

nectivity in the data link layer) through stateless routing. The third layer is the trans-

port layer, which contains two protocols (TCP and UDP). TCP and UDP provide the 

process-to-process connectivity needed for the top application layer. The transport 

layer hides the details of the underlying network topology behind a  virtual link or 
channel  abstraction for the communicating processes at the application layer. The 

application layer has a protocol for each client–server or peer-to-peer application. 

lin76248_ch01_001-053.indd   24lin76248_ch01_001-053.indd   24 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 25

  Figure 1.10(a)  shows the Internet Protocol stack with commonly used protocols. 

The protocols marked with dotted circles are control plane protocols, while the rest 

are data plane protocols. It is important to note that TCP, UDP, and IP serve as the 

core protocols to support a lot of application protocols while overriding many pos-

sible links. We shall cover the details of important protocols in  Figure 1.10(a)  in later 

chapters. An example hierarchy in this four-layer protocol stack is HTTP-TCP-IP-

Ethernet, with a data payload encapsulated by the HTTP header, the TCP header, the 

IP header, and then the Ethernet header when transmitted, and the other way around 

when received, as shown in  Figure 1.10(b) . 

    1.3.2 Solutions to Scalability 
 How to cluster a large number of nodes determines how scalable a system can be. 

Addressing these nodes is then the key issue.  Figure 1.1  illustrates a way to organize 

four billion nodes in a three-level hierarchy. But how do we address and organize 

these nodes? For the Internet to scale to four billion hosts as a design objective, 

three  fundamental design problems must be answered: (1) how many levels of 

hierarchy, (2) how many entities in each hierarchy, and (3) how to manage this hier-

archy. If the grouping of nodes has just one level and the size of a group is 256, the 

number of groups would be 16,777,216, which is too large for the interconnection 

 FIGURE 1.10 (a) Internet Protocol stack: commonly used protocols. 
(b) Packet encapsulation.     

Application-Layer
Protocols

Transport-Layer
Protocols

Network-Layer
Protocols

Physical + Data
Link (Type of
Network)

DNS

NFS YP Mount

BOOTPRARPARP ICMP

Wireless LANEthernet xDSL OC-3

OSPF

SMTP

POP3

NNTP

HTTPFTP

Telnet

RIPDHCP TFTPRPC SNMP

PPP

Payload

Payload

Payload

Payload

Payload

HTTP

HTTP

HTTP

HTTP

TCP

TCP

TCP

IP

IPEthernet
E

nc
ap

su
la

tio
n

(b) 

(a) 

UDP

IP

BGP

TCP

lin76248_ch01_001-053.indd   25lin76248_ch01_001-053.indd   25 24/12/10   4:11 PM24/12/10   4:11 PM



26 Computer Networks: An Open Source Approach

routers to handle. These routers have to be aware of such a large number of groups. 

As  Figure 1.1  suggests, if another level is added and the size of a supergroup is also 

256, the number of groups within a supergroup and the number of supergroups would 

be 256 and 65,536, respectively. The 256 is a manageable size for a network opera-

tor, which is an organization or an ISP, while 65,536 is an acceptable size for core 

routers. Thus, the Internet adopts a three-level hierarchy with  subnet  as its lowest 

level and  autonomous system  (AS) as its middle level, while leaving many ASs at 

the top level. 

  Subnet 

 The Internet uses a subnet to denote nodes in a physical network with a  contiguous 
address block . A physical network consists of a link, either point-to-point or broad-

cast, and the nodes attached to it. A subnet on a broadcast link forms a LAN, which is 

a broadcast domain. That is, packets destined for a host on a LAN can be transmitted 

by any host or router on this LAN and received by the destined host in one hop auto-

matically. However, packets transmitted between subnets or LANs need hop-by-hop 

forwarding by routers. A subnet on a point-to-point link usually forms a WAN link 

between two routers.  Figure 1.11  illustrates subnets defined by  netmask  and  prefix , 
which are formally discussed in  Chapter 4 . 

 The size of a subnet on a point-to-point link is fixed at two nodes. The size of a 

subnet on a broadcast link usually depends on performance and administration pol-

icy. However, putting too many hosts on one subnet would result in serious conten-

tion. Meanwhile, the administration policy usually prefers a fixed size for all subnets 

in its management domain. A subnet of size 256 is a common setting.  

  Autonomous System (AS) 

 Nodes on the Internet are grouped to form a number of subnets interconnected 

by routers. Today the Internet has over 50 million hosts and millions of routers. 

If the average size of a subnet is 50, the number of subnets would be one million, 

which means routers would have too many subnet entries to memorize and look up. 

 FIGURE 1.11 Subnet, netmask, prefix: segmented contiguous address blocks.     

113140

Prefix

Prefix

140 113 000 001

000 000

140 113 255 000

255 254

255 255

113140

140 113

Subnet
140.113.0.0

with netmask
255.255.0.0

Subnet
140.113.255.0
with netmask
255.255.255.0

256 entries

256*256 =
65536 
entries

lin76248_ch01_001-053.indd   26lin76248_ch01_001-053.indd   26 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 27

Apparently, another level of hierarchy is needed on top of subnet. An autonomous 

system (AS, sometimes called a  domain ) is composed of subnets and their intercon-

nection routers administered by an organization. A router inside an AS knows all 

the intra-AS routers and subnets in the AS, plus one or several inter-AS routers in 

charge of routing between ASs. A packet destined to a host in the same AS will be 

forwarded by intra-AS routers. Things get more complicated if a packet is destined 

to a host in another AS. It will be first forwarded by several intra-AS routers to one 

of the inter-AS routers of the local AS, then forwarded by inter-AS routers to the 

destination AS, and finally forwarded by intra-AS routers of that destination AS to 

the destination host. 

 With subnets and ASs, either intra-AS or inter-AS packet forwarding can be car-

ried out in a scalable way without too much burden at intra-AS and inter-AS routers. 

If the average number of subnets within an AS is 50, the number of ASs would be 

20,000, which is an affordable number for inter-AS routers to handle. AS not only 

solves the scalability issue but also retains the administration authority for network 

operators. Routing and other operations inside an AS can be separated and hidden 

from the outside world. 

  Figure 1.12  illustrates the AS at National Chiao Tung University where, under 

the same AS, each department is assigned multiple subnets. The entire Internet has 

tens of thousands of such domains. 

    1.3.3 Solutions to Resource Sharing 
 Data communications has a large variety of applications in comparison to telecom-

munications, which is primarily used for telephony only. It is then important to 

decide whether the Internet architecture should have multiple types of connectivity, 

one for each type of application. 

 FIGURE 1.12 An example domain, AS, or supergroup: NCTU.     

140.113.136.[0-254]

140.113.137.[0-254]

140.113.138.[0-254]

140.113.173.[0-254]

140.113.177.[0-254]

140.113.200.[0-254]

140.113.209.[0-254]

CS department

140.113.142.[0-254]

140.113.143.[0-254]

140.113.144.[0-254]

140.113.147.[0-254]

EE department

140.113.149.[0-254]

140.113.152.[0-254]

140.113.153.[0-254]

MIS department

140.113.82.[0-254]

140.113.83.[0-254]

ME department

140.113.84.[0-254]

140.113.85.[0-254]

140.113.210.[0-254]

.......

.......

.......

.......

.......

.......

(16 groups)

(8 groups)

(4 groups)

(3 groups)

Supergroup:  NCTU  (140.113.[0-254].[0-254])

140.113.154.[0-254]

lin76248_ch01_001-053.indd   27lin76248_ch01_001-053.indd   27 24/12/10   4:11 PM24/12/10   4:11 PM



28 Computer Networks: An Open Source Approach

 The variety of applications is not the only issue. Congestion due to packet 

switching presents an even tougher challenge. Some sorts of congestion control and 

flow control should be imposed to avoid the buffer overflow in the network and at 

the receivers. Derived from the end-to-end argument, it is believed that traffic control 

should be exercised mainly on the  sources  instead of on intermediate routers. 

 In summary, three questions have been answered by the Internet architecture in 

deciding ways of resource sharing: (1) whether to differentiate the treatment of traffic 

from different applications, (2) what the resource sharing policy is, and (3) where to 

put traffic control mechanisms to enforce the policy. The Internet offers a common 

best-effort service inside the network while using end-to-end congestion and flow 

control to practice the fairness policy in bandwidth sharing. 

  Common Best-Effort Service: IP 

 The applications could be categorized into at least three types:  interactive ,  file 
transfer , and  real-time . Interactive applications generate small amounts of traffic 

but require timely responses. On the other hand, file transfer applications pump 

voluminous traffic but can tolerate higher latency. Real-time applications have both 

continuous traffic volume and low latency requirements. If the decision is to have 

a type of connectivity to support each application category, the routers inside the 

Internet would be type-aware so as to treat packets differently. However, the Internet 

offers one single type of connectivity service, namely the best-effort IP service. All 

IP packets are treated equally in sharing the limited resources. 

 As a  carrier  service at the core of the Internet, IP has the most  native  form of 

packet switching. It is native because, in addition to forwarding, it does not have 

value-added services except a simple checksum for error detection; it has no traffic 

control built in, and it is unreliable in terms of throughput, latency, jitter, and loss. 

That is, it cannot guarantee how fast packets can be delivered, when the packets 

would reach their destinations, and even whether they can reach their destinations at 

all. In-order delivery of a sequence of packets cannot be guaranteed, either; the order 

of arrivals of a packet stream to the destination might not be the same as the order of 

departures from the source. Nevertheless, it drops a packet if the checksum is invalid, 

and leaves the error recovery, if any, to the end-to-end protocols. If an application 

needs error recovery or traffic control, it has to depend on a specific end-to-end 

protocol for these value-added services.  

  End-to-End Congestion Control and Error Recovery: TCP 

 TCP is a  polite  end-to-end protocol that regulates the  outstanding bits  of a packet flow 

from a source so that all flows can share the resources  fairly . By asking all sources to 

be polite and responsive to congestion, the chance to run into congestion and the time 

to recover from congestion are reduced. TCP is also a  reliable  end-to-end protocol that 

runs error recovery. It is reliable in terms of  loss ; that is, packet loss due to error or 

congestion is recovered by the TCP protocol. However, it is still unreliable in terms 

of other performance measures such as throughput, latency, and jitter. For packet 

switching to guarantee these performance measures would require additional, and 

usually stateful, mechanisms to be imposed  inside  the network. Though solutions do 

lin76248_ch01_001-053.indd   28lin76248_ch01_001-053.indd   28 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 29

exist, none of them have been largely deployed. The no-loss guarantee from TCP is 

sufficient for most applications in data communications. 

 There are also many applications that do not need the no-loss guarantee. For 

example, the packet voice or video streaming applications can tolerate a  small  
percentage of loss while still maintaining playout quality. In fact, the prolonged 

end-to-end retransmissions for error recovery are not acceptable for such real-time 

applications. Some other applications, such as network management, may have 

their own error control built into their clients and servers, and thus do not rely on 

error control in the underlying end-to-end transport service. For these applications, 

UDP serves as an alternative. UDP is another end-to-end protocol, though it is quite 

 primitive , with only a simple checksum for error detection, but no error recovery or 

traffic control. In  Figure 1.10(a) , we can see the applications riding over TCP and 

UDP, respectively. 

 To avoid congestion and share bandwidth fairly, an interesting philosophy is em-

bedded into TCP: The number of  outstanding bits  from each flow should be approxi-

mately the same; that is, the traffic contributed to the Internet should be the same for 

all active TCP flows. The number of outstanding bits is in fact the bandwidth delay 

product ( BDP ). For this BDP to be the same, if a TCP flow travels a longer path 

with higher delay, its bandwidth or transmission rate should be smaller. TCP flows 

do not have explicit transmission rates. Instead, they use  window size  to control the 

BDP (the number of outstanding bits). Consider a link with many TCP flows passing 

through, where the number of hops or the end-to-end delay for these flows might be 

different. To achieve the same BDP, their transmission rates would be different. A 

transcontinental TCP flow surely would have a lower transmission rate than a local 

TCP flow, even if the bandwidth is abundant and there is no congestion. 

 In addition to the fairness policy, TCP needs to  adjust  its window-based con-

trol to reflect the current network and receiver conditions. First, the rate should be 

 bounded  to the capability of the receiver. Second, the rate should be decreased when 

the network starts to congest and increased when the congestion subsides. But how 

fast should TCP decrease and increase its rate or window size?  Additive Increase and 
Multiplicative Decrease  ( AIMD ) appears to be a good choice that eats up bandwidth 

 slowly  but responds to congestion  quickly . Many performance issues and consider-

ations require further clarification and are addressed in  Chapter 5 .   

  1.3.4 Control-Plane and Data-Plane Operations 
 With decisions in resolving connectivity, scalability, and resource sharing, there are 

still many details to work out in order for the Internet to operate as expected. They 

include routing and error reporting at the control plane, forwarding, error control, 

and traffic control at the data plane. 

  Control-Plane Operations 

 In Subsection 1.2.2, we raised the issues involved in designing a routing protocol 

and its algorithm. The choices made can be summarized as follows: precomputed in 

background, hop-by-hop, per-destination-prefix (subnet or AS) granularity, partial or 

lin76248_ch01_001-053.indd   29lin76248_ch01_001-053.indd   29 24/12/10   4:11 PM24/12/10   4:11 PM



30 Computer Networks: An Open Source Approach

global network state information for intra-AS routing, partial network state informa-

tion for inter-AS routing, and mostly single shortest path. There are rationales behind 

these choices. On-demand source routing would be appropriate when the network to-

pology is quite dynamic, otherwise, precomputed hop-by-hop routing at each router 

would fit. With a scalable hierarchy of subnets and ASs, the granularity for intra-AS 

and inter-AS routing is thus per-subnet and per-AS, respectively. 

 As discussed in Subsection 1.3.2, within an AS where the number of subnets 

is small, tens to hundreds, either partial or global network state information can be 

collected easily. However, the number of ASs worldwide could be tens of thousands, 

so collecting up-to-date global network state information would be difficult. Global 

network state information contains the entire network topology, and is constructed 

by  link states  broadcast from  all  routers. On the other hand, partial network state 

information contains the next hop and the distance to a destination subnet or AS, and 

is constructed by  distance vectors  exchanged between  neighboring  routers. Finally, 

the single shortest path instead of multiple paths is a choice for simplicity. Having 

multiple paths to a given destination subnet or AS would have better resource utiliza-

tion and load balancing, but also complicates the designs in routing and forwarding. 

With more than one entry for a given destination in the forwarding table, maintaining 

the entries in the control plane and choosing which entry to go in the data plane are 

nontrivial. Routing Information Protocol (RIP), which relies on partial network state 

information, and Open Shortest Path First (OSPF), which relies on global network 

state information, are two common intra-AS routing protocols, while Border Gate-

way Protocol (BGP), which relies on partial network state information, dominates in 

inter-AS routing. 

 There are some other works at the control plane. Multicast routing, error report-

ing, and host configuration need to be addressed. Multicast routing is more compli-

cated than unicast routing. Though many solutions exist, we leave the discussions to 

 Chapter 4 . Error reporting is to report to the source when an error occurs in handling 

a packet at a router or the destination. It can also be used to probe the network. In-

ternet Control Message Protocol (ICMP) is the protocol for error reporting. The host 

configuration protocol, Dynamic Host Configuration Protocol (DHCP), is an effort 

to automate the configuration task to achieve plug-in-play. Though fully  automatic 
configuration  of the whole network is still not possible today, DHCP frees adminis-

trators from having to manually configure the IP address and other parameters of all 

host machines. Router configuration, however, has to be done manually.  

  Data-Plane Operations 

 Forwarding a packet is actually a table lookup process, taking the destination IP 

address in the packet to match against the IP prefix in table entries. For intra-AS 

and inter-AS forwarding, the granularity of table entries is per-subnet and per-AS, 

respectively. The IP prefix for a subnet or an AS may be of any length from 2 to 32. 

The entry with matched prefix contains the next-hop information for forwarding the 

packet. However, it is possible to have more than one matched prefix if an address 

block is allocated to two subnets or ASs. For example, if the address block of 140.113 

is split into two parts, 140.113.23 and the rest, and assigned to two ASs, the inter-AS 

lin76248_ch01_001-053.indd   30lin76248_ch01_001-053.indd   30 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 31

forwarding table will contain two entries with prefix 140.113 and 140.113.23. When 

a packet destined to 140.113.23.52 is received, it will match both entries. By default, 

the one with the  longest prefix matching  is followed. 

 Following the end-to-end argument discussed in Subsection 1.3.1, error control 

in the Internet is put into the end-to-end TCP and UDP. Checksum in TCP and UDP 

checks against errors in the whole packet, though it can only detect a single bit error. 

If an error is detected, a UDP receiver just drops and ignores the packet, but a TCP 

receiver acknowledges the TCP sender to ask for retransmission. Checksum in IP just 

protects the packet header to avoid errors in protocol processing; it does not protect 

the packet payload. If an error is detected at a node, the node drops the packet and 

sends back an ICMP packet to the source. How the source handles it is implementa-

tion dependent. For the purpose of efficiency, many underlying links also put error 

control at the link layer, but such error control is independent of what has been done 

at TCP, UDP, and IP. 

 The purposes of traffic control are to avoid and resolve congestion, as well as 

to fairly share the bandwidth resources. TCP provides a fairly satisfactory solution, 

as discussed in Subsection 1.3.3. UDP, on the other hand, is a wild rider that sends 

packets as it wishes. Although TCP traffic still dominates today in terms of traffic 

volume, streaming and VoIP applications may someday push UDP traffic to surpass 

TCP’s. TCP traffic would suffer when mixed with UDP traffic. This calls for another 

round of research to control UDP traffic by the end-to-end congestion and flow con-

trol similar to TCP’s. In short, a UDP flow should be  TCP-friendly  so that its impact 

on the coexisting TCP flows is the same as the impact of a TCP flow on the other 

coexisting TCP flows. 

 Principle in Action: Flavors of the Internet 
Architecture 

 This is the right place to re-emphasize the “flavors” possessed by the Internet. 

To solve connectivity and resource sharing issues, the Internet embraces the 

end-to-end argument to an extreme that pushes the complexity toward the edge 

device while keeping the core network stateless. The core runs unreliable state-

less routing, while the edge takes care of correctness and healthiness by error 

control and congestion control, respectively. A simple three-level hierarchy with 

subnets and domains is enough to scale the Internet up to billions of nodes. Extra 

mechanisms then need to comply with these flavors. OSI, ATM, QoS by IntServ/

DiffServ, and IP multicast were all counter-examples that failed to replace or 

even coexist with the Internet. They all need a stateful core that keeps entries 

for pass-by connections. MPLS, which switches more packets and routes fewer 

packets, also faces the same difficulty. Though its flexible, soft-state switching 

allows MPLS to better comply with stateless routing, and thus to easily deploy 

on a small scale, say an ISP, Internet-wide adoption of MPLS is still challenging. 

lin76248_ch01_001-053.indd   31lin76248_ch01_001-053.indd   31 24/12/10   4:11 PM24/12/10   4:11 PM



32 Computer Networks: An Open Source Approach

      1.4 OPEN SOURCE IMPLEMENTATIONS 

  The Internet architecture presents an integrated set of solutions to meet the require-

ments and principles of data communications, and this set of solutions is an open 

standard. Open source implementations of the Internet architecture push the same 

spirit of openness one step further. This section addresses the  why  and the  how  of 

open source implementations of the Internet architecture. We first compare the prac-

tices of open and closed implementations. Then we illustrate the software architec-

ture in a Linux system, be it a host or a router. This architecture is then deconstructed 

into several parts:  kernel ,  drivers ,  daemons,  and  controllers , with each part briefly 

reviewed. 

 We leave more implementation overview and two sets of useful tools to three 

appendices. Appendix B examines the source tree of the Linux kernel and summa-

rizes its networking codes. Common development and utility tools are collectively 

presented in Appendix C and Appendix D, respectively. Readers are encouraged to 

browse these appendices before doing the hands-on exercises in this text. In addition, 

nontechnical aspects of open source, including the history, licensing models, and 

resources, are reviewed in Section A.2 of Appendix A. 

  1.4.1 Open vs. Closed 
  Vendors: System, IC, Hardware, and Software 

 Before describing ways to implement the Internet architecture, we should identify 

the major components in a system and the involved vendors. For either a host or a 

router, a system consists of software, hardware, and IC components. On a host, the 

Internet architecture is mostly implemented in software and partially in ICs. Among 

the protocol stack, TCP, UDP, and IP are implemented in the operating system, while 

the application protocols and the link protocols are implemented in application pro-

grams and the ICs on the interface card, respectively. The implementation in a router 

is similar except that parts of the protocol implementation might be shifted from 

software to ICs if the CPU cannot deliver the desired wire-speed processing. 

 A  system vendor  may develop and integrate all these three types of compo-

nents internally, or outsource some of them to the  component vendors  of software, 

hardware, or ICs. For example, a router system vendor may design, implement, and 

manufacture the hardware with onboard chips from one or several IC vendors, while 

licensing and modifying the software from a software vendor.  

  From Proprietary, Third-Party, to Open Source 

 There exist three ways to implement the Internet architecture into a system which is 

either a host or a router. They are (1)  proprietary closed , (2)  third-party closed , and 

(3)  open source . A large system vendor can afford to maintain a large team of hun-

dreds of engineers to design and implement the  proprietary closed  software and ICs. 

The result is a closed system whose intellectual property is owned solely by the ven-

dor. For small system vendors, maintaining such a large team is too costly. Thus, they 

would rather resort to the  third-party  solutions provided by software or IC vendors 

lin76248_ch01_001-053.indd   32lin76248_ch01_001-053.indd   32 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 33

who transfer their implementations to system vendors and charge them a licensing 

fee and per-copy royalty (for software) or a purchase price (for ICs). 

 The open source implementations of software and ICs offer the third way of im-

plementing a system. Without having to maintain a large team internally or be bound 

to specific component vendors, a system vendor can leverage the existing abundant 

software resources while a system or IC vendor could utilize increasing IC resources. 

They in turn could contribute back to this open source community.  

  Openness: Interface or Implementation? 

 When we address openness, it is important to point out what is being open. Is it 

 interface or implementation ? By open source, we mean open implementation. The 

Internet architecture is an open interface, while Linux is an open implementation 

of this open interface. In fact, one of the criteria for a protocol to become a part of 

the Internet architecture is to have  running code  that is stable and openly available. 

Here open interface and open implementation proceed hand-in-hand. On the other 

hand, the Structured Network Architecture (SNA) of IBM was a closed interface 

and had a closed implementation, while Microsoft Windows is a closed imple-

mentation of the open Internet architecture. SNA has disappeared, but Windows 

still stands firmly. For  interoperability  of systems from different vendors, the open 

interface is a must, but not necessary the open implementation. Open implementa-

tions, however, have many virtues. A popular open source package has world wide 

 contributors,  which leads to fast  patches , to fix bugs or enhance functions, and 

often better  code quality .   

  1.4.2 Software Architecture in Linux Systems 
 When converting an architecture into a real system, it is important to identify  where  

to implement  what . Several key decisions must be made: Where to implement 

the control-plane and data-plane operations? What should be implemented into the 

hardware, ICs, or software? If implemented into software, which part of the software 

architecture should it be? To decide these for a Linux-based system, one should un-

derstand its software architecture first. 

  The Process Model 

 Like any other UNIX-like or modern operating systems, a Linux system has  user 
space  and  kernel space  programs. Kernel space programs provide services to user 

space programs. A  process  is an  incarnation  of a user space or kernel space program 

which can be scheduled to run on a CPU. Kernel space processes reside in the kernel 

memory space to  manage  the operations of the system so as to provide services to 

user space processes, though they do  not  provide services directly. User space pro-

cesses reside in the user memory space and can run in the  foreground  as application 

 clients  or the  background  as application  servers . Within the kernel space, there are 

some programs, called device drivers, to execute some I/O operations on peripheral 

devices. A driver is hardware dependent and must be aware of the peripheral hard-

ware in order to control it. 

lin76248_ch01_001-053.indd   33lin76248_ch01_001-053.indd   33 24/12/10   4:11 PM24/12/10   4:11 PM



34 Computer Networks: An Open Source Approach

 When a user space process needs a specific service (e.g., sending or receiving 

a packet) from the kernel space programs, it issues a  system call , which generates a 

 software interrupt  in the kernel space. The process then switches to the kernel space 

to execute kernel space programs to carry out the requested service. Once done, the 

process returns to the user space to run its user space program. Note that the services 

are provided by kernel space  programs  (not the kernel space  processes  that admin-

ister the system as mentioned above), which are executed by user space processes 

when they switch into the kernel space. System calls serve as the application program 

interface (API) between the user space and the kernel space.  Socket  is a  subset  of 

system calls that are dedicated to  networking  purposes. Subsection 1.4.4 has more 

on socket.  

  Where to Implement What? 

 Given the above process model, several observations can be applied to decide 

where to implement what. Since kernel space programs provide fundamental 

services to user space programs,  application-independent  programs should be 

implemented as kernel space programs while leaving application clients and 

servers to user space programs. Within the kernel space,  hardware-dependent  
processing should be implemented as device drivers, while the rest reside in the 

core operating system. Following these guidelines, where to implement what in 

Linux systems becomes obvious. All application protocols are implemented into 

the user space clients and servers, while TCP, UDP, and IP are implemented into 

the Linux kernel. Various hardware-dependent link layers are implemented as 

drivers and hardware. Depending on what has been put into the hardware, either a 

simple onboard circuit or an ASIC, the driver for a link can be a link layer protocol 

handler or a pure “packet reader and writer.” For links where  timing  is important 

in guaranteeing the correct link protocol operation, the link layer protocol should 

be done by an ASIC without CPU involvement. Otherwise, the hardware for the 

link can be a simple transceiver while leaving the protocol processing to the driver 

program for the link. 

 With forwarding in IP, error control mostly in TCP and some in IP and UDP, 

and traffic control in TCP, but all implemented into the Linux kernel, one question 

remains: Where should we put the control-plane operations of the Internet? They 

include routing in RIP, OSPF, and BGP, error reporting in ICMP, host configuration 

in DHCP, etc. Since ICMP is simple and application-independent, it is placed right 

into the kernel as a companion protocol of IP. Though application-independent, RIP, 

OSPF, BGP, and DHCP are complicated (especially the former three, which need 

to run complex route computation algorithms) but for processing of control packets 

only. Thus, they are put into the user space programs, which run as  daemon  processes 

in background persistently. One can see that all unicast and multicast routing pro-

tocols are implemented into daemons. Another reason for not putting them into the 

kernel is because there are so many of them. But implementing them as daemons cre-

ates another problem. Routing daemons need to update forwarding tables, which are 

looked up by the IP forwarding program residing in the kernel. The resolution is for 

the routing daemon to write the data structures inside the kernel through the socket 

API between the user space and the kernel space.  

lin76248_ch01_001-053.indd   34lin76248_ch01_001-053.indd   34 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 35

  Inside a Router and a Host 

 Following are two examples to show readers what common operations are imple-

mented in network nodes and where they are placed.  Figure 1.13  illustrates the 

common operations of a router. The routing protocols (RIP, OSPF, BGP, etc.) are 

implemented in daemon programs ( routed ,  gated , or  zebra  for advanced routing 

protocols), which update the routing table (also called the forwarding table) inside 

the kernel for the  “protocol driver”  to look up. The protocol driver consists of IP, 

ICMP, TCP, and UDP and calls the adaptor drivers to send and receive packets. 

Another daemon,  inetd  (the super network daemon), invokes various programs for 

network-related services. As the arrowed lines show, packets at the control plane 

are processed in the protocol driver by ICMP or up in the daemons by RIP, OSPF, 

BGP, etc. However, packets at the data plane are to be forwarded at the IP layer in 

the protocol driver. 

 Similarly,  Figure 1.14  shows the operations of a server host machine. The serv-

ers of various application protocols (e.g., Web, mail) are implemented in daemon 

programs (e.g.,  apache ,  qmail ,  net-snmp , etc.). The obvious difference between a 

 FIGURE 1.14 Software 
architecture in Linux systems: 
server host.     Apache (HTTP) server/qmail

(SMTP, POP3) server, etc.
net-snmp

(SNMP) server

Kernel space

User space

Protocol driver

Adaptor
driver

Control plane
Data plane

 FIGURE 1.13 Software 
architecture in Linux systems: 
router.     

Kernel space

Adaptor
driver

Adaptor
driver

Routed (RIP)/gated or zebra
(RIP, OSPF, BGP, etc.)

Inetd
(ftp, telnet, etc.)

User space

Routing table

up
da

te

Protocol driver

Control plane

Data plane

Control plane

Data plane

lin76248_ch01_001-053.indd   35lin76248_ch01_001-053.indd   35 24/12/10   4:11 PM24/12/10   4:11 PM



36 Computer Networks: An Open Source Approach

host and a router is that there is no packet forwarding in a host, and hence it needs 

only one link interface or adaptor card. For this host, most packets are data-plane 

packets that go up to and down from the daemon servers. The only control-plane 

protocol might be ICMP for error reporting. 

    1.4.3 Linux Kernel 
 Having positioned the protocol entities into daemons, Linux kernel, drivers, and ICs, 

let us examine the  internals  of these components. We do not intend to cover them in 

great detail. Instead, we just touch on the key features of each component. 

  Figure 1.15  displays the key components inside the Linux kernel. There are five 

major components: process management, memory management, file system, device 

control, and networking, just like any UNIX-like operating system. We do not plan 

to elaborate on what each component is for. 

 Each component has two layers: hardware-independent and hardware-dependent. 

The hardware-dependent part is in fact the drivers for disks, consoles, and adaptor 

cards, or CPU architecture-dependent codes and virtual memory managers for 

various CPU architectures. Among these components, networking is the focus of our 

concern. Appendix B describes the  source tree  of the Linux kernel, especially the 

networking part.  

  1.4.4 Clients and Daemon Servers 
 On top of the kernel, user space processes run their user space programs, although 

they occasionally invoke system calls and switch into the kernel to receive ser-

vices. For networking services, the socket APIs provide a set of system calls for a 

 FIGURE 1.15 Kernel components.     

User programs and applications

Process
management

Memory
management

File system Device
control

Networking

Architecture-
dependent

code

Memory
manager

FS types
Device
controlBlock device

Network
subsystem

Connectivity
TTY and device

access
Files and

directories
Virtual
memory

Concurrency
multitasking

Application level

Kernel level

Kernel parts

Features implemented

IF Drivers

Software support

Hardware control

Hardware levelCPU RAM Disks & CDs Console,
serial ports

Network
interfaces

System call

lin76248_ch01_001-053.indd   36lin76248_ch01_001-053.indd   36 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 37

user-space process to communicate with another remote user-space process (through 

TCP or UDP sockets), generate its own IP packets (through raw socket), listen to an 

interface card directly (through the Data Link Provider Interface socket), or talk to 

the kernel of the same machine (through the routing socket). These sockets are illus-

trated in  Figure 1.16 . For each system call in a specific socket API, the Linux kernel 

implements this system call by a set of kernel space functions. 

 These sockets are used in different applications. For example, the Apache server, 

along with many other servers, uses the TCP socket. The zebra routing daemon uti-

lizes the routing socket to update the forwarding table inside the kernel, while using 

the UDP socket, the raw socket, and the TCP socket to send and receive RIP, OSPF, 

and BGP protocol messages, respectively. The protocol stack in  Figure 1.10 (a) indi-

cates the socket APIs they choose. RIP, OSPF, and BGP are on top of UDP, IP, and 

TCP, respectively. 

   1.4.5 Interface Drivers 
 A device driver is a set of dynamically linked functions called by the kernel. It is 

essential to know that the driver operations are triggered by  hardware interrupts . 

A device generates a hardware interrupt when it has finished an I/O operation 

or detected an event that needs to be handled. This interrupt must be handled by 

a driver that  understands  this device, but all interrupts are first handled by the 

kernel. How does the kernel know which driver to choose to handle this hardware 

interrupt? The driver for that device should have itself  registered  to the kernel 

as an interrupt service routine to handle a specific numbered hardware inter-

rupt. However, parts of the driver are not inside the interrupt service routine. 

The parts that are called by the kernel but not due to interrupt handling are not in 

the interrupt service routine.  Figure 1.17  shows the driver for a network interface 

card. The packet receiver and parts of the packet transmitter are registered as the 

interrupt service routine for the interface card. They are called by the kernel due 

 FIGURE 1.16 Clients and daemon servers: four socket APIs.     

Client

TCP

IP

MAC

PHY

Routing
socket 

Server

TCP

IP

MAC

PHYInternetInternet

Raw
socket

DLPI
socket 

TCP/UDP
socket 

lin76248_ch01_001-053.indd   37lin76248_ch01_001-053.indd   37 24/12/10   4:11 PM24/12/10   4:11 PM



38 Computer Networks: An Open Source Approach

to hardware interrupts from the interface card. Parts of the transmitter are not 

registered in the interrupt service routine because it is called when the kernel has 

packets to transmit. 

 In addition to transmitting and receiving packets, the driver may do some pro-

cessing of the link layer protocol. Though some parts of the link layer protocol could 

be implemented into the ASICs in the interface card, there may still be some protocol 

processing inside the driver, as we shall see in  Chapter 3 .  

  1.4.6 Device Controllers 
 As described in Subsection 1.4.5, the driver stands behind the kernel to handle the 

interrupt generated by a device. Also, the driver needs to configure the device in the 

initialization phase or when the kernel wants to change some configuration. Then 

how can a driver talk with a device? In fact, inside the device there is a device con-

troller, which usually is an integrated circuit (IC) chip responsible for communicat-

ing with the driver. The controller provides a set of  registers  for the driver to  read  and 

 write . By writing or reading these registers, the driver can issue  commands  to or read 

 status  from the device. Besides, based on the type of CPU architecture, there are two 

different methods to access these registers. Some CPUs provide a set of special I/O 

commands, e.g.,  in  and  out , for the driver to talk with the device while some reserve 

a range of memory addresses for the driver to issue I/O commands like memory ac-

cess, i.e., memory-mapped I/O. 

 The device controller is indeed the core of a device. It constantly monitors the 

device and immediately responds to the events from the outside environment or the 

driver. For example, the controller in a network adapter may run a MAC protocol to 

transmit a packet once it senses the driver has written a  transmit  command into its 

command register. It may repeatedly try to retransmit should a collision occur. In the 

meantime, it would monitor the network line to detect an incoming packet, receive it 

into the adapter memory, check its correctness based on the MAC header, and then 

trigger an interrupt to ask the corresponding driver to move the packet into the host 

memory.    

 FIGURE 1.17 Interrupt-driven 
interface drivers: in and out.     

Kernel

Driver

Card

Registers Buffer DMA

TX TX RX

Command
Data
Interrupt

lin76248_ch01_001-053.indd   38lin76248_ch01_001-053.indd   38 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 39

  1.5 BOOK ROADMAP: A PACKET’S LIFE 

  We have gone through the journey that introduces the why and the how regarding 

the Internet architecture and its open source implementations. But not enough details 

have been touched on so far. The subsequent chapters look into detailed why and 

how in each layer of the protocol stack, and we address two pressing issues on the 

Internet: QoS and security. Before proceeding to these chapters, it is both instructive 

and entertaining to see how a packet might be stored and processed inside an end 

host or an intermediary device. This section also provides you with the background 

to understand the open source implementations covered in this text. 

  1.5.1 Packet Data Structure:   sk_buff   
 For the packet encapsulation mentioned in Section 1.3, cooperation among multiple 

network  layers  (or  modules ) is needed to wrap data into a packet or unwrap data 

from a packet. To avoid frequent data copying between these modules, a common 

data structure is used to store and describe a packet, and thus each module can pass 

or access the packet simply by a  memory pointer . In Linux, such a data structure is 

named  sk_buff , which is defined in file  skbuff.h . 

 An  sk_buff  structure is used to store one packet and its related information, 

e.g., length, type, or any data that are exchanged along with the packet between the 

network modules. As shown in  Figure 1.18 , the structure includes many pointer 

variables, most of which point to an additional  fixed-size  memory space where the 

packet is actually stored. A field name with a prefix “+” represents an offset based 

on the field  head . The variables  next  and  prev  would link the structure with the 

previous and next  sk_buff  so that packets in a node are maintained in a  doubly 
linked list . The variables  dev  and  sk  indicate the network device and the socket, 

 FIGURE 1.18 The doubly linked list of the sk_buff structure and some important fields in each sk_buff.     

next
prev
dev

sk
....

head
data

+mac_header
+network_header

+transport_header
+tail
+end

...

next
prev
dev

sk
....

head
data

+mac_header
+network_header

+transport_header
+tail
+end

...

next
prev
dev

sk
....

head
data

+mac_header
+network_header

+transport_header
+tail
+end

...

The sk_buff structure

Fixed size of memory space for each packet

The sk_buff structure

body body

header
header

lin76248_ch01_001-053.indd   39lin76248_ch01_001-053.indd   39 24/12/10   4:11 PM24/12/10   4:11 PM



40 Computer Networks: An Open Source Approach

respectively, which the packet is received from or going to be transmitted to. The 

variables  transport_header ,  network_header  and  mac_header  contain 

the  offset  of the header positions of layers 4, 3, and 2, respectively, in the packet 

stored from the position pointed by the  head  variable. 

 Besides the data structure, a set of routines are provided for the network mod-

ules to allocate or free  sk_buff  and modify the data in  sk_buff . When a packet 

is received from a network device, the routine  alloc_skb()  is called to allocate 

a buffer for the packet. As shown in the leftmost  sk_buff  of  Figure 1.18 , at first 

since no packet is stored in the allocated space, all pointers to the packet space have 

the same value as the variable  head . When an incoming packet arrives to the allo-

cated space, which may look like the middle  sk_buff  in  Figure 1.18 , the routine 

 skb_put()  would be called to move the pointer  tail  toward the end and the three 

header pointers to their corresponding positions. Next, the routine  skb_pull()  

would be called to move down the pointer  data  every time when a protocol module 

removes its header and passes the packet to the  upper-layer protocol . The packet 

in the upper-layer protocol may look like the rightmost  sk_buff  in  Figure 1.18 . 

Finally, after a packet is handled, the routine  kfree_skb()  is called to return the 

memory space of the  sk_buff . 

 In the next two subsections, we shall deconstruct a  packet’s life  in a Web server 

and in a gateway (or a router) into several stages and associate these stages with our 

subsequent chapters. This serves as a roadmap of this book.  

  1.5.2 A Packet’s Life in a Web Server 
 Four packet flows often seen in a Web server are plotted in  Figure 1.19 . In general, 

when an Internet client wants to fetch a page from a Web server, the client sends 

out a packet indicating the destination Web server and the requested page. Next, the 

packet is forwarded by a sequence of routers to the Web server. After it is received 

by the network interface card (NIC) of the server, its journey in the server begins as 

plotted by path  A . First, the NIC will decode the signal into data, which is a process 

covered in  Chapter 2 . The NIC then alerts the adapter driver to move the packet into 

the memory space which was allocated from the  sk_buff  pool by the driver in ad-

vance. By reading   Chapter 3  , readers can further learn the protocols and mechanisms 

operated in NIC and the adapter driver. 

 Once the packet is stored in an  sk_buff , the adaptor driver calls and passes 

a pointer to the  sk_buff  of the packet to the IP module’s reception function. 

The reception function then checks the validity of the packet and hooks the packet 

on the IP  prerouting  table for security check. The table is one of the important 

structures used by  netfilter , the firewall module embedded in the Linux ker-

nel. The structures and operations in the IP module will be detailed in   Chapter 4,   
with the  security operations  left to   Chapter 8.   Next, the packet is pushed into the 

TCP module by  netfilter , and   Chapter 5   will describe how to draw the user 

data out of the packet in an  sk_buff , do error control, and pass it to the applica-

tion program, which herein is the Web server. Since the Web server is a user space 

program, the data, which is the payload of the packet, has to be duplicated from 

the kernel memory to the user memory. Meanwhile, based on the header of the 

lin76248_ch01_001-053.indd   40lin76248_ch01_001-053.indd   40 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 41

received packet, the TCP module builds the ACK packet, which is then transmit-

ted along path  B . The ACK passes down through the TCP module, IP module, 

adaptor driver, NIC, and network path, and arrives at the client side. Thus, the cli-

ent side is assured that the request for the desired Web page has been successfully 

delivered to the Web server. 

 In the meantime, the Web server, covered in   Chapter 6,   processes the request 

in its  socket  data structure, which was duplicated from the TCP module, generates 

the response and sends it via the socket interface. The response passes through the 

TCP and IP modules as indicated by path  C , being encapsulated with the protocol 

headers and maybe fragmented into multiple packets when leaving the IP module 

for transmission through the Internet. Finally, the space allocated to the packet will 

be released back to the  sk_buff  pool. Later when the Internet client receives the 

response, its TCP module sends back a TCP ACK to the TCP module of the Web 

server, which goes through path  D  to confirm that the response has been successfully 

delivered to the Internet client. 

   1.5.3 A Packet’s Life in a Gateway 
 Since the goal of a router or a gateway is to forward or to filter packets in the Internet 

or between the Internet and an intranet, it has at least two network adaptors as shown 

 FIGURE 1.19 Life of four packets in a Web server.     

A: Incoming packet with the user req.       B: TCP ACK for Packet A
C: Web resp. to the req. embedded in A    D: TCP ACK returned from the user for Packet C

Web server

TCP

NIC
ch2/ch3Hub

IPv4

sk_buff
pool

Socket

Web
server

D
ro

p 
if

 f
ai

l

Write Read
U

se
r 

Sp
ac

e
K

er
ne

l S
pa

ce

ch4
net/ipv4/*

ch3
drivers/net/*

ch5
net/ipv4/*

ch6
Apache

TX Adaptor driver

Rcv DataSnd ACK

Request handling process

Rcv ACKSnd DATA

AB D

Get space for the receiving

free

Return space after trans.

cp.cp.

Version, len, and error chk

A

Add IP header

BD AC

C

Hook on ip prerouting table

C

Build & Snd responses

Congestion control

Error control

RX

Calc. chksum

Rcv requests

lin76248_ch01_001-053.indd   41lin76248_ch01_001-053.indd   41 24/12/10   4:11 PM24/12/10   4:11 PM



42 Computer Networks: An Open Source Approach

 Performance Matters: From Socket to Driver 
within a Server 

  Figure 1.20  illustrates the packet processing time within a PC server with an 

Intel 82566DM-2 Ethernet adaptor and a 2.0 GHz CPU. The layer interfaces 

within the Linux kernel are instrumented with the function  rdtscll()  (or 

the assembly command  RDTSC  on x86 machines), which reads the  TSC  (Time-

Stamp Counter in units of CPU ticks or cycles) to measure the CPU time eclipse 

in each layer. For a 2.0 GHz CPU, a cycle equals 0.5 ns. The tests are repeated to 

obtain the average consumed CPU time of each protocol layer, where the test re-

sults with significantly larger time eclipse than the average consumed CPU time 

are not counted to exclude the effect of context switching and interrupt handling. 

Unless otherwise specified, all sidebars of Performance Matters in this text 

adopt this method. One could use  do_gettimeofday()  and  printk() , or 

simply rely on the profiling tool  gprof/kernprof  introduced in Appendix C 

for time measurement, but they would be accurate only to the μs   scale. 

 The consumed CPU time can be deconstructed into two parts. The first part, 

RX, describes the time measured from receiving a packet by the device driver in 

the link layer, processing the packet in the IP and transport layers, and delivering 

it to the user space. The second part, TX, depicts the time spent in each protocol 

layer in the kernel space to process an outgoing packet coming from the user-space 

server program. The total time is 34.18 μs, which is the round-trip time within a 

server excluding the request and response handling in the server program. In both 

parts, the transport layer accounts for the highest percentage of time. Apparently, 

it consumes a lot of time in copying data between the user and kernel space. Here, 

the link layer consumes the least time for both RX and TX. However, one must 

know that the time spent in the link layer heavily depends on the performance of 

the device driver and the underlying hardware. In some cases, as we shall see in 

the next subsection, it consumes as much time as the IP layer. 

 FIGURE 1.20 CPU time from socket to driver within a server.     

Transport Layer RX,
7.05 μs (21%)

IP Layer RX,
5.36 μs (16%)

Link Layer RX,
3.88 μs (11%)

Transport Layer TX,
9.04 μs (26%)

IP Layer TX,
5.49 μs (16%)

Link Layer TX,
3.36 μs (10%)

Total time: 34.18 μs

lin76248_ch01_001-053.indd   42lin76248_ch01_001-053.indd   42 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 43

in  Figure 1.21 . Note that an intranet is a private network securely sharing any part of 

an organization’s resources with its employees. Also, the routing and filtering mod-

ules need to determine which adaptor to forward a packet to and whether a packet 

should be discarded for the security of the intranet, respectively. The basic opera-

tions, such as sk_buff   handling, error control, and interaction between modules, 

remain the same as the ones in a server. A router or a gateway usually has no TCP or 

upper-layer modules except some daemons for routing and security functions, but it 

would have forwarding, firewall, and QoS functions turned  on  in the kernel, as we 

can see in  Figure 1.21 . 

 Upon receiving a packet from the intranet, as indicated on the right hand side 

of  Figure 1.21 , the gateway may first verify its correctness and then check the 

 pre-routing  table to determine whether to forward the packet into the Internet. 

For example, if the functionality of transparency proxy is enabled in the gateway, 

then a packet of a URL request, instead of being sent to the actual website, may 

be redirected to a local Web proxy to seek the cached pages, as a  proxy  addressed 

in   Chapter  6.   Then it makes its forwarding or routing decision by checking the 

 forward chain , i.e., forwarding table or routing table, with a remote destination IP 

address; this process is illustrated in   Chapter 4.   Because of security considerations 

and lack of IP address, a gateway might provides the  network address translation  

 FIGURE 1.21 A packet’s life in a geteway.     

Hub

Router

ch4

ch3

make
routing

decision

U
se

r 
Sp

ac
e

Gateway

IPv4

NIC 2
ch2/ch3

TX Adaptor
driver

K
er

ne
l S

pa
ce

Adaptor
driver

Check output chain

Check
forward
chain

To local process

Check prerouting table for 

(1) transparency proxy (ch6)
& (2) flow classification (ch7)

Host

Check post
routing for IP
masquerading

Make
routing
decision

Log and detect intrusion by Snort (ch8)

Dest. IP is local

Dest. IP isn’t local

Src. IP is local

Routing by Zebra (ch4) 

Check input chain

Traffic control (ch7) Version, len, and error check

RX

RX

NIC 1
ch2/ch3

TX

lin76248_ch01_001-053.indd   43lin76248_ch01_001-053.indd   43 24/12/10   4:11 PM24/12/10   4:11 PM



44 Computer Networks: An Open Source Approach

(NAT) function of having a public IP address shared by all hosts in the intranet. For 

NAT function, when the outgoing packets pass through the  post-routing  module, 

their source addresses may be replaced, which is commonly called  IP masquerad-
ing,  also covered in   Chapter 4.   Finally, a packet might be attached to a tag in the 

pre-routing  module to distinguish the packet’s service class and priority in forward-

ing with bandwidth reservation on the output link, which is managed by the  traffic 
control  module introduced in   Chapter 7.   

 On the other hand, for a packet coming from the Internet as indicated on the 

lefthand side of  Figure 1.21 , since it would be checked to see if it contained malware 

from the hosts in the Internet, the packet could be  duplicated  from the normal  for-
ward chain  to the intrusion detection module for log analysis and detection. SNORT 

is such a software module. It will be introduced in   Chapter 8   along with several other 

modules that offer the security functions. If the packet is addressed to a local process, 

say a routing daemon covered in   Chapter 4,   it goes through the  input chain  and up to 

the daemon. Again, the daemon may send its packets out through the  output chain . 

 Performance Matters: From Input Port to 
Output Port within a Router 

 Unlike the case in a server, packets usually do not need to go through the trans-

port layer within a router or gateway. As depicted in  Figure 1.21 , the network 

adaptor first raises an interrupt when a packet arrives. The device driver in the 

link layer triggers DMA transferring to move the packet from the adaptor buffer 

to the kernel memory. Then the packet is passed to the IP layer, which checks the 

routing table and forwards the packet to the appropriate outgoing adaptor. Again, 

the device driver of the outgoing adaptor utilizes DMA transferring to copy the 

packet from the kernel memory to the adaptor buffer, and then asks the adaptor to 

transmit it. Throughout the process, the transport layer and above are untouched. 

Some control-plane packets, however, might go up to the transport and applica-

tion layers.  Figure 1.22  shows the CPU time spent in processing a packet within a 

router. Here the DMA time is one exception. It is actually the time eclipse instead 

of the consumed CPU time. All other times are consumed CPU times. The PC-

based router has an Intel Pro/100 Ethernet adaptor and a 1.1 GHz CPU. 

 Due to the lower-speed CPU, the time of the IP layer RX here is higher than 

the result shown in  Figure 1.20 . Furthermore, when compared with  Figure 1.20 , 

both of the RX and TX times spent in the link layer increase significantly be-

cause the performance of the Intel Pro/100 Ethernet adaptor, a 100 Mb adaptor, 

is lower than that of the Intel 82566DM-2 Ethernet adaptor, a gigabit adaptor. 

Another noticeable difference between the router and server cases is the time 

for transmitting a packet through the IP layer, i.e., IP layer TX. Although both 

cases walk through a similar path in the IP layer TX, the information carried by 

sk_buff is different. Within a router, the sk_buff contains ready-to-send 

information except for the source MAC address, which needs to be changed. 

lin76248_ch01_001-053.indd   44lin76248_ch01_001-053.indd   44 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 45

 FIGURE 1.22 CPU time from input to output within a router.     

DMA TX,
0.95 μs (3%)

Link Layer TX,
8.18 µs (27%)

IP Layer TX,
1.24 μs (5%)

IP Layer RX,
7.14 μs (25%)

Total time: 29.14 μs

DMA RX,
0.94 μs (3%)

Link Layer RX,
10.69 μs (37%)

However, within a server, the IP layer has to prepend the whole Ethernet 

header to sk_buff before sending it to the link layer, which causes the 

processing time of the IP layer TX within a server to be higher than the one 

within a router. Finally, although with lower-speed hardware, the total packet 

processing time, i.e., 29.14 μs, is still less than the time within a server with 

high-end hardware as shown in  Figure 1.20 . 

 Principle in Action: A Packet’s Life 
in the Internet 

 It is indeed entertaining to examine a packet’s life in a Web server and in a 

router or gateway. Now let us tell the whole story from a packet’s birth at a 

client, through its routing along several routers, and finally its arrival to the Web 

server. Described in   Chapter 6,   the client program first calls the “socket” 

function for the kernel to prepare a set of socket data structures, and then calls 

the “connect” function to ask the kernel TCP module to establish a TCP con-

nection with the Web server side’s TCP module by the three-way handshake as 

detailed in   Chapter 5.   Normally there will be three packets (SYN, SYN-ACK, 

ACK) sent between the two corresponding TCP modules. That is, before the 

HTTP request can be sent there are already three packets exchanged. They fol-

low procedures similar to those of the HTTP request at the client, routers or 

gateways, and the server, except that they terminate at the TCP module and do 

not go up to the client and server programs. 
Continued

Principle in Action: A Packet’s Life 
in the Internet 

It is indeed entertaining to exxamine a packet’s life in a Web server and in a

router or gateway. Now let uss tell the whole story from a packet’s birth at a 

client, through its routing alongg several routers, and finally its arrival to the Web

server. Described in  Chapter 6, the client program first calls the “socket” 

function for the kernel to prepare a set of socket data structures, and then calls

the “connect” function to ask the kernel TCP module to establish a TCP con-

nection with the Web server side’s TCP module by the three-way handshake as 

detailed in Chapter 5. Normallly there will be three packets (SYN, SYN-ACK,

ACK) sent between the two ccorresponding TCP modules. That is, before the

HTTP request can be sent therre are already three packets exchanged. They fol-

low procedures similar to those of the HTTP request at the client, routers or 

gateways, and the server, except that they terminate at the TCP module and do

not go up to the client and servver programs. 
ContinuedContinued

lin76248_ch01_001-053.indd   45lin76248_ch01_001-053.indd   45 24/12/10   4:11 PM24/12/10   4:11 PM



46 Computer Networks: An Open Source Approach

 After the TCP connection is set up between the client and the server, the 

client program gives  birth  to the life of an HTTP request in its user memory 

space and calls the “write” function to send the request to the kernel. The in-

terrupted kernel then copies the HTTP request from the user space into its socket 

data structures, including the sk_buff, to store the HTTP request message. 

The “write” function in the client program returns at this point. The kernel 

TCP module then takes care of the rest by encapsulating the HTTP request with 

a TCP header and passing it down to the IP module for the encapsulation of an IP 

header, then the adaptor driver, and finally the NIC with the link-layer encapsu-

lation. This packet then traverses through a series of routers or gateways within 

each, going through the procedure described in Subsection 1.5.3. That is, at 

each router or gateway, its reception at a NIC triggers the decoding of the signal 

into data (detailed in   Chapter 2  ), and interrupts the adaptor driver (detailed in 

  Chapter 3  ), which copies it into an sk_buff and passes it to the IP module for 

forwarding through the normal forward chain (detailed in   Chapter 4  ). It is then 

handled by the adaptor driver again, which passes it to another NIC for encoding 

and transmission (detailed in   Chapter 2  ). 

 Forwarded by several routers, the encapsulated HTTP request finally reaches 

its server. It then goes through the procedure described in Subsection 1.5.2. After 

passing through a NIC, being copied into an sk_buff   by the adaptor driver, 

checked by the IP module, acknowledged by the TCP module on the client 

side, and copied by the socket interface into the user memory, the packet finally 

reaches the server program. Lying in the user memory of the server program, its 

lifetime is  terminated  after the server parses the HTTP request message and pre-

pares the HTTP response. The server program then repeats the same procedure 

to send the HTTP response back to the client program. The response also trig-

gers a TCP acknowledgment from the client TCP module to the server’s. If this 

is the end of the HTTP session, normally four packets (FIN, ACK, FIN, ACK) 

will be sent to terminate the TCP connection. There will be at least 3 (TCP con-

nection setup) + 1 (HTTP request) + 1 (ACK to the request) + 1 (HTTP response 

if it is short enough to fit into a packet) + 1 (ACK to the response) + 4 (TCP 

connection tear-down) = 11 packets exchanged in completing an HTTP session. 

 We started from the three requirements or objec-

tives, i.e., connectivity, scalability, and resource 

sharing, that must be satisfied in building com-

puter networks. Then we explained the principles 

or constraints on performance, operations, and in-

teroperability that limit the solution space that we 

could explore. Next the Internet solutions were 

presented along with their Linux-based open source 

implementations. Finally we laid out this book’s 

roadmap by illustrating a packet’s life within a 

Web server and a router. In this chapter, we intro-

duced many concepts and terminologies that will 

be used throughout this book. Among them, switch-

ing, routing, stateless, soft-state, best-effort, data 

plane, and control plane are important for readers 

to comprehend. 

       1.6 SUMMARY 

lin76248_ch01_001-053.indd   46lin76248_ch01_001-053.indd   46 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 47

 The single biggest design decision made in the In-

ternet evolution is the end-to-end argument. It pushes 

the complexity of error and traffic control to end hosts, 

while keeping the core network simple. The core is so 

simple that it runs stateless routing instead of stateful 

switching and offers only best effort, unreliable IP 

services. The end-to-end transport layer at hosts then 

runs reliable connection-oriented TCP with error and 

traffic control, or unreliable connectionless UDP with-

out much control. It is the  polite  TCP running flow 

and congestion control that keeps the Internet  healthy  

and  fair  in the resource sharing community. Another 

big decision is structuring the Internet into a three-

level hierarchy with domains and subnets of contigu-

ous IP address blocks. It solves the scalability issue 

by breaking the routing problem into intra-domain 

problems and inter-domain problems. The problem 

size of the former is usually less than 256, while the 

size of the latter is at the scale of 65,536; both sizes 

are manageable but require different schemes to scale. 

   The Evolving Hourglass 
 Today the Internet has a  single  IP technology at the 

network layer and several at the transport layer, but 

it rides on  many  types of links and offers  huge  ap-

plication services. This  hourglass-shaped  protocol 

stack continues to evolve with many innovations to 

come. The middle layers remain quite stable but face 

the pressure to transit from IPv4 to IPv6 and limit 

the impolite UDP traffic, as we shall describe in 

 Chapter  4  and  Chapter 5 , respectively. Meanwhile, 

its statelessness has been challenged constantly, as 

we have explained. The lower layers have converged 

to one or several technologies in each market seg-

ment, though the  last-mile wireless  remains an un-

settled battlefield. We have much to see in  Chapter 2  

and  Chapter 3 . At the top, traditional client-server 

applications continue to evolve slowly, but the new 

peer-to-peer (P2P) applications emerge at a fast pace, 

as we shall see in  Chapter 6 . 

 In the late 1990s and early 2000s, it was hoped 

that the Internet could be re-engineered to pro-

vide quality of service (QoS) to  guarantee  latency, 

throughput, or loss rate. But all proposals required 

 adding  some statefulness into the core network, 

which conflicted with its original stateless nature 

and thus failed. Today many QoS technologies are 

applied only at the link level but not at the end-to-

end level.  Chapter 7  has more to say on that. In ad-

dition to  wireless  and  P2P ,  security  probably is the 

hottest pressing issue. From the early concerns of 

controlling “who can access what” and protecting 

“private data on the public Internet,” the attention has 

been shifted to protecting systems from intrusions, 

viruses, and spam.  Chapter  8  has a comprehensive 

coverage on them.  

   COMMON PITFALLS 

  Transmission Delay vs. Propagation Delay 
 These two are obviously different. But surprisingly, some 

readers might not be able to differentiate between them 

after the first reading if we did not compare them. 

Transmission delay represents the total time needed by 

a device to fully push a packet into a network link. The 

delay depends on the length of the packet (packet size) 

and the bandwidth of the link. For example, for a packet 

with length 250 bytes, i.e., 2000  bits, its transmission 

time in a host with 1 Gbps link is 2000 (bits)/10 9  (bits/

sec) = 2 μs. 

 Propagation delay represents the total time for a 

packet to pass through a link. It depends on the rate and 

the distance the signal travels. Since the packet is trans-

mitted in electrons, the traveling rate is a fraction of light 

speed and is only affected by the transmission media. For 

example, for a packet passing through an intercontinental 

submarine cable with length 1000 km, its propagation 

delay is 100 km/ (2*10 8  m/sec) = 50 μs.  

  Throughput vs. Utilization 
 The same thing happens to these two terms. Throughput is 

used to describe how much data, usually in bits or bytes, 

are transmitted or handled by a device over a unit of time, 

usually a second. For example, we measure the amount of 

data via the outgoing link in 1 minute and get 75*10 6  bytes, 

then we can calculate the average throughput as 75*10 6  

lin76248_ch01_001-053.indd   47lin76248_ch01_001-053.indd   47 24/12/10   4:11 PM24/12/10   4:11 PM



48 Computer Networks: An Open Source Approach

(bytes)/60 (sec) = 1.25*10 6  Bps. That is, there is data of 

1.25*10 6  bytes passing through the link per second on aver-

age. Throughput could be normalized by the capacity of the 

system, which renders a value between 0 and 1. 

 On the other hand, the utilization means what per-

centage of the bandwidth in a link is used or the percent-

age of the time a device is busy. By following the same 

example above and assuming that the bandwidth of the 

link is 100*10 6  bps, then the utilization of the link would 

be 1.25*10 6  Bps/100*10 6  bps = 10%.  

  Layer 2, 3, 4, 7 Switches 
 It is common to hear layer-2 to layer-7 switches, but why 

do we need so many kinds of switches? The basic operat-

ing principle for a switch is relying on the  tag  of a packet 

to select a port. Such a principle could be used to build 

the switches for different layers, which rely on different 

protocols to get the tag. For example, a layer-2 switch may 

learn and  memorize  where an adaptor is by observing the 

 source  MAC address of incoming packets from a port, and 

then switch packets with that destination MAC address to 

the port later on. Thus, MAC address is used as the tag in 

a layer-2 switch. 

 Similarly, IP address, flow id, and URL may be used 

as the tag in the switch of layer-3, layer-4, and layer-7, re-

spectively. A layer-3 IP switch, which is in fact the MPLS 

technology, simplifies the tag to a number and asks the up-

stream switch to label future packets with this number for 

fast  indexing  into the tag table. Such an IP switch would 

run faster than the traditional IP router. A layer-4 switch 

uses the five-tuple flow id (source IP address, destination 

IP address, source port number, destination port number, 

protocol id) as the tag, and switches packets of the same 

flow to the same output port. This  persistent switching  is 

important for e-commerce applications where throughout 

the transaction the user is switched to the same server ma-

chine. A layer-7 Web switch goes one step further to use 

the application header information, such as URL or Web 

page cookie, as the tag for persistent switching. Doing so 

could allow an e-commerce transaction to last even longer 

across many connections or flows. It is interesting to note 

that there is no layer-5 or layer-6 simply because people 

like to call the application layer layer-7 instead of layer-5 

due to the 7-layer OSI model.  

  Baseband vs. Broadband 
 Some readers confuse broadband with large bandwidth 

and baseband with little bandwidth. In fact, these two 

terms barely convey any meaning about the amount of 

bandwidth. In baseband transmissions, the digital signal of 

the data is directly transmitted via the link. It is the original 

 square shape  of the signal that is transmitted. It is easy to 

send or receive such a signal. However, a link can carry 

one such signal at a time. Such a square-shaped signal 

decays easily and cannot sustain for a long distance; thus 

baseband is used mostly for LANs. 

 In broadband transmissions, the digital signal of the 

data is mixed with an  analog   carrier  signal adjusted to a 

special frequency. In this way, not only can the resulting 

signal travel a long distance and have the digital signal 

recovered at the receiver, the link also could transport mul-

tiple digital signals in parallel by mixing each digital signal 

with an analog carrier of a  different  frequency. However, 

a more complex transceiver is needed. Broadband is used 

mostly for WANs.  

  Modem vs. Codec 
 Some readers might think we can use a codec  reversely  as a 

modem or vice versa, but in fact we cannot. A modem is a 

device to transform digital data into analog signals for trans-

mission and vice versa. The former is called  modulation , 

while the latter is  demodulation . The goal is to enhance the 

capability of  noise tolerance  for the  long-distance  transmis-

sion. The most popular example is Internet access from your 

home PC via ADSL modem or cable modem. 

 A codec is a device to transform analog data into 

digital signals and vice versa. Its goal is to leverage the  error 
recovery  capability of digital signals. The popular example 

is when you speak on a cellular phone your analog voice is 

digitalized first at the phone, then modulated into analog 

signal also at the phone for long-distance transmission to the 

base station and beyond. The digital signal can be recovered 

easily at each transmission hop, and thus, after demodulated 

at the receiver side, renders the original analog voice.   

   FURTHER READINGS 

   Other Textbooks 
 Searching on scholar.google.com finds us six important 

textbooks on computer networks. These textbooks are 

listed here and ordered by the number of times they are 

 cited . 

lin76248_ch01_001-053.indd   48lin76248_ch01_001-053.indd   48 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 49

   • A. S. Tanenbaum,  Computer Networks , 4 th  edition, 

Prentice Hall, 2002.  

  • D. Bertsekas and R. Gallager,  Data Networks , 2 nd  edi-

tion, Prentice Hall, 1992.  

  • W. Stallings,  Data and Computer Communications , 
8 th  edition, Prentice Hall, 2006.  

  • J. F. Kurose and K. W. Ross,  Computer Networking: 
A Top-Down Approach , 3 rd  edition, Addison-Wesley, 

2003.  

  • L. L. Peterson and B. S. Davie,  Computer Networks: A 
System Approach , 4 th  edition, Elsevier, 2007.  

  • D. E. Comer,  Internetworking with TCP/IP, Volume 
I: Principles, Protocols, and Architecture , 4 th  edition, 

Prentice Hall, 2000.   

 The Tanenbaum book is a traditional one with a bit of 

everything and story-telling descriptions. It has more how 

than why. The one by Bertsekas and Gallager focuses 

solely on performance modeling and analysis, and should 

be used for the second course. The Stallings book is ency-

clopedically flat structured, with more emphasis on lower 

layers. Kurose and Ross feature a top-down order in pre-

senting layered protocols, with much heavier treatments 

on upper layers. Peterson and Davie address more system 

implementation issues, but mostly without running exam-

ples. The Comer book focuses only on the TCP/IP protocol 

stack, and leaves example codes to the second volume.  

  The Internet Architecture 
 The first three of the following readings discuss the general 

philosophies driving the design of the Internet architecture. 

They serve as good references if readers are interested in 

tracking down the stories. The Ethernet article serves as the 

classic reference for the origin of Ethernet. Though Ether-

net is not a part of the Internet architecture, we still include 

it here because it is the dominating wired infrastructure 

that  carries  the Internet architecture. The next three are 

critical Request for Comments (RFCs) that build the  foun-
dation  of the Internet architecture. The next one is the 

RFC that started the decade-long effort to re-engineer the 

Internet for QoS guarantee. At the end are two important 

research works on congestion control, which maintains 

the  healthiness  of the Internet. The website of the Internet 

Engineering Task Force (IETF) has all RFCs defining the 

Internet along with many other resources. 

   • J. Saltzer, D. Reed, and D. Clark, “End-to-End Argu-

ments in System Design,”  ACM Transactions on Com-
puter Systems , Vol 2, No. 4, pp. 277–288, Nov. 1984.  

  • D. Clark, “The Design Philosophy of the DARPA In-

ternet Protocols,”  ACM SIGCOMM , pp. 106–114, Aug. 

1988.  

  • K. Hafner and M. Lyon,  Where Wizards Stay up Late: 
The Origins of the Internet , Simon & Schuster, 1996.  

  • R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed 

Packet Switching for Local Computer Networks,”  Com-
munications of the ACM , Vol. 19, Issue 7, pp. 395– 404, 

July 1976.  

  • J. Postel, “Internet Protocol,” RFC 791, Sept. 1981.  

  • J. Postel, “Transmission Control Protocol,” RFC 793, 

Sept. 1981.  

  • M. Allman, V. Paxson, W. Stevens, “TCP Congestion 

Control,” RFC 2581, Apr. 1999.  

  • R. Braden, D. Clark, S. Shenker, “Integrated Services in 

the Internet Architecture: An Overview,” RFC 1633, June 

1994.  

  • V. Jacobson and M. J. Karels, “Congestion Avoidance 

and Control,”  ACM Computer Communication Review: 
Proceedings of the SIGCOMM , Aug. 1988.  

  • S. Floyd and K. Fall, “Promoting the Use of End-to-End 

Congestion Control in the Internet,”  IEEE/ACM Transac-
tions on Networking , Vol. 7, Issue 4, Aug. 1999.  

  • Internet Engineering Task Force, www.ietf.org.    

  Open Source Development 
 The first two of the following are the first open source  project  
and the first  article  on open source, respectively. The third one 

is the extended book version of the first article on open source. 

The next two are an overview of the open source develop-

ment with the first on the technical aspects and the second on 

how a project effort is organized. FreshMeat.net is the hub to 

download from a huge library of open source packages, while 

SourceForge.net hosts many open source projects. Even the 

hardware could be open source. OpenCores.org is the hub for 

open source hardware components. 

   • R. Stallman, The GNU project, http://www.gnu.org.  

  • E. S. Raymond, “The Cathedral and the Bazaar,” 

May 1997, http://www.tuxedo.org/~esr/writings/

cathedral-bazaar/cathedral-bazaar.  

  • E. S. Raymond,  The Cathedral and the Bazaar: Mus-
ings on Linux and Open Source by an Accidental Revo-
lutionary , O’Reilly & Associates, Jan. 2001.  

  • M. W. Wu and Y. D. Lin, “Open Source Software Devel-

opment: an Overview,”  IEEE Computer , June 2001.  

  • K. R. Lakhani and E. Von Hippel, “How Open Source 

Software Works: ‘Free’ User-to-User Assistance,”  Re-
search Policy , Vol. 32, Issue 6, pp. 923-943, June 2003.  

lin76248_ch01_001-053.indd   49lin76248_ch01_001-053.indd   49 24/12/10   4:11 PM24/12/10   4:11 PM

www.ietf.org
http://www.gnu.org
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar


50 Computer Networks: An Open Source Approach

  • Freshmeat, freshmeat.net.  

  • SourceForge, sourceforge.net.  

  • OpenCores, opencores.org.    

  Performance Modeling and Analysis 
 The first two of the following entries are the first work 

in Danish on queuing theory by Agner Krarup Erlang in 

1909 and 1917, while the third entry is the classic paper 

often called the Little’s result, published in 1961. The 

Kleinrock books in 1975/1976 are the classic and first 

pieces that applied queuing theory to modeling computer 

and communications systems. The Leon-Garcia book is a 

text for the first course on random processes, which serve 

as the foundation for queuing systems modeling. The 

final three are additional or newer texts on performance 

analysis. 

   • A. K. Erlang, “The Theory of Probabilities and Tele-

phone Conversations,”  Nyt Tidsskrift for Matematik B , 
Vol. 20, 1909.  

  • A. K. Erlang, “Solutions of Some Problems in the The-

ory of Probabilities of Significance in Automatic Tele-

phone Exchanges,”  Elektrotkeknikeren , Vol. 13, 1917.  

  • J. D. C. Little, “A Proof of the Queueing Formula L = 

λW,”  Operations Research , Vol. 9, pp. 383-387, 1961.  

  • L. Kleinrock,  Queueing Systems, Volume 1: Theory , 
John Wiley and Sons, 1975.  

  • L. Kleinrock,  Queueing Systems, Volume 2: Applica-
tions , John Wiley and Sons, 1976.  

  • A. Leon-Garcia,  Probability, Statistics, and Random 
Processes for Electrical Engineering , 3 rd  edition, Pren-

tice Hall, 2008.  

  • R. Jain,  The Art of Computer Systems Performance Analy-
sis: Techniques for Experimental Design, Measurement, 
Simulation and Modeling , John Wiley and Sons, 1991.  

  • T. G. Robertazzi,  Computer Networks and Systems: 
Queueing Theory and Performance Evaluation , 3 rd  edi-

tion, Springer-Verlag, 2000.  

  • L. Lipsky,  Queuing Theory: A Linear Algebraic 
Approach , 2 nd  edition, Springer, 2008.      

     1. How does Internet scale to billions of hosts? (Describe 

what structure and levels are used to organize the hosts, 

and calculate the numbers of entities at each level.) 

   Answer: 

   Three-level hierarchy where 256 hosts could be 

grouped into a subnet and 256 subnets could be 

grouped into a domain, which could result in 65,536 

domains with four billion hosts.  

   2. Routing vs. switching: stateful or stateless, con-

nection-oriented or connectionless, matching or in-

dexing? (Associate these features with routing and 

switching.) 

    Answer: 

    Routing: stateless, connectionless, matching. 

    Switching: stateful, connection-oriented, indexing.  

   3. What may increase or decrease the latency inside the 

Internet? (What are the factors that might increase or 

decrease the latency of queuing, transmission, pro-

cessing, and propagation, respectively?) 

   Answer: 

    Queuing: traffi c load, network bandwidth or CPU capacity 

    Transmission: network bandwidth. 

    Processing: CPU capacity. 

    Propagation: length of links/paths.  

   4. What do Little’s result and bandwidth-delay product 

tell us? (Hints: The former is about a node, while the 

latter is about a link or path.) 

   Answer: 

   Little’s result: In a node, the mean number of packets 

is the product of the mean packet arrival rate and the 

mean delay/latency, i.e., the mean number in the box 

equals mean rate multiplied by mean delay. 

   Bandwidth-delay product: the maximum number of 

outstanding bits in transit in a link/path.  

   5. What does the end-to-end argument say about 

networking? 

   Answer: 

   If a problem cannot be fully resolved at a lower layer 

(or at routers), resolve it at an upper layer (or at end 

hosts). This pushes the complexity from core routers 

to end hosts.  

   6. According to the end-to-end argument, at which sin-

gle layer should we put error control for the Internet? 

But then why do we put it in many layers including 

link, IP, and transport layers? 

   Answer: 

   At the end-to-end transport layer because both link 

and nodal errors could be detected and corrected 

  FREQUENTLY ASKED QUESTIONS 

lin76248_ch01_001-053.indd   50lin76248_ch01_001-053.indd   50 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 51

there, i.e., the link layer can only handle the link 

errors but not nodal errors. But for the purpose of ef-

fi ciency, error control is also put into the link and IP 

layers to handle errors earlier.  

   7. What types of mechanisms should be put into the con-

trol plane and data plane, respectively? (Specify their 

type of packets, purpose, granularity of processing 

time, and example operation.) 

   Answer: 

   Control plane: control packets, maintain the normal 

operations of data plane, usually seconds, routing. 

   Data plane: data packets, transfer packets correctly, 

usually in microseconds, forwarding.  

   8. What are standard and implementation-dependent 

components in a router? (Specify their types of com-

ponents and example.) 

   Answer: 

   Standard: protocol message formats and algorithms 

that affect interoperability between routers; routing 

protocol such as RIP. 

   Implementation-dependent: internal data structures 

and algorithms that do not affect interoperability; 

routing table and its lookup algorithm.  

   9. What’s inside a Linux distribution? (Specify what 

types of fi les you would fi nd in a distribution and how 

they are organized.) 

   Answer: 

   Types of fi les: documents, confi guration fi les, log 

fi les, binary object fi les, image fi les, source programs 

of the kernel and application packages. 

   Organization: into directories.  

   10. When do we implement a mechanism of a net-

work device into ASIC, driver, kernel, and dae-

mon, respectively? (Specify their guidelines and 

examples.) 

   Answer: 

   ASIC: usually PHY/MAC and sometimes acceler-

ators of IP/TCP/UDP and upper layers; Ethernet/

WLAN PHY/MAC and crypto accelerator. 

   Driver: usually interface between MAC and IP and 

sometimes some link layers; Ethernet/WLAN driver 

and PPP driver. 

   Kernel: usually IP/TCP/UDP layers; NAT and TCP/

IP fi rewall. 

   Daemon: application clients, servers, or peers; Web 

client, server, and proxy.     

  EXERCISES 

  Hands-On Exercises 
    1. Visit freshmeat.net, sourceforge.net, and opencores.

org, then summarize and compare what they have.  

   2. Install a newest Linux distribution, and summarize: 

(1) its installation process and (2) things inside a 

Linux distribution.  

   3. First read Appendix B, then look up the programs 

under /src, /usr/src, or other directories 

where the source fi les reside, depending on the ver-

sion of the Linux distribution being used; summarize 

and categorize what’s inside that directory.  

   4. Follow the instructions in Appendix C to debug an 

application program and the Linux kernel using gdb 

and kgdb. Also use gprof and kprof to profi le 

an application program and the Linux kernel, respec-

tively. Give a report on how you do these and what 

you have found in debugging and profi ling.  

   5. Try out the tools  host, arp, ping, traceroute, 
tcpdump , and  netstat  described in Appendix D to 

explore and summarize your network environment.  

   6. Trace the Linux kernel code to fi nd: 

    a. Which function calls  alloc_skb()  to allocate 

 sk_buff  for the request and the response, re-

spectively, in  Figure 1.19 .  

   b. Which function calls  kfree_skb()  to release 

 sk_buff  for the request and the response, re-

spectively, in  Figure 1.19 .  

   c. Which function calls  alloc_skb()  to allocate 

 sk_buff  in  Figure 1.21 .  

   d. Which function calls  kfree_skb()  to release 

 sk_buff  in  Figure 1.21 .  

   e. How you trace these dynamically or statically.    

   7. Find an RFC with a status of “Standard” (STD). 

    a. Read it and summarize how a protocol is de-

scribed in an RFC.  

   b. Search in the source tree of Linux or a Linux dis-

tribution to fi nd an open source implementation. 

Describe how the protocol is implemented in the 

code you fi nd.  

lin76248_ch01_001-053.indd   51lin76248_ch01_001-053.indd   51 24/12/10   4:11 PM24/12/10   4:11 PM



52 Computer Networks: An Open Source Approach

   c. If you are to develop an open source implemen-

tation from scratch, how would you implement 

yours from that RFC?      

  Written Exercises 
    1. Consider a transcontinental link of 5000 miles with a 

bandwidth of 40 Gbps. Assume the propagation speed 

is 2 × 10 8  m/sec. 

    a. What is the width of one bit in time and in length, 

respectively?  

   b. How many bits can be contained in the link at most?  

   c. What is the transmission time of a packet of 

1500 bytes?  

   d. What is the propagation time through this link?    

   2. A stream of packets travel along a path with 10 links 

and nodes in the Internet. Each link is 100 km long 

and of 45 Mbps capacity, and has a propagation speed 

of 2 × 10 8  m/sec. Assume no fl ow control, no other 

traffi c along the path, and the source pumps packets at 

wire speed. 

    a. What is the number of bits contained in each link?  

   b. If the average latency through each node is 5 ms, 

what is the average number of bits contained in 

each node?  

   c. How many bits on the average are contained in the 

path?    

   3. Suppose a 1 Gbps link has exponential packet inter-

arrival time and service time. We like to apply the 

queuing theory and Little’s result to calculate mean 

latency and occupancy. 

    a. If the mean arrival rate is 500 Mbps, what are the 

mean latency, queuing time, and occupancy?  

   b. If the link bandwidth and mean arrival rate are in-

creased by an order of magnitude to 10 Gbps and 

5 Gbps, respectively, what are the mean latency, 

queuing time, and occupancy?    

   4. If 30% of packets have a size of 64 bytes, 50% of 

packet have a size of 1500 bytes, and the rest have a 

size uniformly distributed between 64 and 1500 bytes, 

what is the maximum number of aggregated packets 

per second (pps) at a router with 12  links each of 

10 Gbps?  

   5. Suppose there are 3,000,000 new phone call arrivals 

per minute to the switched telephone system world-

wide, with each call lasting for 5 minutes on average, 

and there are 6 hops (i.e. 6 links and 6 nodes) on 

average between the callers and callees. How many 

memory entries are occupied on average to support 

the switched connectivity worldwide?  

   6. In a clustering of 4,294,967,296 nodes, if we still 

want to keep the three-level hierarchy like the one in 

 Figure 1.1  but like to have the  same  number of group 

members, groups, and supergroups at the group, 

supergroup, and “super-supergroup” levels, respec-

tively, what is that number approximately?  

   7. If, due to the shortage of IP addresses, we  halve  the 

size at the group and the supergroup levels in  Fig-

ure 1.1 , with at most 128 group members for a group 

and 128 groups for a supergroup, how many super-

groups can we allow?  

   8. Compare the differences in the requirements and 

principles for data communications and tele(voice)-

communications. Name the three most important dif-

ferences and explain.  

   9. Why is the Internet designed as a routed instead of a 

switched network? If it were designed as a switched 

network, what layers and mechanisms would need to 

be changed?  

   10. Here we compare the overhead of routing packets 

and switching packets. Why is the time complexity of 

routing higher than switching, while the space com-

plexity of switching is higher than routing?  

   11. If a new routing protocol is to be supported in routers, 

what should be defi ned as standard and what should 

be left as implementation-dependent design?  

   12. Content networking demands the Internet itself be-

come more application-aware, i.e., knowing who is 

accessing what data and talking to whom, which 

would disrupt the original end-to-end argument. What 

changes may be brought into the network to support 

content networking?  

   13. ATM (asynchronous transfer mode) and MPLS 

(multi-protocol label switching) do not have 

stateless core networks. What states do they keep? 

What is the main difference in the way they keep 

these states?  

   14. ATM (asynchronous transfer mode) is an alternative 

technology for data communications. Why does it 

have high overhead when interoperating with IP to 

carry IP packets?  

   15. MPLS (multi-protocol label switching) is a standard 

for IP switching that aims to switch most but route 

few IP packets. What is the barrier to its deployment? 

How can we reduce the effect of this barrier?  

   16. When supporting a protocol, we may put the pro-

tocol entity into the kernel or a daemon process. 

What are the considerations here? That is, when 

will you put it into the kernel and a daemon, 

respectively?  

lin76248_ch01_001-053.indd   52lin76248_ch01_001-053.indd   52 24/12/10   4:11 PM24/12/10   4:11 PM



 Chapter 1 Fundamentals 53

   17. In  Figure 1.13 , why do we put the routing task as a 

daemon in the user space while keeping the routing 

table lookup in the kernel? Why not put both in the 

user space or the kernel?  

   18. When you write a driver for a network adaptor, which 

parts should be written into an interrupt service rou-

tine? Which parts should not?  

   19. When you implement a data link protocol, which 

parts will you implement into the hardware and the 

driver, respectively?  

   20. We need to understand how the hardware works along 

with its driver. 

    a. What is the interface between the driver of a network 

adaptor and the controller of the network adaptor?  

   b. How does the driver ask the controller to send a 

packet and how does the controller report it has 

completed the job?  

   c. How does the controller report to the driver when 

a packet has arrived at the network adaptor?    

   21. Linux, apache, sendmail, GNU C library, 
bind, freeS/wan, and snort are popular open 

source packages. Search on the Internet to fi nd out the 

license model for each of them, and summarize the 

differences between these license models.  

   22. When you type in a URL at your browser, you get 

the corresponding homepage within seconds. Briefl y 

describe what happened at your host, the intermedi-

ate routers, and the related server, respectively. Read 

Section 1.5.2 before writing your answers so that your 

answer is precise, but do not assume you are running 

on Linux systems.                                      

lin76248_ch01_001-053.indd   53lin76248_ch01_001-053.indd   53 24/12/10   4:11 PM24/12/10   4:11 PM



C h a p t e rC2

54

 Physical Layer 

  T he physical (PHY) layer is the  bottommost  layer of the OSI model or the TCP/

IP model in computer networks, and it is the only layer that interacts with 

transmission media. A transmission  medium  is a material substance that can 

propagate energy waves called  signals  from a sender to a receiver; moreover, the free 

space can also be considered a transmission medium for electromagnetic waves. The 

transmission media can only carry signals instead of data, but the information source 

from the link layer is of digital data. Thus the physical layer must  convert  the digital 

data into an appropriate signal waveform .  In modern digital communications, such 

conversion is a two-step process. It first applies  information coding  to the digital data 

for data compression and protection and then  modulates  the coded data into signals 

that are appropriate for transmission over the communication medium. It should be 

noted that in analog communication only the latter process of modulation is used. 

 To enable high-speed transmissions, the physical layer needs to decide which 

coding or modulation technique to use based on the properties of the medium. A 

wired medium is  more reliable ; thus the physical layer focuses solely on improv-

ing its throughput and utilization .  In contrast, a wireless medium is less reliable and 

exposed to the public; thus the physical layer has to cope with noise and interference 

and prevent the data from being corrupted. Techniques to deal with a medium full 

of noise, interference, and even multipath fading are then required in addition to 

improving the throughput and utilization. 

 Multiple  channels  could exist on a medium. A channel between a transmitter and 

a receiver can be  physical  or  logical . In wired networks, a physical channel is a trans-

mission path traversing through cables, while in wireless networks a physical channel 

is a  band  of frequencies in the  spectra of electromagnetic waves . A logical channel is 

a  sub-channel  where the transmission medium is partitioned by various division meth-

ods such as  time -division,  frequency -division,  code -division, or  spatial -division. Thus, 

another kind of technique called  multiplexing  is needed to better utilize a medium. 

 In this chapter, the fundamental conversion techniques are presented. In 

Section 2.1, we first address the differences between analog data/signals and digital 

data/signals. Next we illustrate the transmission and reception flows, the data/signal 

conversion through coding and modulation, multiplexing for better utilization, and 

factors that impair signals. Section 2.2 characterizes the transmission media in two 

categories: wired and wireless. Various techniques of  line coding  (or called  digital 
baseband modulation ) are presented in Section 2.3, to achieve better sender-receiver 

clock  synchronization . Classical techniques such as non-return-to-zero (NRZ), 

lin76248_ch02_054-124.indd   54lin76248_ch02_054-124.indd   54 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 55

Manchester, alternate mark inversion (AMI), multilevel transmission (MLT-3), 

and 4B/5B are introduced. An open source implementation of the 8B/10B encoder 

is presented. 

 Digital modulation techniques are covered in Section 2.4, including amplitude-

shift keying (ASK), frequency-shift keying (FSK), phase-shift keying (PSK), and 

quadrature amplitude modulation (QAM). The modulation is to transfer a digital bit 

stream over an analog  passband  channel where an analog carrier signal is modulated 

by the digital bit stream. In other words, the coded data is converted into a passband 

signal, a real (or complex) continuous-time waveform, for digital transmission. The 

resulting signal is a real continuous-time waveform contained within a limited band-

width centered at the frequency of the carrier. Next we introduce the basic  multiplex-
ing  techniques, including time-division multiplexing (TDM), frequency-division 

multiplexing (FDM), and wavelength-division multiplexing (WDM). 

 Advanced topics are left to Section 2.5, including  spread spectrum , code division 

multiple access (CDMA), orthogonal frequency-division multiplexing (OFDM), and 

multiple-input and multiple-output (MIMO). The goals of spread spectrum include 

antijamming, anti-interference, multiple accesses, and privacy protection. These are 

achieved by  spreading  the source bits into a sequence of  chips  with higher  chip rate  

and lower  power density . Direct sequence spread spectrum (DSSS), frequency hop-

ping spread spectrum (FHSS), and CDMA are three explained examples. OFDM 

is a digital communication technique that makes use of  multiple carriers . MIMO 

communication represents a new communication medium where  multiple antennas  

are used at both the transmitter and receiver ends. MIMO can improve the reliability 

and throughput of communication by introducing spatial multiplexing and spatial 

diversity. Finally, we discuss an open source implementation of the IEEE 802.11a 

transmitter using OFDM.   

  2.1 GENERAL ISSUES 

  The physical layer sends out signals over and receives signals from the transmission 

media. Several issues must be addressed to generate a signal that can be transmitted 

and received through a specific medium with high channel throughput and utilization. 

First, data from the link layer must be converted into digital signals or analog signals 

for digital transmission. We first differentiate analog data/signals from digital data/

signals. Next, the transmission and reception flows undergo several conversions in 

the physical layer. These two flows need to be illustrated. The third issue is the need 

for coding and modulation. To further improve the channel utilization, we need tech-

niques such as multiplexing and multiple accesses to enable multiple users to access 

the same channel. This is our fourth issue. Finally, in response to channel impair-

ments, especially in the wireless media, several  compensation  measures are needed. 

  2.1.1 Data and Signal: Analog or Digital 
 Data and signals can be either analog or digital. In computers, data are commonly of 

digital type, and analog data such as voice and video are usually converted into digital 

lin76248_ch02_054-124.indd   55lin76248_ch02_054-124.indd   55 24/12/10   4:13 PM24/12/10   4:13 PM



56 Computer Networks: An Open Source Approach

values for storage and communication. This is because analog data represented 

in the form of analog signals are easily affected by noise. Digital data and signals 

can be regenerated by regenerative repeaters and protected from corruption by error-

correcting codes, so they are more robust to noise. Therefore, analog data are often 

converted to digital data in the form of a bit stream. Later, they are transformed into 

signals for transmission. Thus, digital data are used in computer networks to represent 

analog sources such as images, voices, audio, and video. 

 In computer networks, bit streams, or messages, move from one machine to 

another across network connections through the transmission media. The transmission 

media convey the energy of signals along a physical path, either cables for electrical 

signals, fibers for optical signals, or free space for electromagnetic signals. In general, 

analog signals could travel farther and are more sustainable than digital signals. The 

physical layer plays the role of converting digital data into either digital or analog 

signals suitable for specific transmission media. Here we identify the differences 

between data and signals, and between analog and digital. 

  Analog Data and Signal 

 An analog signal is a continuous-time signal that contains analog information gen-

erated by an analog source, such as a sound or an image. It is often of continuous 

value. An example of analog communication is the vocal-auditory communications 

system. Analog signals can be  sampled  and  quantized  into digital signals for storage 

and communication.  

  Digital Data and Signal 

 Digital data take on discrete values such as the zeros and ones in computers. They 

can be transformed into digital signals and transmitted directly for a short distance. 

Alternatively, they can modulate  carriers  (i.e., periodic analog signals) so that modu-

lated signals can be transmitted over a long distance. Most textbooks treat modulated 

signals as digital signals because they consider digital modulation schemes a form 

of digital transmission or data transmission, even though the modulation is a form of 

digital-to-analog conversion. A digital signal can be derived from an analog signal 

by sampling at discrete times and by  quantizing  into  discrete values . In other words, 

a sampled analog signal becomes a discrete-time signal which can be further quan-

tized into a digital signal. If a waveform has only  two  levels to represent binary states 

“0” and “1,” it is a binary digital signal that represents a bit stream. Here we define 

several terms more formally. 

  Sampling  is a process that picks up samples at discrete times from a continuous-

time (or continuous-space in image processing) signal. Each sampled value is held 

constant within the sampling period. For instance, a continuous-time signal  x(t) , 
where  t  is a variable defined on the entire real line of continuous time, can be sam-

pled into a discrete-time signal whose sampled values at the sample time instants can 

be represented by a numeric sequence or a discrete-time function  x[n] , where  n  is a 

discrete variable taking values from the set of integers to represent the discrete time. 

A sampled signal is a discrete-time signal with continuous values. 

lin76248_ch02_054-124.indd   56lin76248_ch02_054-124.indd   56 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 57

Quantization  is a process for mapping a range of values to a discrete  finite  set of 

numbers or values. Such a mapping process is usually performed by the use of analog-

to-digital converters (ADC). A quantized signal can be of continuous time but with 

discrete values. Quantization introduces  quantization error , or quantization noise. 

  Reconstruction  is an  interpolation  process that recovers the original continuous-

time signal from the sampled discrete-time signal. To perfectly reconstruct the 

original signal from a sequence of samples, it suffices to sample at a rate that is equal 

to or higher than  twice  the highest frequency of the original signal. This sufficient 

condition is a result of the  Nyquist-Shannon sampling theorem.    

 Principle in Action: Nyquist Theorem 
vs. Shannon Theorem 

 A communication channel is a connection between a sender and a receiver where 

information is conveyed over a path with a transmission medium such as a cable, 

fiber, or a spectrum of radio frequencies. The channel can be noiseless or noisy. If 

the channel is considered noiseless, its maximum data rate is subject to the Nyquist 

theorem; if noisy, the maximum data rate is subject to the Shannon theorem. 

 What is the sampling rate for a signal to be accurately reconstructed, and 

what is the maximum data rate when information is transmitted over a noiseless 

channel? These problems were proposed by Harry Nyquist in 1924, and they 

were resolved later by the Nyquist sampling theorem and maximum data rate he 

derived. As Nyquist sampling theorem asserts, to uniquely reconstruct a signal 

without aliasing, a system must sample at least twice as fast as the bandwidth of 

the signal. For instance, if a limited bandwidth signal has a maximum frequency 

f max,  the sampling rate f s  must be greater than 2   ×   f max . The Nyquist theorem 

shows that the maximum data rate of a noiseless channel with bandwidth   B(Hz) 

is 2 ×     B log2 L   if  L  states are used by a signal encoding method to represent sym-

bols. For example, if a noiseless phone line of 3 kHz and one-bit signal encoding 

(two states) is used, what is the maximum data rate when a voice is delivered 

over the phone line? According to the Nyquist theorem, the maximum data rate 

is 2 ×     3k ×     log2 2 kbps, or 6 kbps. 

 In practice, channels are not noiseless but have many unwanted noises, such 

as thermal noise, inter-modulation noise, crosstalk noise, and impulse noise. A 

new theorem of maximum data rate for noisy channels is necessary. In 1948, 

Claude Elwood Shannon proposed “A Mathematical Theory of Communica-

tion” and “Communication in the Presence of Noise” for calculating the maxi-

mum data rate of a noisy channel. The Shannon theorem states that if a signal 

with a signal-to-noise ratio (SNR) S/N is transmitted over a noisy channel of 

bandwidth B(Hz), the maximum data rate is   B × log2 2(1 + S/N)  . The Shannon 

theorem is also called Shannon’s limit. This limit is irrelevant to the encoding 

method, but it is related to SNR. Again, considering a noisy phone line of 3 kHz, 

what is the maximum data rate if the SNR is 30 dB? According to the Shannon’s 

limit, the maximum data rate is 3k × log2     2 × (1 + 1000) kbps, or about 32.9 kbps. 

lin76248_ch02_054-124.indd   57lin76248_ch02_054-124.indd   57 24/12/10   4:13 PM24/12/10   4:13 PM



58 Computer Networks: An Open Source Approach

  Periodic and Aperiodic Signals 

 As mentioned previously, a signal can be either analog or digital. If it is continuous-

time and continuous-value, then it is an analog signal. If it is discrete-time and 

discrete-value, it is a digital signal. Besides such differentiation, signals can also 

be classified into either  periodic  or  aperiodic . A periodic signal is one that repeats 

itself after a certain amount of time, while an aperiodic signal does not. Both analog 

and digital signals can be either periodic or aperiodic. For example, a sound signal 

of a human voice is an aperiodic analog signal; a digital clock signal is a periodic 

digital signal. Other than the  time-domain  characterization of signals, an alterna-

tive approach can be made in the  frequency-domain  based on the  Fourier theory . 

A signal is said to be periodic if it has a line spectrum consisting of possibly  infinite 
discrete  frequencies. A line spectrum is a spectrum in which energy is concentrated 

at particular wavelengths. On the other hand, a signal is said to be aperiodic if it has 

a  continuous  spectrum with possibly  infinite  support. Furthermore, a signal is said to 

be  band-limited  if it has  finite  support; say it is properly contained in the frequency 

band from  f1  to  f2.   Figure 2.1  shows the spectra of analog signals. In  Figure 2.1(a) , 

 discrete  frequencies  100 kHz and 400 kHz  are used to represent two periodic analog 

signals with different amplitudes. In  Figure 2.1(b) , an aperiodic band-limited analog 

signal is shown. 

 The spectra of digital signals are depicted in  Figure 2.2 . According to the Fourier 

theory, a periodic digital signal has a line spectrum that is obtained by multiplying 

the  sinc  spectrum by a periodic line spectrum consisting of a  discrete  frequency 

pulse train. The aperiodic digital signal has a continuous spectrum that is obtained 

by multiplying the sinc spectrum by a periodic continuous spectrum ranging from 

zero to infinite. The Fourier theory also says that a digital signal can be represented 

by a weighted  combination  of  sinusoidal,  sine and cosine, signals with  different  
frequencies, amplitudes, and phases. Combining  Figure 2.1  and  Figure 2.2  we can 

conclude that  

  � if a signal is periodic, then its spectrum is discrete; if aperiodic, then the spec-

trum is continuous;  

  � if a signal is analog, then its spectrum is aperiodic; if digital, then the spectrum 

is a periodic spectrum multiplied by the sinc function.   

   FIGURE 2.1 Spectra of analog signals. 

f1 = 100 kHz

400 k Frequency

A
m

pl
itu

de

Time

100 k

A
m

pl
itu

de

f2 = 400 kHz Periodic analog signal Aperiodic analog signal

f1A
m

pl
itu

de
A

m
pl

itu
de

f2 Frequency

Time

(a) Spectra of two periodic analog signals. (b) Spectrum of one aperiodic analog signal.

lin76248_ch02_054-124.indd   58lin76248_ch02_054-124.indd   58 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 59

 In digital communications,  periodic analog  signals or  aperiodic digital  signals are 

frequently used because periodic analog signals demand less bandwidth and ape-

riodic digital signals can represent various values for digital data, as illustrated in 

 Figure 2.1 (a) and  Figure 2.2(b) . In the rest of this chapter, without explicit indication, 

a digital signal implies an  aperiodic digital  signal for a data stream, a  clock  signal 

means a  periodic digital  signal, a  carrier  refers to a  periodic analog  signal, and a 

 modulated  signal indicates an  aperiodic analog  signal.   

  2.1.2 Transmission and Reception Flows 
 Having explained the properties of analog and digital signals and distinguishing the 

aspects of periodic and aperiodic signals, we now illustrate a simplified transmission 

and reception flow over a physical layer in  Figure 2.3 . Message symbols from an 

information source are first compressed by source coding and are then  coded  into 

channel symbols by channel coding. A  symbol  is a binary tuple of certain length. 

Message symbols are a sequence of data streams from an information source. Channel 

   FIGURE 2.2 Spectra of digital signals. 

(a) Spectra of periodic digital signals. (b) Spectra of aperiodic digital signals.

frequency = f kHz Periodic digital signal

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

Frequency pulse train

Time

Frequencyf 2f 3f 4f

...

...

Aperiodic digital signal

0

Time

Frequency

...

    FIGURE 2.3 The transmission and reception flow of a digital communications system. 

Information
source

Source/Channel
coding

Source/Channel
decoding

Information
sink

Transmit

Receive

Channel

Multiplexing

Demultiplexing

Line coding

Line decoding

Modulation

Demodulation

Message
symbols

Channel
symbols

Received
signal

From other sources

To other destinations

Bandpass
waveform

Baseband
waveform

Transmitted
signal

Interference
and noise

Channel
symbols

Digital signalBit stream

lin76248_ch02_054-124.indd   59lin76248_ch02_054-124.indd   59 24/12/10   4:13 PM24/12/10   4:13 PM



60 Computer Networks: An Open Source Approach

symbols represent the data stream that has been processed by source coding and 

channel coding, and may be multiplexed with the symbols from other sources. The 

combined channel symbols are then processed by line coding (or digital baseband 

modulation) into a baseband waveform. Now the baseband signal can be directly 

transmitted to a receiver via wired networks such as cables, or it can be further modu-

lated with carriers by digital modulation and transmitted over wireless networks. The 

modulated signal is a  bandpass  waveform, a passband signal coming from digital 

modulation and used for digital transmission. (Many textbooks consider it a digital 

signal, rather than an analog signal, if the modulated signal is carrying digital data 

instead of analog data.) Finally, the transmitter in the digital communications system 

converts the bandpass waveform (still a baseband signal) to a transmitted signal, i.e., 

an RF (radio frequency) signal. The transmitted signal, together with interference and 

noise, is sent over a channel. 

 Multiplexing divides resources into multiple channels to improve channel utili-

zation by sharing transmission facilities whose combined capacity is larger than the 

requirements of a data flow. It merges other data flows of digital streams, or digital 

signals such as the passband signals. Hence multiplexing could take place at different 

places. Multiplexing can create logical channels in frequency, time, code, or space by 

frequency-division multiplexing (FDM), time-division multiplexing (TDM), code-

division multiplexing (CDM), or space-division multiplexing (SDM). The schemes 

of multiplexing differ in how they divide a physical channel into multiple channels or 

logical channels. FDM is analog technology, while TDM and CDM are digital tech-

nology. Thus, the location of TDM or CDM can be at the multiplexing/demultiplex-

ing modules shown in  Figure 2.3 , and the occurrence of FDM is  after  the passband 

modulation where other signals are merged to share the channel. A communication 

system can build multiple channels by, say, TDM, and one of these channels can be 

accessed by a group of users using a specific multiple access scheme such as carrier 

sense multiple access (CSMA). Note that multiplexing schemes are provided at the 

physical layer, while multiple access techniques are determined at the link layer. 

  Baseband or Broadband 

 The baseband waveform in  Figure 2.3  is a digital signal that can travel directly on 

a baseband channel without further conversion into analog signals. This is called 

 baseband  transmission, where the passband modulation is bypassed. If the channel 

is a  broadband  channel, the digital signals require a modulation different from the 

simple line coding. Broadband refers to data transmission over a frequency band that 

is much higher than that of the digital signal so that multiple data streams can be sent 

at the same time and multiple signals can share the same medium. 

 As mentioned before, an aperiodic digital signal has a spectrum that is obtained 

by multiplying a periodic continuous spectrum by a sinc function. The amplitude 

of the spectrum is decreasing and approaching zero at high frequencies. Thus the 

spectrum at high frequencies can be  ignored . Messages transmitted in baseband or 

broadband depend on the properties of transmission media and channels:  

  � If a physical channel is a  low-pass  wideband channel, digital signals can be 

transmitted over the channel directly. The received signal has only a minor 

lin76248_ch02_054-124.indd   60lin76248_ch02_054-124.indd   60 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 61

distortion due to the loss of high frequencies and can be recovered at the 

receiver. Such baseband transmission handles aperiodic digital signals as shown 

in  Figure 2.2(b) , whose high-frequency components have low amplitudes and 

could be ignored.  

  � If a physical channel has a limited bandwidth that does  not  start from zero, the 

channel is a  bandpass  channel. Messages transmitted over the bandpass chan-

nel need a carrier to carry the messages, and a modulated signal of passband 

waveform (called a passband signal) is transmitted over the channel. The fre-

quencies of passband signals are  centered  at the frequency of the carrier. This is 

broadband transmission. Broadband transmission carries data across a bandpass 

channel where a digital baseband signal must be converted into a passband sig-

nal by modulation. In digital transmission, the passband signal is considered a 

digital signal, but its waveform is the form of an  aperiodic  analog signal whose 

spectrum occupies a limited bandwidth, as shown in  Figure 2.1(b) .     

  2.1.3 Transmission: Line Coding and Digital Modulation 
 In the world of communications, a physical layer exploits a variety of coding and 

modulation techniques to convert data into signals so that messages can be car-

ried over a physical channel and signals can travel through transmission media. 

In computer networks, the techniques of line coding and digital modulation are 

emphasized. The former converts a bit stream into a digital signal for baseband 

channels, while the latter transfers a digital baseband signal into a passband signal 

for bandpass channels. Either line coding or digital modulation is for the same 

purpose of digital transmission, or data transmission, but they require different 

conversions. 

  Synchronization, Baseline Wandering, and DC Components 

 Line coding, also known as  digital baseband modulation , uses  discrete-time   discrete-
value  signals, i.e., square waves or digital signals, characterized only by  amplitude  

and  timing  to transmit 0’s and 1’s. However, in a data stream, a long sequence of the 

same bit value without changing the signal value may cause the loss of  synchroniza-
tion  at the receiver’s clock and drift from the baseline. 

 Self-synchronization can be used to calibrate the receiver’s clock for syn-

chronizing bit intervals at the transmitter and at the receiver. Baseline is used for 

determining the values of the received signal for digital data. A  baseline wandering , 
or drift, makes it harder for a decoder to determine the digital values of a received 

signal. Meanwhile, some coding techniques such as non-return-to-zero (NRZ) may 

still introduce the direct current (DC) components. This makes the digital signal have 

a nonzero frequency component at 0 Hz, i.e., a  DC component  or DC bias. 

 Applying such coding to a long sequence of the same bit value not only risks 

synchronization, but also yields a digital signal having a constant voltage without 

phase change. Compared to a signal of a DC-balanced waveform (without DC com-

ponents), a signal with DC components consumes more power. Moreover, there are 

some types of channels that cannot transmit a DC voltage or current. To transmit 

lin76248_ch02_054-124.indd   61lin76248_ch02_054-124.indd   61 24/12/10   4:13 PM24/12/10   4:13 PM



62 Computer Networks: An Open Source Approach

digital signals over such channels, a scheme of line coding without DC components 

is required. 

 In summary, the major goals of line coding are preventing  baseline wandering , 
eliminating  DC components , activating  self-synchronization , providing  error detec-
tion  and  correction , and enhancing the signal’s immunity to  noise  and  interference .  

  Amplitude, Frequency, Phase, and Code 

 Digital modulation uses  continuous-  or  discrete-time   continuous-value  signals, or 

analog signals, characterized by  amplitude ,  frequency,   phase,  or  code , to represent a 

bit stream from an information source. It transforms a digital bit stream into a pass-

band signal for long-distance transmission over a bandpass channel with a limited 

bandwidth centered at the carrier frequency. For example, conveying a message over 

a wireless channel requires the process of line coding and digital modulation so that 

a message can be carried by a carrier and its modulated signal can travel through the 

free space over a bandpass channel. With the use of amplitude, frequency, phase, 

code, and their combinations, a wide range of digital modulation techniques could be 

developed. Complicated modulation techniques generally aim to transmit at a high 

data rate when the channel is low-bandwidth and noisy. 

 Furthermore, line coding or digital modulation could be optimized to  adapt  to 

the characteristics of any given medium. For example, in wireless communications, 

 link adaptation , or  adaptive coding and modulation  (ACM), is the technique that 

matches the methods of coding and modulation and the parameters of communica-

tion protocols to the channel conditions.   

  2.1.4 Transmission Impairments 
 Transmission media are not perfect. Signals received are not exactly the same as 

those transmitted. Several factors might impair the transmission reliability of the 

media, such as  attenuation ,  fading, distortion ,  interference , or  noise . These transmis-

sion impairments and their compensation measures are addressed here. 

  Attenuation : Attenuation is the gradual loss in intensity of flux such as radio 

waves or electrical signals. Attenuation affects the propagation of waves and signals. 

When a signal travels through a medium, it loses some of its  energy  because of the re-

sistance of the transmission medium. For example, as the electromagnetic waves are 

absorbed by water particles or are scattered in wireless communications, the intensity 

of electromagnetic radiation is attenuated. Thus, low-noise amplifiers are required at 

both transmitter and receiver ends to amplify the signal so that the original message 

can be detected and recovered after certain processing. Amplification is a means of 

countering the attenuation impairment. 

  Fading:  In wireless communications, a modulated waveform traveling over 

a certain medium could experience fading. Fading is a time-varying deviation of 

attenuation since it varies with time, geographical position, or radio frequency. There 

are two types of fading:  multipath fading  if caused by multipath propagation and 

 shadow fading  if shadowed by obstacles. A channel experiencing fading is called a 

fading channel. 

lin76248_ch02_054-124.indd   62lin76248_ch02_054-124.indd   62 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 63

  Distortion:  The  shape  of a received signal may not be exactly the same as the 

original one. This distortion impairment commonly occurs to composite signals. 

After propagation, the shape of a composite signal is distorted because the compos-

ite signal is composed of signals of different frequencies which encounter different 

propagation delays. This yields different phase shifts and hence distorts the signal 

shape. A digital signal is commonly represented by a  composite analog  signal that 

is composed of several periodic analog signals. Therefore, digital signals are often 

distorted after transmission and cannot travel far. To compensate for this impairment, 

one would use the waveform of analog signals that are suitable for long-distance 

transmission. 

  Interference : Interference is typically distinguished from noise. It is anything 

that disrupts a signal that travels over a channel. It usually adds  unwanted  signals to 

the  desired  signal. Several famous interference examples include co-channel inter-

ference (CCI), also known as crosstalk, inter-symbol interference (ISI), and inter-

carrier interference (ICI). 

  Noise:  Noise is a random fluctuation of an analog signal. Electronic noise hap-

pens to all electronic circuits. Thermal noise, or Nyquist noise, is an electronic noise 

generated by the thermal agitation of charge carriers. It is often  white ; that is, the 

power spectral density is nearly  uniform  throughout the frequency spectrum. Other 

kinds of noise are induced noise, impulse noise, and quantization noise. Noise affects 

the ability of receivers to recover the transmitted data. Induced noise comes from 

sources such as appliances. Impulse noise is derived from power lines or lightning, 

while quantization noise is introduced from quantization errors.  Signal-to-noise ratio  

(SNR), defined as the ratio of the average of signal power to the average of noise 

power, is a measure that  limits  the theoretical bit rate. To compensate for the impact 

of noise on the transmitted data, we may either  raise  the signal power or  lower  the 

transmission bit rate. Another resort is using modulation techniques that are more 

robust against noise. 

 Because the intensity of signals fades during propagation, the physical layer 

commonly converts a bit stream or digital waveform to a modulated passband signal, 

and sends the signal through a physical channel. These conversion techniques, cod-

ing and modulation, would mitigate these impairments on communication systems. 

At the receiver, signals are detected, demodulated, and decoded and the original data 

are recovered. In other words, a digital communication system needs the capability 

of conveying messages through a noisy channel, filtering out noise, and recovering 

signals from propagation fading.     

 Historical Evolution: Software Defi ned Radio 

 In traditional wireless systems, signals are typically processed by hardware, 

such as ASIC chips, rather than software. Because the hardware technology of 

general-purpose processors had advanced to a new level that made signal pro-

cessing in real time possible, software defined radio (SDR), or software radio, 

emerged. The concept of software radio was first proposed by J. Mitola in 1991. 

Continued

lin76248_ch02_054-124.indd   63lin76248_ch02_054-124.indd   63 24/12/10   4:13 PM24/12/10   4:13 PM



64 Computer Networks: An Open Source Approach

It dramatically increases the flexibility of radio systems by making them able 

to adapt to multiple wireless standards at a lower cost than traditional systems. 

 The signal processing flows in the traditional and SDR communications 

systems are the same. The difference is  where  the signal is  digitized  and then 

processed by  software .  Figure 2.4  illustrates a radio node that can perform 

various wireless standards via a series of radio functions. Compared to  Figure 2.3 , 

 Figure 2.4  expands to include the units of IF (intermediate frequency) processing 

and RF (radio frequency) channel access that are used to manipulate the RF 

waveform and IF waveform, respectively. RF, ranging from 3 kHz to 300 GHz, 

is a collective oscillation of carriers while IF, ranging from 10 to 100 MHz, 

is generated by mixing the RF and local oscillator (LO) frequency to a  lower  

frequency for easier processing. 

 In a wireless communications system, digital signals at the transmitter 

are first modulated into bandpass waveforms (still in the range of baseband 

frequency), then  up-converted  into IF and RF waveforms for transmission over 

a radio channel. At the receiver, received RF waveforms are first processed 

by the RF/channel access module, then converted into IF waveforms and 

 down-converted  into baseband waveforms that are further demodulated and 

decoded into bit streams. In SDR, the signal digitization could take place at the 

RF, IF,  or  baseband waveforms, which is called RF digitization, IF digitization, 

or baseband digitization. RF digitization is an ideal place for an SDR to  fully  

process the rest of radio functions in software. However, it is difficult for 

a software radio to implement the RF digitization because of the hardware 

limitation of a  high-speed  wideband ADC (analog-to-digital converter) and the 

computing capacity of the general-purpose processor. In addition, baseband dig-

itization is not considered a software radio system because there is no gain for 

this and it is the same as the digitization of a traditional communications system. 

As a result,  IF digitization  is the best choice for SDR digitization. 

 Several public software radio projects, such as SpeakEasy, Joint Tactical 

Radio System (JTRS), and GNU Radio, have been developed for software radio 

systems. The GNU Radio project, started in 2001 by Eric Blossom, is devoted to 

(Radio node)

Channel coding/decoding

RF/
channel
access 

IF
processing

Modem
Information

security

Service
and

network
support

Source
coding

Source
set

RF
waveform

IF
waveform

Baseband
waveform

Protected
bitstream

Clear
bitstream

Source
bitstream

Network Analog/Digital

Channel
set

   FIGURE 2.4 A functional model for a signal flow in a wireless communications system. 

lin76248_ch02_054-124.indd   64lin76248_ch02_054-124.indd   64 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 65

  2.2 MEDIUM 

  Transmission media are used by the physical layer to convey signals between send-

ers and receivers. They are the free space for wireless media, and the metallic and 

fiber-optic cables for wired media. Since the techniques of coding and modulation 

we might adopt partially depend on the type of transmission media, we first examine 

the characteristics of these transmission media. Another factor that affects which 

technique to choose is the operating  quality  of the media, which heavily depends on 

the  distance  and the environmental  impairments . 

  2.2.1 Wired Medium 
 Common wired media for metallic and fiber-optic cables include  twisted pairs , 
 coaxial cables , and  optical fibers . A signal, electrical or optical, that travels through 

these media is directional and limited by the properties of physical media. 

  Twisted Pair 

 Twisted pairs consist of two copper conductors twisted together to prevent elec-

tromagnetic  interferences  from the externals and  crosstalk  between the pairs. A 

twisted-pair cable may be  shielded  or not. A shielded cable is called shielded twisted 

pair (STP) and an unshielded cable is called unshielded twisted pair (UTP). The 

structures of STP and UTP are shown in  Figure 2.5(a)  and (b). STP has an additional 

metal shield to provide extra protection from electromagnetic interferences, but UTP 

is more common due to its lower cost. As the technology has advanced, UTP has 

   FIGURE 2.5 Twisted pair cable. 

(a) Shielded twisted pair, STP. (b) Unshielded twisted pair, UTP.

Conductor

InsulatorPlastic cover

Conductor
Metal
shield

InsulatorPlastic cover

building a radio system with minimal hardware demands. GNU Radio is an open 

source development toolkit that provides a library of signal processing blocks 

in C++ and the glue in Python for building software radios. GRC (GNU Radio 

Companion), a GUI tool, allows users to interconnect signal processing blocks 

in a manner similar to Labview or Simulink, while building a radio system. GRC 

can facilitate the study of GNU Radio and drastically reduce the learning curve. 

USRP (Universal Software Radio Peripheral), developed by Matt Ettus, is now 

the most popular hardware platform for GNU Radio. 

lin76248_ch02_054-124.indd   65lin76248_ch02_054-124.indd   65 24/12/10   4:13 PM24/12/10   4:13 PM



66 Computer Networks: An Open Source Approach

been good enough for practical use. Twisted pairs are categorized according to the 

maximum allowed signal frequency.  Table 2.1  summarizes the common specifica-

tions in the ANSI EIA/TIA Standard 568 (American National Standards Institute, 

Electronic Industries Association, Telecommunications Industry Association). The 

higher category means the pair of copper conductors have more twists per inch and 

can sustain higher signal frequency and hence higher bit rate. The length limitation 

depends on the target bit rate; the shorter the cable, the higher the bit rate. 

 To transmit at a higher bit rate, one could either use a cable that supports a higher 

frequency or design a more complicated coding or modulation scheme to encode 

more bits in the same time period. Although designing a complicated  codec  or  modem  

to transmit data in a low-frequency signal is possible, the  circuitry cost  may be too 

high to make this design practical. As the cable cost is lowered in these years, it is 

more economical to transmit over a better cable than to rely on complicated coding or 

modulation schemes. For example, although the Ethernet technology for transmitting 

100 Mbps over Category 3/4 does exist, it is rarely found in practice. Almost all exist-

ing 100 Mbps Ethernet interfaces are 100BASE-T running over the Category 5 cable.  

  Coaxial Cable 

 A coaxial cable consists of an inner conductor surrounded by an insulating layer, 

a braided outer conductor, then another insulating layer, and a plastic jacket, as 

shown in  Figure 2.6 . The cables are common for many applications, such as cable 

TV networks and broadband Internet access using cable modems. It was also once 

a popular medium for Ethernet, but it has been replaced by twisted pairs and fibers. 

TABLE 2.1 Specifications of Common Twisted Pair Cables

Specifications Description

Category 1/2 For traditional phone lines; not specified in TIA/EIA

Category 3 Transmission characteristics specified up to 16 MHz

Category 4 Transmission characteristics specified up to 20 MHz

Category 5(e) Transmission characteristics specified up to 100 MHz

Category 6(a) Transmission characteristics specified up to 250 MHz 

(Cat-6) and 500 MHz (Cat-6a)

Category 7 Transmission characteristics specified up to 600 MHz

   FIGURE 2.6 Coaxial cable. Inner
conductor

Braided outer
conductor

Insulator InsulatorPlastic
jacket

lin76248_ch02_054-124.indd   66lin76248_ch02_054-124.indd   66 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 67

 Different types of coaxial cables have different inner and outer parameters, 

which in turn affect the transmission characteristics such as impedance. The most 

popular type is RG-6, which has a diameter of 0.0403 inches and can operate at 

around 3 GHz.  

  Optical Fiber 

 Light can travel from one transparent medium into another, but the direction of the 

light changes. This is called  refraction  of light. How much the direction changes 

depends on the  refractive index  of the medium, the ratio of the speed of light in 

a vacuum to that in the medium. This relationship of the refraction phenomenon, 

Snell’s law, was derived by Willebrord Snell. Snell’s law states   n1 sin θ1   =   n2 sin θ2  , 

as shown in  Figure 2.7 . When the light is traveling from a medium with a higher re-

fractive index to another with a lower refractive index, the light could be refracted at 

90º    , a refractive angle. Now the incident angle is at a  critical angle , or   θc  , as shown in 

 Figure 2.7 . If a light hits the interface of these two media at an incident angle larger 

than   θc  , it will not go into the second medium but will be reflected back into the first 

medium. This is known as the  total internal reflection . Applications of optical fiber 

are based on the principle of the total internal reflection. 

Water
(refractive index: n1)

Air
(refractive index: n2)

Total internal reflection

Perpendicular

θ2

θ1

θc

θθ

   FIGURE 2.7 Refraction of light and total internal reflection. 

Jacket
(plastic cover)

Core
(glass or plastic)

Cladding
(glass)

   FIGURE 2.8 Optical fiber. 

lin76248_ch02_054-124.indd   67lin76248_ch02_054-124.indd   67 24/12/10   4:13 PM24/12/10   4:13 PM



68 Computer Networks: An Open Source Approach

 Optical fibers propagate the signal in light along the inner core of cables. The 

light can be kept inside the core due to total internal reflection. The light sources 

can be light emitting diode (LED) or laser. The structure of optical fiber is shown in 

 Figure 2.8 , where a thin glass or plastic core is surrounded by a cladding glass with 

a different density, and then a jacket. The medium of cladding has a  low  refractive 

index, and the medium of core has a  high  refractive index. 

 The distinct patterns of light guided through an optical fiber are called  modes . If 

a fiber carries the light by more than one mode at a specific wavelength, it is called a 

 multi-mode  fiber. Some fiber may have a very thin core that allows only one mode to 

be carried. This is called  single-mode  fiber.  Figure 2.9  shows the two main categories 

of optical fibers, multi-mode and single-mode. Multi-mode fibers have a thicker core 

(typically larger than 50 micrometers) where the light travels by reflection, instead 

of in a straight line. Despite having the less expensive transmitter and receiver, the 

multi-mode fiber also introduces higher modal  dispersion  due to the diversity in 

propagation velocity of the light signal. The dispersion limits the bandwidth and the 

communication distance of the multi-mode fiber. Single-mode fibers have a much 

thinner core (typically less than 10 micrometers) to force light signals to travel in a 

straight line. It allows longer and faster transmission but at a higher manufacturing 

cost. 

 Optical fibers have advantages over copper wires because of their low 

attenuation and invulnerability to external electromagnetic interferences. They are 

also harder to tap than copper cables. Thus they are often used in  high-speed  and 

 long-distance  transmission. They are mostly deployed as backbones rather than for 

personal use due to the high deployment cost.   

  2.2.2 Wireless Medium 
 The wireless medium is the free space that allows electromagnetic waves to travel 

without using any physical cables. The electromagnetic waves are broadcast in the free 

space and received by any receiving antenna that is within the reach of these waves. 

  Propagation Methods 

 Three methods of propagating electromagnetic waves are  ground  propagation,  sky  

propagation, and  line-of-sight  propagation. The ground propagation is used by 

   FIGURE 2.9 Single-mode and 
multi-mode fibers. 

Core

Core

Cladding

Single-mode fiber

Multi-mode fiber

Different modes

lin76248_ch02_054-124.indd   68lin76248_ch02_054-124.indd   68 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 69

low-frequency waves or signals that travel around the lower part of the atmosphere. 

Applications of ground propagation are radio navigation or radio beacons. The 

higher-frequency waves travel up to the ionosphere and reflect down to the earth 

via sky propagation. AM (amplitude modulation) radio, FM (frequency modula-

tion) radio, cellular phones, WLANs, VHF (very high frequency) TV, UHF (ultra 

high frequency) TV, and citizens band belong to this application. In line-of-sight 

propagation, high-frequency waves are transmitted from the source to the destination 

directly. Satellite communications are applications that adopt the method of line-of-

sight propagation. The name  line-of-sight  implies that the sender and the receiver 

need to see each other in a straight line. But it is true only for very high-frequency 

waves which are very  unidirectional . Many of the signals in this category could 

travel with  refraction  and  diffraction , in addition to straight-line propagation and 

 reflection . Refraction is the change in traveling speed, and hence direction, when the 

waves enter another medium at an angle. Diffraction means the bending of waves 

around obstacles and the spreading out of waves past small openings.  

  Transmission Waves: Radio, Microwave, Infrared 

 The electromagnetic waves used for transmissions are classified into three categories: 

radio, microwave, and infrared. Radio ranges from about 3 kHz to 1 GHz. The range 

covers VLF (very low frequency, 3 ~ 30 KHz), LF (low frequency, 30 ~ 300 kHz),

MF (middle frequency, 300 kHz ~ 3 MHz), HF (high frequency, 3 ~ 30 MHz), VHF 

(very high frequency, 30 MHz ~ 300 MHz), and part of UHF (ultra high frequency 

300 MHz ~ 3 GHz). Radio waves usually use  omni-directional  antennas that send 

and receive signals from  all  directions via the ground or sky propagation. The 

disadvantage of using omni-directional antennas is that signals are susceptible to 

interference from other users nearby who are using the same frequency. The ben-

efit is that signals can be sent by one antenna but received by many receivers. It 

is suitable for multicasting or broadcasting. Moreover, radio waves that propagate 

through the sky can travel a long distance. This is why radio waves are selected 

for long-distance broadcast. Applications are FM radio and AM radio, television 

broadcasting, and paging. 

 Microwaves typically range from 1 GHz to 300 GHz, covering part of UHF 

(ultra high frequency 300 MHz ~ 3 GHz), SHF (super high frequency, 3 ~ 30 GHz), 

and EHF (extremely high frequency, 30 ~ 300 GHz). However, most applications 

usually fall in the range of 1 GHz to 40 GHz. For instance, the global positioning sys-

tem (GPS) transmits signals at about 1.2 GHz to 1.6 GHz, IEEE802.11 uses 2.4 GHz 

and 5 GHz, and WiMAX works between 2 and 11 GHz. Microwaves of higher 

frequencies use directional antennas to send and receive signals, if the transmitting 

and receiving antennas can be aligned for  line-of-sight  propagation. This type 

of directional antenna is a horn that can send out microwaves in parallel beams, 

employing the curved shape of the horn. The directional receiving antenna is a 

parabolic dish that can catch a wide range of parallel beams at a common point 

for collecting these signals. The collected signals are then conveyed to the receiver 

through a conducted line. 

 Similar to radio waves, microwave transmission needs available bands in the 

spectrum allocated from regulatory authorities. Fortunately, the ISM (industrial, 

lin76248_ch02_054-124.indd   69lin76248_ch02_054-124.indd   69 24/12/10   4:13 PM24/12/10   4:13 PM



70 Computer Networks: An Open Source Approach

scientific, and medical) bands are available for  unlicensed  operations. A common 

example that uses the ISM bands is the microwave oven operating in the 2.4 GHz 

band. Cordless phones, WLANs, and many short-range wireless devices also operate 

in the ISM bands, as the bands are license free. Because multiple wireless devices 

sharing the ISM bands usually operate at the same time, avoiding interferences 

among these devices is necessary.  Spread spectrum , which  spreads  the signal power 

over a wider spectrum, is one of the technologies used in WLANs to avoid interfer-

ence. Because a signal spread over a  wider  spectrum may not be affected by  narrow -

band interference, the receiver thus has a better chance to recover the spread signal 

accurately. Spread spectrum is introduced in Section 2.5. 

 Infrared waves range from 300 GHz to 400 THz for short-range transmissions. 

Because of the properties of high frequencies, infrared waves  cannot  penetrate walls; 

hence they can be used in one room without interfering with devices in other rooms. 

Some devices such as wireless keyboards, mice, laptops, and printers use infrared 

waves to transmit data via line-of-sight propagation.  

  Mobility 

 The most obvious advantage of wireless communication over wired communica-

tion is  mobility . Unlike wired connections using cables for transmissions, wireless 

connections use the wireless spectrum. Most wireless systems use the microwave 

spectrum, especially 800 MHz to 2 GHz, to balance between  omni-directionality  

and a  high bit rate . A higher spectrum could offer a higher bit rate, but then it would 

become more directional and lose mobility.     

  2.3 INFORMATION CODING AND BASEBAND TRANSMISSION 

  In computer networking and information processing, a code is a scheme for convert-

ing information from one form or representation to another, and coding is a process 

that converts an information source into symbols, while decoding reverses the pro-

cess. In the transmission and reception flows in Section 2.1, the information source 

in computer networks is processed by  source coding ,  channel coding , and  line coding  

before transmission or further modulation. Source coding and channel coding are in 

the field of  information and coding theory , but line coding belongs to the field of 

digital baseband modulation. 

 Source coding intends to compress and reduce the demand of storage space and 

therefore improve the efficiency of data transmission over channels, especially for stor-

ing or conveying image, audio, video, and speech. Source coding usually occurs at the 

application layer. Channel coding typically adds extra bits to the original data so that the 

data become more robust to impairments introduced by the channel. It is performed at 

both the link layer and the physical layer. Line coding not only converts digital data 

into digital signals but also deals with the issues of baseline wandering, loss of syn-

chronization, and DC components, as discussed in Section 2.1. This section describes 

source and channel coding and presents various line coding schemes. 

lin76248_ch02_054-124.indd   70lin76248_ch02_054-124.indd   70 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 71

  2.3.1 Source and Channel Coding 
  Source Coding 

 Source coding is designed to form efficient descriptions of information sources so 

that the required storage or bandwidth resources can be reduced. It has become a fun-

damental subsystem in communications, and it uses techniques from  digital signal 
processing  (DSP) and  integrated circuits  (IC). Several compression algorithms and 

standards exist for source coding in the areas of images, audio, video, and speech. 

Some applications for source compression are as follows: 

  Image compression : Without compression, image sources are too heavy to be stored 

and conveyed over channels. Joint Photographic Experts Group (JPEG) and Motion 

Picture Experts Group (MPEG) are two popular schemes for image compression. 

  Audio compression : Popular techniques for audio compression include compact 

disc (CD), digital versatile disc (DVD), digital audio broadcasting (DAB), and Motion 

Picture Experts Group audio layer 3 (MP3). 

  Speech compression : Speech compression is usually applied to telephony, espe-

cially to cellular telephony. G.72x and G.711 are example standards.  

  Channel Coding 

 Channel coding is used to protect digital data through a noisy transmission medium 

or over an imperfect storage medium that may cause errors while transferring or 

retrieving data. The transmitter in a communication system usually adds redundant 

bits to a message, according to a predetermined algorithm. The receiver can detect 

and correct the errors caused by noise, fading, or interferences. The performance of 

any channel code is limited by the Shannon’s channel coding theorem ,  which states 

that it is possible to transmit digital data nearly  error-free over a noisy channel  as 

long as the transmission rate is set below some quantity, known as the channel capac-

ity. More formally stated, for any infinitesimal   ε > 0   and any data rate less than the 

channel capacity, there exists a scheme of encoding and decoding that ensures that 

the error probability for a  sufficiently long  code is less than   ε  . Conversely, the Shan-

non’s channel coding theorem also states that transmitting at a rate above the channel 

capacity is bound to have an error probability bounded away from 0. 

 For an error correcting system, two schemes are usually used for a receiver to 

correct errors. One is automatic repeat-request (ARQ), the other is forward error 

correction (FEC). Unlike ARQ, FEC can correct errors without asking the transmitter 

to retransmit original data.  Bit interleaving  is another scheme used in digital com-

munications against  burst errors,  though it increases latency. It permutes the coded 

bits of a data stream such that only a limited number of consecutive coded bits are 

affected by burst errors during transmission. 

 Error correcting codes can be classified as  block codes  and  convolutional codes.  
Convolutional codes are processed bit-by-bit with arbitrary-length bit streams, while 

block codes are manipulated block-by-block with fixed-size blocks of bit streams. 

Common examples of block code include  Hamming codes and   Reed-Solomon codes.  
Turbo codes, a very powerful error correction technique developed in 1993, are de-

rived from the convolutional codes with a predetermined interleaver. 

lin76248_ch02_054-124.indd   71lin76248_ch02_054-124.indd   71 24/12/10   4:13 PM24/12/10   4:13 PM



72 Computer Networks: An Open Source Approach

 Hamming codes were discovered in 1950 and remain in use in applications 

such as error correction in memory devices. Reed-Solomon codes are used for a 

wide variety of applications. For instance, CD, DVD, Blu-ray disc, digital subscriber 

line (DSL), Worldwide Interoperability for Microwave Access (WiMAX), digital 

video broadcasting (DVB), Advanced Television Systems Committee (ATSC), and 

redundant array of independent disk (RAID) systems are applications that use Reed-

Solomon codes .  Convolutional codes usually are applied to the applications in digital 

radio, mobile, and satellite communications. Turbo codes can approach the channel 

capacity or the Shannon limit. Turbo codes are widely used in the 3G mobile stan-

dards, the long term evolution (LTE) project, and the IEEE 802.16 WiMAX standard.   

  2.3.2 Line Coding 
 Line coding is a process that applies pulse modulation to a binary symbol, and a 

pulse-code modulation (PCM) waveform is generated. PCM waveforms are known 

as  line codes . Pulse modulation employs a regular sequence of pulses to represent 

a corresponding sequence of information-carrying quantities. There are four basic 

forms of pulse modulation: pulse-amplitude modulation (PAM), pulse-code modula-

tion (PCM), pulse-width modulation (PWM) or pulse-duration modulation (PDM), 

and pulse-position modulation (PPM). Unlike PAM, PWM, and PPM, PCM uses a 

sequence of two distinct amplitudes to represent a  quantized  sample or a correspond-

ing bit stream, so PCM becomes the favorite pulse modulation for modern digital 

communications. This is because detecting and deciding the values of data from a 

 two-state  sequence is simpler than accurately measuring the amplitude, the duration, 

and the position of a pulse at a receiver in PAM, PWM, and PPM, respectively. All 

line coding schemes described here belong to PCM. 

  Self-Synchronization 

 Data stored in computer networks are sequences of bits in digital forms. These 

sequences need to be converted to digital signals for transmission over a physical 

channel. As mentioned earlier in Section 2.1, line coding converts digital data into 

digital signals for communicating over a baseband channel. If the communication is 

performed over a bandpass or a broadband channel, a different scheme for convert-

ing the data into passband signals will be used.  Figure 2.10  illustrates a line coding 

scheme where digital data is sent from a transmitter to a receiver. 

   FIGURE 2.10 Line coding 
and signal-to-data ratio. 

Digital data Digital dataDigital
signal

sdr > 1sdr = 2

sdr = 1

sdr = 1/2

1 0 1

sdr < 1

011 0

sdr = 1

00 11

Digital Transmission

0

1 0 1 0

1 0 11 1 1

Digital
signal

Line Coding
Encoder

Line Coding
Decoder

Channel

lin76248_ch02_054-124.indd   72lin76248_ch02_054-124.indd   72 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 73

 At a receiver, the line decoder’s bit  intervals  must exactly match the line en-

coder’s bit intervals at the corresponding transmitter. Any minor variation or offset 

of bit intervals may result in a misinterpretation of the signals. To guarantee that a 

receiver will correctly decode the received signals into a sequence of bits the same 

as that from the transmitter, it is important to synchronize the receiver clock with 

the transmitter clock. If a line encoding scheme embeds bit interval information in 

a digital signal, the received signal can help the receiver synchronize its clock with 

the transmitter clock, and its line decoder can retrieve exactly the digital data from 

the digital signal. This is the technique of self-synchronization. Some line coding 

schemes provide self-synchronization, while others don’t.  

  Signal-to-Data Ratio (sdr) 

 In  Figure 2.10 , the signal-to-data ratio (sdr) (analogous to the term SNR) is a ratio 

of the number of signal elements to the number of data elements.  Data rate  is the 

number of data elements sent in one second, also called  bit rate  (in bps), while  signal 
rate  is the number of signal elements sent in one second, also called  baud rate , 
 pulse rate , or  modulation rate . The relation between signal rate and data rate can be 

expressed as S = c × N × sdr    , where  S  is the signal rate,  c  is the case factor, and  N  is 

the data rate. The case factor  c  is specified for the worst case, the best case, or the 

average case. Under the average case, the value of  c  is assumed to be 1/2. The smaller 

the signal rate is, the less bandwidth a channel requires. Hence it is seen from this 

discussion that if  sdr >  1, the signal may contain self-synchronization information, 

and the required channel bandwidth increases. 

 In Section 2.1, we mentioned that an aperiodic digital signal has an infinite 

range of continuous spectra. However, most of the high-frequency spectra are small 

in amplitude and can be ignored. Hence, an effective limited bandwidth can be used 

for digital signals, rather than the bandwidth with infinite range. Bandwidth is often 

defined as a range of frequencies in Hertz for transmission channels. Therefore, we 

assume that the bandwidth in Hertz (frequency) is proportional to baud rate (signal 

rate), while bandwidth in bits per second (bps) is proportional to bit rate (data rate).  

  Line Coding Schemes 

 The terminologies in line coding are briefly expressed here. In a binary waveform, 

“1” is called “ mark ” or  “HI ,”  and “0” is called  “space”  or  “LO.”  In  unipolar  signal-

ing, “1” represents a finite voltage of  V  volts, and “0” means zero voltage. In  polar  

signaling, “1” has a finite voltage of  V  volts, and “0” has  –V  voltage. Last, in  bipolar  

signaling, “1” is a finite voltage of  V  or  –V  volts, and “0” is zero voltage. Line coding 

schemes can be classified into several categories, as listed in  Table 2.2 . In addition 

to the above three categories, there are the types  multilevel  and  multitransition . Be-

cause unipolar signals are DC-unbalanced and demand more power for transmission 

than polar signals, they are normally not in use today. The waveforms of line coding 

schemes are depicted in  Figure 2.11 . The required bandwidth for each coding scheme 

is illustrated in  Figure 2.12 . Next we give detailed descriptions of these schemes with 

these two figures. Two advanced coding schemes, run length limited (RLL) and block 

coding, are also presented. 

lin76248_ch02_054-124.indd   73lin76248_ch02_054-124.indd   73 24/12/10   4:13 PM24/12/10   4:13 PM



74 Computer Networks: An Open Source Approach

TABLE 2.2 Categories of Line Coding

Category of Line Coding Line Coding

Unipolar NRZ

Polar NRZ, RZ, Manchester, differential Manchester

Bipolar AMI, Pseudoternery

Multilevel 2B1Q, 8B6T

Multitransition MLT3

   FIGURE 2.11 The waveforms 
of line coding schemes. 

   Unipolar Non-Return-to-Zero (NRZ) Without Self-Synchronization 

 With this scheme, bit 1 is defined as a positive voltage, and bit 0 as a zero voltage. 

Because the signal does not return to zero at the  middle  of the bit, the scheme is called 

non-return-to-zero. The required power of unipolar NRZ is twice that of polar NRZ.  

  Polar Non-Return-to-Zero (NRZ) Without Self-Synchronization 

 This scheme of coding defines a positive level for 1 and another negative level for 

0. There are several variants of polar NRZ, including polar non-return-to-zero level 

(polar NRZ-L), polar non-return-to-zero inverted (polar NRZI), and polar non-

return-to-zero space (polar NRZS). 

  Polar Non-Return-to-Zero Level (NRZ-L):  The scheme defines a positive level for 

1 and another negative level for 0. If a long sequence of bits (either bit 1’s or bit 0’s) 

without change occurs, the bit interval information could be lost. This scheme requires 

the extra support of clock synchronization between the transmitter and the receiver. 

  Polar Non-Return-to-Zero Space (NRZ-S):  The “1” denotes no change in the 

signal level and “0” denotes a transition in the signal level. High-level Data Link 

1 0 1 0 0 1 1 1 0 0 1 0
Clock
Data stream

Polar RZ

Polar NRZ-L

Manchester

Polar NRZ-I

Differential
Manchester

AMI

MLT-3

Unipolar NRZ-L

lin76248_ch02_054-124.indd   74lin76248_ch02_054-124.indd   74 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 75

Control (HDLC) and Universal Serial Bus (USB) use this scheme, but  stuffing  bit 0’s 

in a long sequence of bit 1’s. Because the stuffed bit 0’s can invoke transitions, a long 

“no change” can be avoided and clock synchronization can be achieved. 

  Polar Non-Return-to-Zero Inverted (NRZ-I):  Contrary to NRZ-S, here bit “1” 

means a transition, and bit “0” means no transition. Given a bit, transitions occur at the 

leading edges of clocks. Similarly, a long sequence of bit 0’s without transitions destroys 

the property of synchronization. Block coding discussed in the previous subsection can 

(a) The bandwidth of polar NRZ-L and polar NRZ-I. (b) The bandwidth of polar RZ.

3N/2 2N

Frequency

Bandwidth of polar NRZ Line Coding
sdr = 1, average baud rate = N/2 (N, bit rate)

0
0

1.0

0.5

N/2 1N

3N/2 2N

Frequency

0 N/2 1N

3N/2 2N

Frequency

0 N/2 1N

(c) The bandwidth of Manchester. (d) The bandwidth of AMI.

(e) The bandwidth of 2B1Q. 

Bandwidth of Manchester Line Coding
sdr = 2, average baud rate = N (N, bit rate)

0

1.0

0.5

3N/2 2N

Frequency

0 N/2 1N
0

1.0

0.5

Bandwidth of AMI Line Coding
sdr = 1, average baud rate = N/2 (N, bit rate)

Bandwidth of 2B1Q Line Coding
sdr = 1/2, average baud rate = N/4 (N, bit rate)

0

1.0

0.5

Po
w

er
Po

w
er

Po
w

er
3N/2 2N

Frequency

Bandwidth of polar RZ Line Coding
sdr = 2, average baud rate = N (N, bit rate)

0
0

1.0

0.5

N/2 1N

Po
w

er
Po

w
er

   FIGURE 2.12 The bandwidth of line coding. 

lin76248_ch02_054-124.indd   75lin76248_ch02_054-124.indd   75 24/12/10   4:13 PM24/12/10   4:13 PM



76 Computer Networks: An Open Source Approach

be applied to this scheme before polar NRZ-I coding to reduce the loss of synchroniza-

tion. RLL, to be further discussed later, can also be used to combine with NRZ-I. 

 Both problems of baseline wandering and synchronization in polar NRZ-L are 

 twice  as severe as in polar NRZ-S and polar NRZ-I, because in polar NRZ-L both bit 

“1” and bit “0” may yield a long sequence of bits without change and therefore cause 

a skewed average signal power and loss of synchronization, while in polar NRZ-S 

and polar NRZ-I, only one type of bit, either bit “1” or bit “0,” will generate a long 

sequence of bits without change. All polar NRZ schemes have no self-clocking and 

no rest condition, which is at the signal level zero; hence an additional synchroniza-

tion mechanism is required to prevent bit slip. For instance, disk and tape use the 

RLL coding with polar NRZ-I, and USB uses bit stuffing with polar NRZ-S. The 

scheme of polar NRZ is very simple and cheap. The 1000BASE-X Ethernet still 

uses polar NRZ because its corresponding block coding 8B/10B provides sufficient 

synchronization for high-speed transmission in Ethernet. 

 The sdr of polar NRZ is 1, so the average signal rate (baud rate)   S = c × N × 
sdr = 1/2 × N × 1 = N/2  . If the bandwidth is proportional to the baud rate, the band-

width of polar NRZ can be expressed in  Figure 2.12(a) . Because a high power den-

sity is around frequency 0 and most energy is distributed in the range from frequency 

0 to  N/2 ,      it means that the DC components carry a lot of power, and that the power 

is  not  evenly distributed between the two sides of signal frequency  N/2 . Polar NRZ 

consumes more power than other schemes with nearly zero DC components.  

  Polar Return-to-Zero (RZ) with Self-Synchronization 

 The binary signal could be encoded by polar return-to-zero (polar RZ) coding as 

shown in Figure 2.8. The pulse representing bit “1” or bit “0”  always  returns to a 

neutral or rest condition, which is denoted as zero, at the halfway point of the current 

bit. The benefit of this coding is that signals are self-clocking for synchronization, 

but at a cost of using  doubled  bandwidth, compared to polar NRZ. The bandwidth of 

polar RZ is shown in  Figure 2.12(b) . Here the average baud rate of polar RZ coding 

is  N , the same as bit rate, and sdr is 2. The power intensity is evenly distributed on 

two sides of the baud rate  N  where DC components carry very little power close to 

zero. However, using  three  levels of voltage increases the complexity of coding and 

decoding devices. Hence the Manchester and differential Manchester schemes have 

better performance than polar RZ. Polar RZ is no longer in use.  

  Polar Manchester and Differential Manchester with Self-Synchronization 

 The Manchester coding represents “1” by low-to-high transition and “0” by high-to-

low transition, where each transition happens at the  middle  of a period of bit “1” or 

“0.” This scheme is a combination of polar RZ and polar NRZ-L. It guarantees  self-
clocking  by introducing a signal transition at each data bit. Again, this doubles the 

signal frequency, so Manchester coding asks for twice the bandwidth that polar NRZ 

requires. Hence, Manchester coding is not adopted for higher transmission rates 

such as the 100 Mbps Ethernet. However, in the lower-speed version of IEEE 802.3 

(Ethernet) and IEEE 802.4 (token bus), such as 10BASE-T, Manchester is used for 

its advantage of self-clocking. 

lin76248_ch02_054-124.indd   76lin76248_ch02_054-124.indd   76 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 77

  The differential Manchester  is a variant of the Manchester but outperforms the 

latter. In the differential Manchester, a “1” requires the  first half  of the signal to be the 

same as the previous one, and “0” to be the opposite of the previous, where a transi-

tion always occurs at the midpoint of the signal. Such a scheme results in  one  transi-

tion with “1” and  two  transitions with “0.” It is a combination of polar RZ and polar 

NRZ-I. Because  detecting  the transition of a signal is more reliable than  comparing  

the amplitude of a signal to a fixed threshold, the differential Manchester encoding 

has better error performance than the Manchester coding. IEEE 802.5 (token ring 

LAN) employs the differential Manchester. 

 Neither Manchester nor differential Manchester have the baseline wandering and 

DC components problems, but they have to double the signal rate when compared to 

polar NRZ. Their sdr (2) and average signal rate  N  are the same as those of polar RZ. 

The bandwidth is shown as in  Figure 2.12(c) .   

  Bipolar Alternate Mark Inversion (AMI) and Pseudoternary Without 
Self-Synchronization 

 In the AMI coding, a “0” or “space” is encoded into a zero volt and a “1” or “mark” 

is encoded into an  alternate  positive or negative volt, as shown in  Figure 2.11 . The 

pseudoternary is a variation of AMI where bit “1” is represented with zero volt, 

and bit “0” is encoded into a positive or negative volt. By alternating the voltage 

of the same bit value, DC is balanced. This scheme might lose synchronization if 

data contain a long sequence of 0’s in AMI or 1’s in pseudoternary. To compensate 

for this, the AMI encoder adds a “1” as bit 8 after  seven  consecutive zeros. By this 

bit-stuffing, which is similar to that used in polar NRZ-S, the overall line code is 

longer than the source code by less than 1% on average. This coding is used for 

long-distance communications by T-carriers. Two advantages of this scheme are zero 

DC-components and better error detection. Its bandwidth is shown in  Figure 2.12(d) . 

The sdr and signal rate are the same as those of polar NRZ. Unlike polar NRZ, AMI 

has no DC components problems even if there is a long sequence of bit “1” or bit 

“0,” and its power intensity concentrates around the signal rate  N/2  instead of zero. 

 To avoid adding extra bits, a variant of AMI called modified AMI using  scram-
bling  is used by T-carriers and E-carriers. It does not increase the number of bits in 

the original data. We look at two scrambling schemes: bipolar with 8-zero substitu-

tion (B8ZS) and high-density bipolar 3-zero (HDB3). The B8ZS coding  replaces  

8 consecutive 0’s with 000VB0VB, where V denotes a  violation  bit that is a nonzero 

bit that breaks the AMI coding rule and B is another nonzero bit that follows the AMI 

coding rule. The HDB3 coding uses either 000V or B00V to replace four consecutive 

0’s, depending on the number of nonzero bits after the last replacement. If odd, it 

uses 000V; if even, it uses B00V. The intention of this rule is to keep an even number 

of nonzero bits after each replacement. 

  Multilevel Coding: m Binary, n Levels (mBnL) 

 The purpose of multilevel coding schemes is to reduce the signal rate or channel 

bandwidth by using multiple levels in signaling to represent digital data. The notation 

mBnL is used to express the scheme of coding. The letter B means binary data; L means 

lin76248_ch02_054-124.indd   77lin76248_ch02_054-124.indd   77 24/12/10   4:13 PM24/12/10   4:13 PM



78 Computer Networks: An Open Source Approach

the number of levels in signaling; m is the length of the binary data pattern, and n is 

the length of the signal pattern. If L = 2, B (binary) is used, instead of L. Similarly, if 

L = 3, T (ternary) is used; if L = 4, Q (quaternary) is used. Therefore, we may see 

some types of multilevel coding schemes such as 2B1Q, 4B3T, and 8B6T. 

 According to the notation mBnL, we can have 2 m  patterns of binary data, and 

L n  patterns of signals. If 2 m  = L n , all the signal patterns are used to represent the data 

patterns. If 2 m  < L n , there exist more signals patterns than data patterns. These extra 

signal patterns can be used to prevent baseline wandering and to provide synchroni-

zation and error detection. If 2 m  > L n , the number of signal patterns is not enough to 

present the data patterns; hence it is impossible to completely encode all the binary 

data. Here we discuss three typical schemes. 

  Two-binary, one-quaternary (2B1Q) : Two-bit data are mapped into a signal ele-

ment where the signal has four levels, as shown in  Table 2.3 ; thus sdr equals 1/2. The 

average baud rate is calculated as c × N × sdr = 1
2

 × N × 1/2 = N/4    , i.e., one-fourth of 

the bit rate. The bandwidth of 2B1Q is shown in  Figure 2.12(e) . Compared to NRZ, 

2B1Q requires only one-half of the bandwidth used in NRZ. In other words, 2B1Q 

carries twice the data rate that NRZ does under the same baud rate. However, the 

devices using 2B1Q are more complex than those of NRZ because 2B1Q uses four 

levels to represent four data patterns. To  differentiate  the four levels, more complex 

circuits are required in the devices. There are no redundant signal patterns for this 

coding because 2 m  = 2 2  = L n  = 4 1 . The physical layer of Integrated Services Digital 

Network (ISDN) uses this coding scheme. 

  4B3T and 8B6T : The line coding 4B3T is used in the ISDN Basic Rate Interface 

(BRI), and it represents four bits with three pulses. 8B6T is used by the 100BASE-

4T cable. Because 8B means data patterns and 6T means signal patterns, many 

redundant signal patterns can be used for DC balancing, synchronization, and error 

detection. Because sdr is 6/8, the average baud rate becomes  3N/8 , i.e.,   c × N × 

sdr = 1/2 × N × 6/8 = 3N/8  .  

  Multilevel Transmission 3 Levels (MLT-3) Without Self-Synchronization 

 Both polar NRZ-I and differential Manchester are two-level transmission coding that 

encodes the binary data based on the change of consecutive bit values. The MLT-3 

uses three levels to encode binary data. To encode bit “1,” it uses three levels, +1, 0, 

−1, and four transitions from level +1, 0, −1, 0, to +1 in turns as a cycle. Level +1 de-

notes a positive physical level, and level −1 denotes a negative one. To encode bit “0,” 

the level remains unchanged as the previous bit. Because MLT-3 uses  four transitions  

to complete a full cycle, or four data elements are converted into one signal element 

(signal pattern), the sdr is analogous to 1/4. According to   S = c × N × sdr  , under the 

worse case of   c = 1  , the baud rate becomes   S = c × N × sdr = 1 × N × 1/4 = N/4  ; the 

TABLE 2.3 The Mapping Table for 2B1Q Coding

Dibit (2 bits) 00 01 10 11

If previous signal level positive next signal level = +1 +3 –1 –3

If previous signal level negative next signal level = –1 –3 +1 +3

lin76248_ch02_054-124.indd   78lin76248_ch02_054-124.indd   78 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 79

baud rate is only  one-fourth  of the data rate. This feature makes MLT-3 suitable for 

transmission over copper cables at a lower frequency. 100BASE-TX adopts MLT-3 

because the copper cable can support only 31.25 MHz for the baud rate, but the data 

rate is up to 125 Mbps.  

  Run Length Limited (RLL) 

 RLL limits the length of repeated bits to avoid a long, consecutive bit stream without 

transitions. Run length is the number of bits with unchanged values. If polar NRZ-I 

is appended to RLL to encode the source data, where a “1” represents a transition 

and a “0” no transition, the run length becomes the count of 0’s. RLL uses two 

parameters—d for the minimum zero-bit run length, and  k  for the maximum zero-bit 

run length. Therefore, the notation of RLL is (d, k) RLL. The simplest form of RLL 

is (0,1) RLL. The industry standards of RLL for some hard disks are (2,7) RLL and 

(1,7) RLL. Their encoding tables are given in  Table 2.4 .  Table 2.4(c) , (1,7) RLL, 

maps two bits of data onto three bits. A pair of bits (x, y) is converted based on the 

rule, (NOT x, x AND y, NOT y), except that the sequence of four bits (x, 0, 0, y) is 

converted into (NOT x, x AND y, NOT y, 0, 0, 0). 

   Block Coding 

 Block coding, also known as channel coding, is a kind of error detecting/correcting 

technique that maps an input sequence to another sequence with longer length for a 

better error performance. The degree of improvement in error performance by using 

channel coding can be measured by the notion of coding gain, which is the ratio of 

the SNRs of the uncoded and the coded data required for the same error performance. 

The redundant bits introduced by block coding can be used for  synchronization  

and  error detection  and can therefore simplify the subsequent line coding. Usually 

block coding is performed before line coding. A block code, when used as an error 

detection code, can detect transmission  errors  at the receiver and drop the erroneous 

TABLE 2.4 Examples of RLL Coding

(a) (0,1) RLL (b) (2,7) RLL (c) (1,7) RLL

Data (0,1) RLL Data (2, 7) RLL Data (1, 7) RLL

0 10 11 1000 00 00 101 000

1 11 10 0100 00 01 100 000

000 000100 10 00 001 000

010 100100 10 01 010 000

011 001000 00 101

0011 00001000 01 100

0010 00100100 10 001

11 010

lin76248_ch02_054-124.indd   79lin76248_ch02_054-124.indd   79 24/12/10   4:13 PM24/12/10   4:13 PM



80 Computer Networks: An Open Source Approach

frames. Block coding can be represented by  mB/nB  where an  m -bit stream is encoded 

into an  n -bit codeword. There are commonly three steps in block coding: partition, 

encoding, and concatenation. For example, a bit stream is partitioned into  m -bit seg-

ments which are encoded into  n -bit codewords. Finally these  n -bit codewords are 

concatenated to form a new bit stream. 

 Block codes are generally decoded by hard-decision algorithms and have been 

widely used in many communication systems. Two kinds of block codes, four binary/

five binary (4B/5B) and eight binary/ten binary (8B/10B), are explored here. 

 The 4B/5B block coding transforms each block of four bits into five bits. The 

coding of 4B/5B maps a set of four bits into a set of five bits as shown in  Table 2.5 , 

where the 5-bit codeword has at most  one  leading zero and at most  two  trailing zeros. 

If any 5-bit codeword is concatenated with any other 5-bit codeword, the resulting 

binary tuple will have at most three consecutive 0’s. A long sequence of bit 0’s can 

never happen after the 4B/5B encoder. Moreover, the 5-bit word patterns from valid 

TABLE 2.5 4B/5B Encoding Table

Name 4B 5B Description

0 0000 11110 hex data 0

1 0001 01001 hex data 1

2 0010 10100 hex data 2

3 0011 10101 hex data 3

4 0100 01010 hex data 4

5 0101 01011 hex data 5

6 0110 01110 hex data 6

7 0111 01111 hex data 7

8 1000 10010 hex data 8

9 1001 10011 hex data 9

A 1010 10110 hex data A

B 1011 10111 hex data B

C 1100 11010 hex data C

D 1101 11011 hex data D

E 1110 11100 hex data E

F 1111 11101 hex data F

Q n/a 00000 Quiet (signal lost)

I n/a 11111 Idle

J n/a 11000 Start #1

K n/a 10001 Start #2

T n/a 01101 End

R n/a 00111 Reset

S n/a 11001 Set

H n/a 00100 Halt

lin76248_ch02_054-124.indd   80lin76248_ch02_054-124.indd   80 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 81

data words can be chosen intelligently to balance the numbers of 1’s and 0’s in the 

signal and to guarantee a sufficient number of transitions in the line coding. Because 

the data space is expanded from 16 4-bit words to 32 5-bit codewords, 16 extra 

codewords are available for additional purposes, such as control words that represent 

the start and the end of a frame. Some words can be reserved intentionally for error 

detection. Because no valid data words can be transformed into these reserved words, 

a transmission error can be detected if a reserved word is present at the receiver. 

 The 4B/5B coding is commonly used with polar NRZ-I coding, as shown in the 

architecture in  Figure 2.13 . Extra bit “1” yields an extra transition for synchroniza-

tion. The predefined encoding table converts four bits to five bits with at least  two  

transitions per block of bits. After applying the 4B/5B block coding, the bit rate of 

the output increases by 25 percent. The 4-bit codewords transmitting at a 100 Mbps 

bit rate now require 125 Mbps to send the new 5-bit codewords. The technique of 

4B/5B avoids the NRZ-I synchronization problem, but it still leaves the DC com-

ponents problem unresolved. The fundamental frequency is only one-fourth of the 

digital data rate, thus at least four bits are required to generate a complete cycle. The 

output signal can be easily carried by a CAT-5 cable. 

 More complex block coding methods such as 8B/10B and 64B/66B are com-

monly applied to high-speed transmissions. These complex coding techniques can 

balance the numbers of 0’s and 1’s transmitted on the line by tallying where there are 

more 0’s or 1’s and choosing the proper coding on the fly, depending on which bit is 

transmitted more frequently. Since the 10-bit codeword has an imbalance of at most 

one additional one or zero, the tally contains only one bit called the running disparity 

(RD). Each transmission of a codeword updates RD, where RD+ denotes the case 

when there are more 1’s than 0’s, and RD− denotes the opposite. Moreover, a wider 

code space also allows a higher degree of error detection in the physical layer. 

 Before concluding this section we remark that the 8B/10B and 64B/66B codes 

introduced earlier are among the simplest in error detecting/correcting codes and are 

mainly used in wired short-distance communication where the communication chan-

nel is more reliable and less noisy. For channels that are highly noisy, such as those 

in wireless communications, a much more powerful code with longer length is often 

required. The code length can go up to thousands or tens of thousands in such appli-

cations. Furthermore, compared to the  hard-decision  algorithm used in the decoding 

of the 8B/10B code, a much more complicated  soft-decision  algorithm that operates 

on the probabilistic domain is often used to decode such long codes.      

   FIGURE 2.13 The 
architecture of combing 
4B/5B coding and NRZ-I 
coding. 

Transmitted digital signal
with synchronization

Information
source 

Information
sink

Channel

4B5B
Encoder

NRZ-I
Encoder

4B5B
Decoder

NRZ-I
Decoder

Digital
data

Digital
data

Received digital signal
with synchronization

Block coding Line coding

lin76248_ch02_054-124.indd   81lin76248_ch02_054-124.indd   81 24/12/10   4:13 PM24/12/10   4:13 PM



82 Computer Networks: An Open Source Approach

 Open Source Implementation 2.1: 8B/10B 
Encoder 

  Overview 
 8B/10B has been widely adopted as the line coding by a variety of high-speed 

data communication standards, including PCI Express, IEEE 1394b, serial ATA, 

DVI/HDMI, and Gigabit Ethernet. It maps 8-bit symbols to 10-bit symbols with 

bounded disparity, which provides two important properties. One is the DC-

balance property, i.e., the same number of 0’s and 1’s for a given data stream, to 

avoid a charge being built up in certain media. Another property is the maximum 

run-length, i.e., maximum numbers of contiguous 0’s or 1’s, which gives enough 

state changes for clock synchronization. An open source example is available 

from the OpenCores website at http://opencores.org, which presents the imple-

mentations of 8B/10B encoder and decoder in the VHDL codes, where 8B/10B 

encoder is composed of a 5B/6B encoder and a 3B/4B encoder.  

  Block Diagram 
 Figure 2.14 illustrates the architecture of the OPENCORE 8B/10B encoder. It 

accepts an 8-bit parallel raw (unencoded) data byte consisting of bits  H, G, F, E, D, 
C, B, A .  A  is the least significant bit. There is also an input bit,  K , to indicate that 

the character input should be encoded as one of the 12 allowable control characters. 

Parallel data byte

Adaptor interface

5b/6b Functions 3b/4b Functions

Disparity control

Encoding switch

Binary lines to serializer

Controlbyte_clk

A

a  b  c  d  e  i  f  g  h  j

ABCDE FGH

B C D E F G H Kclk

clk

   FIGURE 2.14 Block diagram of 8B/10B encoder. 

lin76248_ch02_054-124.indd   82lin76248_ch02_054-124.indd   82 24/12/10   4:13 PM24/12/10   4:13 PM

http://opencores.org


 Chapter 2 Physical Layer 83

 The code maps an 8-bit parallel data input to a 10-bit output with two encod-

ers. One is the 5B/6B encoder, which maps the five input bits ( A, B, C, D , and  E  ) 
into a 6-bit group ( a, b, c, d, e , and  i ), and the other is 3B/4B encoder, which maps 

the remaining three bits ( F ,  G , and  H  ) into a 4-bit group (   f ,  g ,  h , and  j ). 
 In order to reduce the number of input patterns, the function modules group 

several input bits into classes. For example, each 5-bit codeword can be classified 

into four classes (L04, L13, L22, and L40) according to the first four bits ( A ,  B , 

C , and  D ). The disparity control generates control signals to the encoding switch 

to indicate the choice of positive or negative disparity encoding. The encoding 

switch reuses the classification results and outputs the encoded bits at each clock.  

  Data Structures 
 The data structures of 8B/10B encoder are mainly the 8 input bits and 10 output 

bits. All of the inputs and outputs are synchronized to the  clk  as follows: (1)  K , 

H ,  G  and  F  are latched internally on the falling edge of the  clk . (2)  j ,  h ,  g , and 

 f  are updated on the falling edge of the  clk . (3)  E ,  D ,  C ,  B , and  A  are latched 

internally on the rising edge of the  clk . (4)  i ,  e ,  d ,  c ,  b , and  a  are updated on the 

rising edge of the  clk .  

  Algorithm Implementations 
 In the OPENCORE 8B/10B project, the VHDL implementation of 8B/10B en-

coder is in 8b10_enc.vhd, and enc_8b10b_TB.vhd is the testbench file for the 

encoder.  Figure 2.15  shows the code segment of the 5B/6B function module, 

which is a combinational logic of several NOT, AND, and OR gates. The other 

modules are also constructed from these simple logic gates, and the entire imple-

mentation of 8B/10B encoder does not require any complex arithmetic opera-

tions, such as addition and multiplication. Because the descriptions of the entire 

8B/10B encoder codes would be too verbose, we refer the readers to 8b10_enc.

vhd for the relevant details in the computation of each bit. 

  L40 <= AI and BI and CI and DI ; -- 1,1,1,1 
 -- Four 0’s 
 L04 <= not AI and not BI and not CI and not DI ; 
-- 0,0,0,0 
 -- One 1 and three 0’s 

 L13 <= (not AI and not BI and not CI and DI) -- 0,0,0,1 
 or (not AI and not BI and CI and not DI) -- 0,0,1,0 
 or (not AI and BI and not CI and not DI) -- 0,1,0,0 
 or (AI and not BI and not CI and not DI); -- 1,0,0,0 

 -- Three 1’s and one 0 

 L31 <= (AI and BI and CI and not DI) -- 1,1,1,0 
 or (AI and BI and not CI and DI) -- 1,1,0,1 

Continued

lin76248_ch02_054-124.indd   83lin76248_ch02_054-124.indd   83 24/12/10   4:13 PM24/12/10   4:13 PM



84 Computer Networks: An Open Source Approach

 or (AI and not BI and CI and DI) -- 1,0,1,1 
 or (not AI and BI and CI and DI) ; -- 0,1,1,1 

 -- Two 1’s and two 0’s 

 L22 <= (not AI and not BI and CI and DI) -- 0,0,1,1 
 or (not AI and BI and CI and not DI) -- 0,1,1,0 
 or (AI and BI and not CI and not DI) -- 1,1,0,0 
 or (AI and not BI and not CI and DI) -- 1,0,0,1 
 or (not AI and BI and not CI and DI) -- 0,1,0,1 
 or (AI and not BI and CI and not DI) ; -- 1,0,1,0 

 FIGURE 2.15 The code segment of the 5B/6B function.   

  Exercises 
 Find the code segment in 8b10_enc.vhd related to the 3B/4B coding switch in 

 Figure 2.14  and show which line of code controls the output timing, i.e., falling 

or rising edge of the  clk  signal.  

  2.4 DIGITAL MODULATION AND MULTIPLEXING 

  In telecommunications and computer networks, digital modulation is required to 

convert a digital bit stream to a bandpass waveform for traveling over an analog 

bandpass channel. The bandpass waveform, a passband signal, is derived from a 

sinusoidal analog carrier modulated by the amplitude, the phase, or the frequency 

of a digital bit stream. The process is called digital  passband  modulation, or simply 

digital modulation, in contrast to the digital baseband modulation or line coding. Ei-

ther the modulated signals or the original digital signals could be further multiplexed 

onto a physical channel to better utilize the channel. We first introduce the fundamen-

tal digital modulation schemes, including amplitude-shift keying (ASK), phase-shift 

keying (PSK), frequency-shift keying (FSK), and the hybrid quadrature amplitude 

modulation (QAM). Then we present two basic multiplexing schemes: time-division 

multiplexing (TDM) and frequency-division multiplexing (FDM). We leave code-

division multiplexing (CDM) and several other advanced techniques to Section 2.5. 

  2.4.1 Passband Modulation 
 Passband modulation is a two-step process. It first converts the digital signal to a 

baseband complex-valued signal according to the modulation scheme used, such 

as ASK, PSK, FSK, or QAM. These baseband waveforms are then multiplied by a 

complex-valued sinusoidal carrier signal with much higher carrier frequency. After 

removing the imaginary component, the resulting real-valued passband signal is then 

ready for transmission. The former is usually called a  digital modulation , while the 

latter is done by frequency mixing. The digital modulation is emphasized here and 

shown in  Figure 2.16 . Unlike the line coding for baseband transmission described 

lin76248_ch02_054-124.indd   84lin76248_ch02_054-124.indd   84 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 85

in Section 2.3, the signal rate S is equal to N × 1/r. The case factor is not considered 

here. The value of r is the number of data elements that an analog signal can carry, 

and N is the data rate. S is the digital signal rate before modulation. 

 In digital communications, baseband digital signals are commonly carried by 

 sinusoidal carriers  of higher frequency for transmissions over higher-frequency 

channels. What is a sinusoidal carrier, and how can a carrier carry the messages? In 

bandpass communication, a sender must generate a high-frequency signal, called a 

carrier, to carry data signals. A receiver is tuned to the frequency of the carrier to 

receive the “carrier-carried” data signals from the sender. Any aspects of the carrier 

or the changes of the aspects in amplitude, frequency, and phase can be used to rep-

resent digital data. The technique using digital data to modify one or more aspects 

of carriers is called  modulation  or  shift keying . They are classified into amplitude-

shift keying (ASK), frequency-shift keying (FSK), and phase-shift keying (PSK). 

A hybrid technique including both amplitude and phase aspects exists and is called 

quadrature amplitude modulation (QAM). QAM is more efficient than ASK, FSK, 

and PSK since it utilizes more aspects. In addition, the change of the aspects of a car-

rier, such as the change of phases, is used in differential PSK (DPSK). 

  Constellation Diagram 

 The constellation diagram is a tool that defines a mapping from digital data patterns 

to the signal constellation points. The constellation points in the diagram are used to 

define the amplitude and phase of a signal element. The diagram is employed in all 

digital modulations.  Figure 2.17  is an example of a constellation diagram for 4-PSK 

using two carriers; one along the real axis is an  in-phase  axis, and the other along 

the imaginary axis is a  quadrature  axis. In this figure four constellation points can be 

used to define four distinct signal elements to map into  four  data patterns of  two  bits. 

 Four basic modulations in digital modulation—ASK, FSK, PSK, and DPSK—

are illustrated in  Figure 2.18 . Next we introduce each of them and QAM.  

  Amplitude-Shift Keying (ASK) 

 The technique of amplitude-shift keying (ASK) uses different levels of amplitude 

of carriers to represent digital data. Usually two levels of amplitude are used in 

   FIGURE 2.16 Digital modulation. 

 

10110110

10110110

BPSK

BFSK

BASK

BPSK

BFSK

BASK

Information
source 

Information
sink

Channel

Line
encoder

Modulator

Line
decoder

Demodulator

Baseband
signal

Digital modulation

Passband signalDigital
bitstream with sinusoidal carrier

lin76248_ch02_054-124.indd   85lin76248_ch02_054-124.indd   85 24/12/10   4:13 PM24/12/10   4:13 PM



86 Computer Networks: An Open Source Approach

ASK, one for bit “1” and the other for “0,” while the frequency and phase of the 

carrier do not change during modulation. ASK with two levels of amplitude is called 

binary ASK (BASK), or on-off keying (OOK). Its constellation diagram is shown in 

 Figure 2.19(a) . Only one carrier, the in-phase carrier, is used, and zero voltage denotes 

bit “0,” while a positive voltage denotes bit “1.” Its modulated waveform is illustrated 

in  Figure 2.18  where a unipolar NRZ line encoder is used to encode the digital data 

and generate the digital signal to modulate a carrier. According to BASK, the value 

 r  is 1 and  S  =  N × 1/r  =  N . The signal rate  S  is equal to the data rate  N . If the band-

width of the signal is proportional to the signal rate, we may obtain the bandwidth 

 BW  = (1 +  d ) S , where  d  is a factor between 0 and 1, depending on the modulation 

   FIGURE 2.17 A constellation 
diagram: constellation points with 
two bits:   b0b1  . 

+1–1

+1

–1

I

Amplitude of
I component

Amplitude of
Q component

Phase
In-phase carrier

Q
Quadrature carrier

1101

1000

Amplitude

   FIGURE 2.18 The waveforms of four basic digital modulations. 

00 111
Data stream
(digital signal)

Carrier waveform

Binary frequency-shift keying
(BFSK) modulated signal

Binary amplitude-shift keying
(BASK) modulated signal

Binary phase-shift keying
(BPSK) modulated signal

Differential binary phase-shift keying
(DBPSK) modulated signal

lin76248_ch02_054-124.indd   86lin76248_ch02_054-124.indd   86 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 87

and filtering process. Though the carrier is a sinusoidal signal, the modulated signal 

of ASK is an aperiodic analog signal. According to  Figure 2.1(b) , the bandwidth is a 

finite range of frequencies around the carrier frequency, as shown in  Figure 2.20(a) . 

The mechanism for implementing ASK is shown in  Figure 2.20(b) . For a simpli-

fied implementation, a multiplier multiplies the baseband waveform, an output of 

unipolar NRZ, by the carrier from a local oscillator to obtain a modulated signal. 

Such multiplication is called frequency mixing, which is the second step of passband 

modulation.  

  Frequency-Shift Keying (FSK) 

 The technique of frequency-shift keying (FSK) uses the carrier frequencies to repre-

sent digital data. In other words, the carrier frequencies are changed to represent the 

   FIGURE 2.19 The constellation diagrams of ASK and PSK. 

(a) The constellation of ASK (OOK): b0. (b) The constellation of 2-PSK (BPSK): b0.

(c) The constellation of 4-PSK (QPSK): b0b1. (d) The constellation of 8-PSK: b0b1b2.

+1

Q

I
0

10

+1–1

Q

I
10

+1–1

+1

–1

Q

I

1101

1000

Q

I

110011

101000

111

100

001

010

(e) The constellation of 16-PSK: b0b1b2b3.

Q

I

lin76248_ch02_054-124.indd   87lin76248_ch02_054-124.indd   87 24/12/10   4:13 PM24/12/10   4:13 PM



88 Computer Networks: An Open Source Approach

   FIGURE 2.20 The bandwidth and implementation of BASK. 

(a) The bandwidth of BASK. (b) The implementation of BASK.

Frequency

r = 1, signal rate S = N (N, bit rate)
Bandwidth of binary ASK
BW = (1 + d)S

0
0

fc

BW Carrier frequency: fc

Binary amplitude-shift
keying (BASK)

1 0 1 1 0 1 1 0

Unipolar NRZ

Multiplier
v
0

Local
oscillator

Line
encoder

Po
w

er

value of a digital signal. The simplest FSK scheme uses “1” as mark frequency and 

“0” as space frequency.  Figure 2.18  shows the waveform of binary frequency-shift 

keying (BFSK), compared with other shift keying techniques.  Figure 2.21(a)  shows 

the spectrum of BFSK where two distinct frequencies,  f1    and  f2   , are used to represent 

“0” and “1,” respectively. 

 In BFSK, the ratio of the number of bit elements to the number of signal elements 

is 1, i.e.,  r  = 1, and the signal rate S is N × 1/r = N × 1/1 =  N . If the technique of 

BFSK is considered a combination of  two  BASK schemes with different frequencies, 

the bandwidth for each frequency is  S (1 +  d  ). The difference between two center 

frequencies is 2Δ f . The difference must be greater than the  sum  of a half bandwidth 

centered at frequency  f1    and a half bandwidth centered at frequency  f2   , i.e.,  S (1 +  d  ). 
Because  d  is a factor between 0 and 1, in the worst case  d  = 1, then 2Δ f  ≥ 2 S , i.e., 

Δ f  ≥  S . This guarantees that the spectra of the two signals do  not  overlap, so the 

signals do not interfere with each other in the frequency domain. The total bandwidth 

of the modulated signal of BFSK is  BW  =  S (1 +  d  ) + 2Δ f , as shown in  Figure 2.21(a) . 

 A simplified implementation scheme for BFSK is shown in  Figure 2.21(b)  

where a voltage-controlled oscillator (VCO) is used to change the frequency of the 

carrier. The input to the FSK mechanism is a unipolar NRZ signal that is mapped 

into the input voltage to the voltage-controlled oscillator. The FSK and its variants, 

minimum shift keying (MSK) and audio FSK (AFSK), are applied to the GSM mo-

bile phone standard and caller ID to convey messages.  

   FIGURE 2.21 The bandwidth and implementation of BFSK. 

f2

(a) The bandwidth of BFSK. (b) The implementation of BFSK.

Frequency

Po
w

er

0
0

f1

S(1+d) S(1+d)

BW=S(1+d)+2Δf

r = 1, signal rate S = N (N, bit rate)
Bandwidth of binary FSK
BW = (1 + d)S + 2Δf

Carrier frequency: fc

Binary frequency-shift
keying (BFSK)

1 0 1 1 0 1 1 0

Unipolar NRZ

Frequency: f1, f2
v
0

Voltage-controlled
oscillator (VCO)

Line
encoder

Local
oscillator

Voltage-
controlled

module

2Δf

lin76248_ch02_054-124.indd   88lin76248_ch02_054-124.indd   88 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 89

  Phase-Shift Keying (PSK) 

 The technique of phase-shift keying (PSK) encodes an equal number of bits into a 

symbol by modulating the phases of a carrier. In other words, the phase of a carrier 

is used to represent digital data. In the keying, the amplitude and frequency of the 

carrier remain the same. A receiver can retrieve the digital signal from the received 

signals by mapping a finite number of phases to a finite number of bit patterns. 

 The constellation diagrams for m-PSK, such as 2-PSK, 4-PSK, 8PSK, and 16-PSK, 

are shown in  Figure 2.19 , which places constellation points uniformly around a circle. 

Only phase differences appear on these PSK constellation diagrams. According to the 

figures, we find BPSK uses only one carrier, the in-phase carrier, while the rest of m-PSKs 

use two carriers, both in-phase carrier and quadrature carrier. This arrangement can help 

PSK achieve a maximum phase separation and avoid interference. The number of the con-

stellation points is a power of 2 because digital data are commonly delivered in binary bits. 

  Binary phase-shift keying (BPSK) : BPSK is the simplest PSK that uses only one 

carrier, the in-phase carrier. As shown in the constellation diagram in  Figure 2.19(b) , 

two different phases represent the binary data; the phase of  0º    for bit “1” and the phase 

of  180º    for bit “0.” A polar NRZ line encoder is used to facilitate the implementation of 

BPSK, as shown in  Figure 2.22 (b). The positive voltage of the polar NRZ signal does not 

change the phase of the carrier, while the negative voltage of the polar NRZ digital signal 

converts the phase of the carrier to  180º    out of phase. The technique of BPSK is more 

immune to noise than BASK because the amplitude of signals is more easily degraded 

by noise than the phase of signals. Moreover, BPSK merely uses one frequency while 

BFSK uses two frequencies. Thus BPSK outperforms BFSK. The bandwidth of BPSK is 

the same as that of BASK but less than that of BFSK, as shown in  Figure 2.22(a) . 

  Quadrature phase-shift keying (QPSK) : QPSK is a modulation using two carriers, an 

in-phase carrier and a quadrature carrier, to carry two sequences of digital data.  Figure 2.23  

illustrates a simplified implementation for QPSK. It can be analogous to two distinct 

BPSK modulations with a   90º   phase difference. In the figure, a bit stream 11000110 is 

first  split  into two substreams evenly. Each of them is processed by a polar NRZ-L line 

encoder to generate a modulating signal. One modulates the in-phase carrier to an I-signal 

(in-phase signal); the other modulates the quadrature carrier to a Q-signal (quadrature 

signal). Combining the I-signal and Q-signal yields a QPSK signal. Each signal element 

may have one of the four phases,  45º   ,  135º   ,    –45º , and   –135º  . Consequently, a binary bit 

stream 11000110 is transformed into a QPSK signal. The waveforms, I-signal, Q-signal, 

   FIGURE 2.22 The bandwidth and implementation of BPSK. 

(a) The bandwidth of BPSK. (b) The implementation of BPSK.

Frequency

r = 1, signal rate S = N (N, bit rate)
Bandwidth of binary PSK
BW = (1 + d)S

0
0

fc

BW Carrier frequency: fc

Binary phase-shift
keying (BPSK)

1 0 1 1 0 1 1 0

Polar NRZ-L

Multiplier
v

–v

Local
oscillator

Line
encoder

Po
w

er

lin76248_ch02_054-124.indd   89lin76248_ch02_054-124.indd   89 24/12/10   4:13 PM24/12/10   4:13 PM



90 Computer Networks: An Open Source Approach

and QPSK-signal are shown in  Figure 2.24 . The amplitude on the real axis modulates a 

cosine wave carrier into an I-signal while the amplitude on the imaginary axis modulates 

a sine wave carrier into a Q-signal. A QPSK signal received at a receiver is then pro-

cessed through matched filters, samplers, decision devices, and multiplexer to recover the 

original data. QPSK encodes two data elements (two bits) into one signal element. This 

enables the technique to process data at double the rate that BPSK does. The phase delay 

inherently occurs at the received QPSK signal, so the clock at the receiver must synchro-

nize to that at the transmitter. Moreover, this so-called  Doppler shift  can cause offset in 

the relative frequency. The phase delay and frequency offset induced by channels must be 

compensated by precisely tuning the sinusoidal functions at the receiver. A cable system 

standard, Data Over Cable Service Interface Specification (DOCSIS), specifies QPSK or 

16-QAM for upstream modulation. 

  Differential phase-shift keying (DPSK) : DPSK is a variant of PSK. Bit patterns 

here are mapped to the changes of signal phases. This scheme significantly simplifies 

   FIGURE 2.23 A simplified implementation of QPSK. 

Binary bitstream

Digital signalDigital data

QPSK
signal

In-phase

Sine

Analog signal: I

Analog signal: QDigital signalDigital data

Cosine

Quadrature
(out-of-phase)

Demultiplexor
1 01 100 10

Polar NRZ-L
line encoder

Polar NRZ-L
line encoder

1 0 0 1

1 0 1 0

Local
oscillator

–90
degree

v
–v

b0b0 ...

...
v

–v

b1b1

   FIGURE 2.24 The I, Q, and QPSK waveforms. 

Ts
2Tb

2Ts
4Tb

3Ts
6Tb

4Ts
8Tb

Time
0

11

–1 –1 11

–1–1

I-signal

Binary bitstream (b1b0)

Resulting signal:
QPSK signal

Q-signal

Sine carrier

10010011

A split data (b1)

Cosine carrier

v

v

–v

–v
A split data (b0)

lin76248_ch02_054-124.indd   90lin76248_ch02_054-124.indd   90 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 91

the complexity of the modulation and demodulation devices. The waveforms of dif-

ferential binary phase-shift keying (DBPSK) and DQPSK are shown in  Figure 2.25 . 

 In the DBPSK modulation, if the phase of a signal is changed, the following 

signal represents bit 1; otherwise it is 0. In the DQPSK modulation, the following 

two bits are based on the change of the signal phase. Without changing the phase, the 

pair of bits is 00. If the change of the signal phase is π/4, the following two bits are 

01. If −π/4, the pair of bits is 10. If the phase change is π, then the pair of bits is 11. 

Because the demodulator of DPSK does not need a reference signal, the design of a 

modem is simplified at a cost of higher error probabilities. However, the drawback 

can be removed by increasing the SNR a little bit. Therefore, DPSK is widely used 

in the Wi-Fi wireless communication standards.  

  Quadrature Amplitude Modulation (QAM) 

 The quadrature amplitude modulation (QAM) changes a carrier’s amplitude as well as 

phase to form the waveforms of different signal elements. QAM uses levels of ampli-

tude, in-phase carrier, and quadrature carrier, so it is a combination of ASK and PSK. A 

higher transmission rate can be achieved using QAM than ASK and PSK due to more 

than one aspect used to represent multiple bits in a signal. For instance,  two  levels of 

amplitude and  two  difference phases can be used to represent 2-bit patterns for  four  

combinations. A combination represents a symbol. Hence, a symbol of  2N    combina-

tions can carry  N -bit data at a time. QAM needs at least two amplitudes and two phases. 

 Like QPSK, QAM uses two sinusoidal carriers that are out of phase by   90º  . 

QAM employs two types of constellation diagrams:  circular  and  rectangular . 

 Figure 2.26  shows several circular constellation diagrams, where the diagram of 

4-QAM is the same as that of QPSK.  Figure 2.27  shows the rectangular constellation 

diagrams, such as 4-QAM, 8-QAM, and 16-QAM. In  Figure 2.28 , a 64-QAM rect-

angular constellation represents 64 combinations of different amplitudes and phases. 

This modulation can transmit six bits per symbol. However, increasing the number 

of combinations makes the  circuitry  for encoding and decoding more complicated, 

and it is getting harder to tell the  difference  between the combinations when so many 

combinations are packed in a symbol. Because the modulated signal is prone to error, 

a transmission using this modulation requires extra error detection techniques. 

 On the QAM transmitter, a data stream is split into  two  substreams. Each sub-

stream is processed by an ASK modulator. The output on the I-channel is multiplied 

by a cosine function, and that on the Q-channel is multiplied by a sine function. The 

resulting QAM signal is obtained by adding the I-signal and Q-signal. The QAM 

   FIGURE 2.25 Signals of DBPSK and DQPSK. 

DBPSK-signal

Time0

11 011 0 00

00 01 1011

4Tb2Tb

Binary bitstream

DQPSK-signal

1 1

11

10Tb8Tb6Tb

lin76248_ch02_054-124.indd   91lin76248_ch02_054-124.indd   91 24/12/10   4:13 PM24/12/10   4:13 PM



92 Computer Networks: An Open Source Approach

receiver reverses the process to retrieve the original data. DOCSIS employs 64-QAM 

or 256-QAM for downstream modulation, while using QPSK or 16-QAM for up-

stream modulation. Furthermore, the newer DOCSIS 2.0 and 3.0 also use 32-QAM, 

64-QAM, and 128-QAM for  upstream  modulation.   

  2.4.2 Multiplexing 
 A physical channel in a transmission medium may provide bandwidth greater than 

required for a data stream. To efficiently utilize the capacity of the channel, several 

   FIGURE 2.26 The circular constellation diagrams. 

+1

–1

+1

–1

Q

I

1101

1000

(a) The constellation
diagram of circular

4-QAM: b0b1.

+1
–1

+1

–1

Q

I
+1+  3

+1+  3

–1–  3

–1–  3

(b) The constellation
diagram of circular

8-QAM: b0b1b2.

Q

I

(c) The constellation
diagram of circular
16-QAM: b0b1b2b3.

   FIGURE 2.27 The rectangular constellation diagrams. 

+1

+1

Q

I
0

+1
+1

Q

I–1
–1

+1 +3–3 –1

+1

–1

Q

I

+1

+1–1

–1

Q

I
+1 +3

–3 –1

+1

+3

–1

–3

Q

I

101111110011 0111

101011100010 0110

100011000000 0100

100111010001 0101

(a) The constellation
diagram of alternative

rectangular 4-QAM: b0b1.

(b) The constellation diagram
of rectangular 4-QAM: b0b1.

(c) The constellation
diagram of alternative

rectangular 8-QAM: b0b1b2.

(d) The constellation diagram of
rectangular 8-QAM: b0b1b2.

(e) The constellation diagram of
rectangular 16-QAM: b0b1b2b3.

lin76248_ch02_054-124.indd   92lin76248_ch02_054-124.indd   92 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 93

   FIGURE 2.28 The constellation of rectangular 64-QAM:   b0 b1 b2 b3 b4 b5  . 

–7 –5 –3 –1 +1 +3 +5 +7

+5

+7

+1

+3

–1

–3

–5

–7

I

Q

111110

111111

111101

111100

111000

111001

111011

111010

110110

110111

110101

110100

110000

110001

110011

110010

101110

101111

101101

101100

101000

101001

101011

101010

100110

100111

100101

100100

100000

100001

100011

100010

001110

001111

001101

001100

001000

001001

001011

001010

000110

000111

000101

000100

000000

000001

000011

000010

011110

011111

011101

011100

011000

011001

011011

011010

010110

010111

010101

010100

010000

010001

010011

010010

channel access schemes are applied. Using channel access methods, multiple trans-

ceivers can share a transmission medium. There are three types of channel access 

methods: circuit-mode, packet-mode, and duplexing. Multiplexing is one of the 

circuit-mode methods used in the physical layer. The channel access methods in 

the link layer are packet-mode methods that are based on multiple access protocols 

in the media access control (MAC) sublayer. The duplexing methods are used to 

separate the uplink and downlink channels. The methods of packet-mode and du-

plexing are skipped here. 

 A multiplexing system with multiplexer (MUX) and demultiplexer (DEMUX) 

is shown in  Figure 2.29 . This figure shows the data streams from multiple data 

sources multiplexed and transmitted over a shared physical channel. The multiplex-

ing techniques include TDM, FDM, wavelength-division multiplexing (WDM), code 

division multiple access (CDMA), and spatial multiplexing (SM).  Table 2.6  shows 

channel access and their corresponding multiplexing methods. We introduce the 

basic ones here while leaving CDMA to Section 2.5.1. 

  Time-Division Multiplexing (TDM) 

 TDM is a technique to combine multiple digital signals from low-rate channels into 

a high-rate channel shared alternately in time slots. A simplified scheme of TDM is 

lin76248_ch02_054-124.indd   93lin76248_ch02_054-124.indd   93 24/12/10   4:13 PM24/12/10   4:13 PM



94 Computer Networks: An Open Source Approach

shown in  Figure 2.30 , where data streams from different sources are  interleaved  in a 

stream of time slots. 

 TDM divides a time domain into several recurrent time slots of certain time 

length. Each time slot is considered part of a sub-channel or logical channel. Each 

sub-channel is used to transmit a data stream. The interleaved time slots require 

synchronization at a demultiplexer. It can be implemented by adding one or more 

synchronization bits at the beginning of each transmitted frame. This is called  syn-
chronous  TDM, compared to  statistical  TDM, which can dynamically allocate time 

slots to sub-channels without assigning time slots to empty input lines. If the input 

data rates are different, several techniques can be used, such as multilevel multi-

plexing, multi-slot allocation, and pulse stuffing (or bit stuffing, bit padding). The 

telephony industry uses T lines to implement the digital signal service. T lines are 

categorized from T1 to T4 with different service data rates. 

   FIGURE 2.29 A physical channel 
used for multiple users via 
multiple sub-channels. An aggregate transmitted signal

An aggregate received signal

One physical channel:
multiple logical sub-channels

Multiple users:
Using multiple sub-channels via multiple lines

Information
sources 

Information
sinks

Channel

Mux

Demux

TABLE 2.6 The Mapping of Channel Access Scheme and Multiplexing

Multiplexing Channel Access Scheme Applications

FDM (frequency-division 

multiplexing)

FDMA (frequency division 

multiple access)

1G cell phone

WDM (wavelength-

division multiplexing)

WDMA (wave-length 

division multiple access)

fiber-optical

TDM (time-division 

multiplexing)

TDMA (time division 

multiple access)

GSM telephone

SS (spread spectrum) CDMA (code division 

multiple access)

3G cell phone

DSSS (direct sequence SS) DS-CDMA (direct sequence 

CDMA)

802.11b/g/n

FHSS (frequency 

hopping SS)

FH-CDMA (frequency 

hopping CDMA)

Bluetooth

SM (spatial multiplexing) SDMA (space division 

multiple access)

802.11n, LTE, WiMAX

STC (space time coding) STMA (space time multiple 

access)

802.11n, LTE, WiMAX

lin76248_ch02_054-124.indd   94lin76248_ch02_054-124.indd   94 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 95

 TDM can be extended to the time-division multiple access (TDMA) scheme. 

The TDMA policy at the link layer is enforced through TDM at the physical layer 

that actually does the job. The GSM telephone system is one of its applications.  

  Frequency-Division Multiplexing (FDM) 

 FDM divides a frequency domain into several non-overlapping frequency ranges, 

each becoming a sub-channel used by a sub-carrier.  Figure 2.31  shows the process 

of FDM. At a transmitter, the multiplexing process combines all waveforms derived 

from data streams, where a sub-channel uses a sub-carrier, and results in a  composite  

signal that is transmitted over a physical channel. At the receiver, several bandpass 

filters are used to extract messages for sub-channels from a received composite sig-

nal. FDM is only applied to analog signals. A digital signal can be converted into an 

analog signal by modulation, and then FDM can be applied. The radio broadcasting 

of AM and FM signals are two typical applications using FDM. For example, the 

bandwidth from 530 kHz to 1700 kHz is assigned to AM radio. This is the bandwidth 

of a physical channel medium and is shared by several radio stations. 

   FIGURE 2.30 The process of time-division multiplexing (TDM). 

One physical channel:
multiple logical sub-channels

TDM

Output dataInput data

Channel

Mux: with
interleaving Demux

a1 a1

b1

c1

b1

c1

a2a3

b2b3

c2c3

a2a3

b2b3

c2c3

   FIGURE 2.31 The process of frequency-division multiplexing (FDM). 

Channel

Mux Demux Bandpass
filters

FDM

One physical channel:
multiple logical sub-channels

sub-channel 3

sub-channel 1
sub-channel 2

Modulator: carrier f3

Modulator: carrier f2

Modulator: carrier f1

Demodulator: carrier f3

Demodulator: carrier f2

Demodulator: carrier f1

lin76248_ch02_054-124.indd   95lin76248_ch02_054-124.indd   95 24/12/10   4:13 PM24/12/10   4:13 PM



96 Computer Networks: An Open Source Approach

 Frequency-division multiple access (FDMA) is an access method extended 

from FDM. Orthogonal frequency-division multiple access (OFDMA) is a variant 

of FDMA based on orthogonal frequency-division multiplexing (OFDM). Single-

carrier FDMA (SC-FDMA) is another variant of FDMA based on single-carrier 

frequency domain equalization (SC-FDE). Wavelength-division multiple access 

(WDMA) is also a variant of FDMA based on wavelength-division multiplexing 

(WDM). WDM is in fact equivalent to frequency-division multiplexing, but WDM is 

often used in fiber-optic communications where wavelength is the common term to 

describe the carrier modulated by optical signals. WDM uses different wavelengths 

of laser light to carry different signals, and each wavelength is specified as a sub-

channel in a single optical fiber. Because the data rate of the optical fibers is much 

higher than that of twisted pair cables, WDM is normally used to aggregate the data 

from multiple users. SONET (Synchronous Optical Networking) is an application 

using WDM.     

  2.5 ADVANCED TOPICS 

  Several advanced topics in digital modulation are described in this section. Readers 

with little electrical engineering background could skip this section at the first-time 

reading. More tutorials and comprehensive treatments can be found in the texts 

for data or digital communications. For communications requiring reliable and se-

cure transmission, such as military and wireless applications, the  spread spectrum  

techniques are often considered since signals after spreading are noise-like in the 

frequency spectrum and hard to detect and interfere with. Direct sequence spread 

spectrum (DSSS) and frequency hopping spread spectrum (FHSS) are two typical 

schemes. As an advanced multiplexing or multiple access scheme, code division 

multiple access (CDMA) exercises the concept of spread spectrum for multiple 

sources to represent data by  orthogonal  or  statistical uncorrelated  codes and spread 

data over the entire channel. 

 In comparison with single-carrier modulation, a multicarrier system performs 

modulations over several separate carrier signals to improve the  bandwidth utiliza-
tion  and cope with the  multipath fading . With the implementation of Fast Fourier 

Transform (FFT), multicarrier modulation such as the orthogonal frequency-division 

multiplexing (OFDM) has been widely used in many communication systems today. 

Recently, multiple-input multiple-output (MIMO) systems having multiple transmit-

ting antennas at the transmitter side and multiple receiving antennas at the receiver 

side become very popular since they offer the great performance gains in terms of 

throughput and reliability. 

  Table 2.7  shows a comparison of the existing IEEE 802.11 WLAN standards 

that use the techniques of spread spectrum, CCK, and OFDM. 

  2.5.1 Spread Spectrum 
 The spectrum of a data stream could be spread over a wider frequency band. 

Spreading could provide extra redundancy to reduce the vulnerability of wireless 

lin76248_ch02_054-124.indd   96lin76248_ch02_054-124.indd   96 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 97

communications from eavesdropping, jamming, and noise. Data streams in 

spread spectrum (SS) are carried by a specific  pseudo-noise  (PN) sequence. This is 

accomplished when the data stream modulates the PN sequence. A PN sequence is 

composed of  repetitive  occurrences of a PN code represented by a sequence of  chips . 

Combining a PN sequence and an input data stream, a  spreading sequence  of the data 

stream is formed. A chip itself is a bit. Compared with data bits, chips are just the bit 

sequence out of the PN code generator. Therefore, a chip is typically a rectangular 

pulse of +1 or −1 amplitude. The energy of the resulting spread signal is distributed 

over a  wider  bandwidth than the signal of a data stream. The redundancy, like the 

redundancy in error correction codes, can enhance data recovery at receivers when 

signals are impaired. 

  Pseudo-Noise (PN) Code and Sequence 

 A PN sequence, also known as a pseudo-random numerical (PRN) sequence, is not 

a real random sequence, but is generated with a deterministic pattern. The sequence 

is repetitive where a PN code repeatedly occurs in the sequence. Similar to a bit that 

is an atomic element in a data stream, a chip is an atomic element in a PN code. 

Chip rate is the number of chips processed per second. In  Figure 2.32 , the PN code 

is an 11-bit Barker code of 11 chips. It repeatedly occurs to form the PN sequence. 

A spread sequence is generated by modulating the PN sequence with a data stream 

using the  XOR  operator. The chip rate in  Figure 2.32  is 11 times the data rate. The 

chip rate of the spread sequence is the same as that of the PN sequence, but much 

higher than that of the data stream. This explains why transmitting a spread sequence 

demands larger bandwidth than the data stream. 

TABLE 2.7 The Modulation Techniques Used in IEEE 802.11 WLAN 
Standards

802.11a 802.11b 802.11g 802.11n

Bandwidth 580 MHz 83.5 MHz 83.5 MHz 83.5 MHz/

580 MHz

Operating frequency 5 GHz 2.4 GHz 2.4 GHz 2.4 GHz/5 GHz

Number of 

non-overlapping 

channels

24 3 3 3/24

Number of spatial 

streams

1 1 1 1, 2, 3, or 4

Date rate per channel 6–54 

Mbps

1–11 Mbps 1–54 Mbps 1–600 Mbps

Modulation scheme OFDM DSSS, 

CCK

DSSS, CCK,

OFDM

DSSS, CCK, 

OFDM,

Sub-carrier 

modulation scheme

BPSK, 

QPSK, 

16 QAM, 

64 QAM

n/a BPSK, 

QPSK, 

16 QAM, 

64 QAM

BPSK, QPSK, 

16 QAM, 

64 QAM

lin76248_ch02_054-124.indd   97lin76248_ch02_054-124.indd   97 24/12/10   4:13 PM24/12/10   4:13 PM



98 Computer Networks: An Open Source Approach

 Figure 2.33 shows the  broadened  bandwidth with spread energy of the transmit-

ted signal from the spread sequence. A measure,  process gain  (PG), for the spreading 

process is defined by the ratio of chip rate (C) to data rate (R). The chip rate is always 

higher than the bit rate. Moreover, the rate of PN code determines the bandwidth of 

the transmitted spread waveform. Process gain is used to measure the performance 

advantage of spread spectrum against narrowband interference. It can be viewed as 

the signal-to- jammer (interference)  power ratio at the receiver after despreading. As-

suming the data rate is constant, then the larger the chip rate, the higher the PG. This 

means the spread spectrum occupies a larger bandwidth. If PG is large enough, the 

spread waveform can travel over a noisy channel with its power  smaller  than that of 

noise, while the data stream can still be recovered at the receiver. How do we calcu-

late the process gain? For instance, if an 11-bit Barker code is used as the PN code, 

the process gain is calculated as   log10 
C
R dB =     10 log10 

11
1

dB =     10.414 dB   (chips/bit). 

Here dB stands for decibel. It is a logarithmic unit expressing the magnitude of a 

physical quantity, such as the chip rate, relative to a specified reference level, such 

as the data rate. 

 The PN sequence plays a key role while spreading a data stream; its type and 

length determine the capability of a spread spectrum system. A good selection of a 

PN sequence can help a matched filter to efficiently  reject  the multipath signals that 

are  delayed  by more than one chip time. We will see a similar practice in CDMA later 

where PN codes are also used at receivers to  despread  the received signals.  

   FIGURE 2.32 A data stream spread by a PN sequence. 

11 chips

1
01 bit

Data stream (data sequence): bit stream

PN sequence XOR

PN Code: 11-bit Barker code (1 1 1 0 0 0 1 0 0 1 0)

Spread sequence: chip stream

Output

v

–v

(Polar NRZ-L)

Input

1 1 1 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0

0 0 0 1 1 1 0 1 1 0 1 1 1 1 0 0 0 1 0 0 01

11 chips

   FIGURE 2.33 A comparison 
between a spread spectrum 
and a narrowband spectrum. 

Spread spectrum

Narrowband spectrum

Frequency

Power

BW 1
BW 2

lin76248_ch02_054-124.indd   98lin76248_ch02_054-124.indd   98 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 99

  Barker Codes, Willard Codes, and Complementary Code Keying (CCK) 

 The IEEE 802.11 standard uses the 11-bit Barker code at a chip rate of 11 chips/

data symbol as a PN code. Barker codes have good correlation properties. Willard 

codes are obtained by computer simulation and optimization, and may provide better 

performance than Barker codes. A list of Barker codes and Willard codes is shown 

in  Table 2.8 . A long PN sequence can be constructed cyclically by Barker codes or 

Willard codes. The technique of DSSS uses 11-bit and 13-bit Barker codes. The 

IEEE 802.11b standard uses an 11-bit Barker code cyclically to spread data streams 

at 1 Mbps or 2 Mbps. 

 The high-speed extension of the IEEE 802.11 standard employs CCK as the 

modulation scheme to encode data at 5.5 or 11 Mbps in the 2.4 GHz band. Unlike 

the Barker code, a CCK sequence can totally eliminate  side lobes . In the frequency 

spectrum, a side lobe is any lobe but the desired  major  lobe. Moreover, CCK 

codewords can effectively reject noise and multipath interference with a special 

mathematical property, which is skipped here.  

  A Spread Spectrum System 

 Figure 2.34 shows a spread spectrum system where spread signals travel through 

a noisy channel with narrowband/wideband interference and multiple paths. In the 

TABLE 2.8 Barker Codes and Willard Codes

Code Length (N) Barker Codes Willard Codes

2 10 or 11 n/a

3 110 110

4 1101 or 1110 1100

5 11101 11010

7 1110010 1110100

11 11100010010 11101101000

13 1111100110101 1111100101000

   FIGURE 2.34 A spread spectrum system over a noisy channel. 

Modulator Demodulator

PN Code PN Code

Information
source

Information
destination

Spreading Despreading

RFRF

ReceiverTransmitter
Direct path

Input
data stream

Output
data stream

Multipath
channel

Wideband
interference

Narrowband
interferenceGaussian

noise

rxtx

pnt
pnr

dt drtxb rxb

rxd

rxr

Baseband BasebandPassband

Reflected path

lin76248_ch02_054-124.indd   99lin76248_ch02_054-124.indd   99 24/12/10   4:13 PM24/12/10   4:13 PM



100 Computer Networks: An Open Source Approach

spread spectrum system, an input data stream  d t   with a bit rate  R b   is spread by the PN 

sequence  pn t   of a chip rate  R c  . A spread chip stream  tx b   is obtained. The baseband 

bandwidth  R b   of the input data stream is spread to a wider range of  R c  . A bandwidth 

expansion factor  SF  or processing gain  G p   is obtained by  R c  / R b  . Followed by pass-

band modulations,  tx b   becomes  tx  for transmission. At the receiver, a spread spectrum 

signal  rx  is received by the antenna and then demodulated. The demodulated signal 

 rx b   is then despread by a PN sequence  pn r   using  autocorrelation  and  crosscorrela-
tion . The autocorrelation of two  correlated  sequences, say the PN sequences from 

the desired data signal and its multipath signal, would be close to 1, while the cross-

correlation of two  uncorrelated  sequences, say the PN sequences from a desired data 

signal and an interference signal, would be close to 0. An output data stream  d r   is 

obtained after despreading. If the PN code of  pn r   is equal to that of  pn t  , then the PN 

sequence  pn r   is synchronized to  pn t  . Input data stream  d t   can be recovered as output 

data stream  d r   because the autocorrelation of  pn t   and  pn r   is discernible, i.e., close to 1. 

 On the other hand, an input data stream cannot be recovered at the receiver if the 

crosscorrelation of  pn t   and  pn r   is small, unrecognizable, and noise–like, i.e., close 

to 0. Without the knowledge of the PN code used in the transmitter, the receiver treats 

the spread spectrum signal as white noise-like signals. Accordingly, the privacy of 

communication holds between two parties if the PN code is not revealed to third 

parties. 

 Like multiplexing, spread spectrum could combine several data sources with 

different PN sequences for transmissions, but it requires a  larger  bandwidth for trans-

mission. The privacy and anti-jamming is improved. Spread signals are noise-like, 

which enables the signals to be blended into the background of jamming waveforms 

and travel over the channel without being detected or eavesdropped. It is particularly 

designed for wireless communications whose transmission media are exposed to the 

public and the transmission signals are easily intercepted. 

 In wireless communications, there are multiple propagation paths from atmo-

spheric reflection or refraction, or reflections from ground, building, or other objects. 

These multipath signals, say  rx r   in  Figure 2.34 , may fluctuate the received signal 

from the  direct path , say  rx d   in  Figure 2.34 . The signal from each path has its own 

attenuation and time delay. The receiver must  separate  the signal of the direct path 

from the signals of other paths as well as interferences and noise. If multipath signals 

are delayed more than a chip time, they become  uncorrelated  to the desired signal 

with autocorrelation far from 1 and crosscorrelation close to 0. In other words, the 

PN sequence from the  indirect paths  is no longer synchronized to the PN sequence 

from the direct path. Therefore this  multipath fading  in a spread spectrum system 

does not cause a significant impact and can be effectively filtered.  

  Direct Sequence Spread Spectrum (DSSS) 

 As seen in  Figure 2.34 , a spread spectrum system is usually followed by a passband 

modulator such as BPSK, M-ary PSK (MPSK, M is greater than 2), and QAM. 

 Figure 2.35(a)  shows a scenario where a DSSS system is followed by an M-ary PSK 

modulator. Because the MPSK modulator has in-phase and quadrature components, 

the system requires  two  spreading processes. The input data are  split  into two data 

lin76248_ch02_054-124.indd   100lin76248_ch02_054-124.indd   100 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 101

substreams, each spread by a PN sequence; one is for the in-phase component, the 

other for the quadrature component. DSSS substitutes each bit of a data stream with 

a PN code or its complement. The spectrum of the transmitted signal is determined 

by the chip rate  R c   in  Figure 2.35(b) , of the spread stream, rather than the bit rate  R b   
of the data stream.  

  Impact of Interference and Noise on DSSS 

 Suppose a DSSS system is influenced by interference signal  i . At a receiver, a re-

ceived signal is a composite signal including interference signals and noise. The 

composite signal is despread by a PN sequence to recover the data stream from the 

transmitter. How the spread spectrum technique can mitigate the impact of interfer-

ence and noise is explained here.  

  � If  i  is a narrowband interference, which means  i  is a signal from another data 

stream. After despreading, the resulting sequence from the narrowband inter-

ference becomes a spread sequence with a  flattened  spectrum and much lower 

power density than the spectrum of the desired data stream. It can be filtered out 

using a low-pass filter. Therefore, spread spectrum can rule out the narrowband 

interference, but conventional narrowband techniques cannot.  

  � If  i  is a wideband interference as a spread sequence from another user but 

using a different PN sequence. After despreading, the resulting sequence from 

the wideband interference is flattened again because the wideband interference 

uses a different PN sequence, and then the dot product of this crosscorrelation 

is significantly small and noise-like, compared to the wideband signal using 

the same PN code. The flattened interference can be easily filtered out by a 

low-pass filter. This demonstrates that spread spectrum can remove wideband 

interference.  

  � If  i  is a noise, the resulting sequence from the noise is still a noise-like spread 

sequence at the chip rate and has a low power density. The spectrum of a 

flattened Gaussian noise can also be filtered out by a low-pass filter. The signals 

of the spread spectrum system are more immune to noise, which is significant 

when signals travel over a noisy channel.   

(a) A DSSS system using MPSK modulation. (b) The spectrum of a spread sequence. 

Spreading
Channel

RF

Input
data

tx rx

Baseband Passband

Transmitter Receiver

fRF

I

QQ

pnt

pnt

dt

txq

txi rxi

rxq

Baseband

M-PSK
Modulator

M-PSK
Demodulator

PN Code

I
S/

P

Data signal
spread spectrum

Power

f

BW

fRFfRF – Rc fRF + Rc

   FIGURE 2.35 A DSSS and the spectrum of a spread sequence. 

lin76248_ch02_054-124.indd   101lin76248_ch02_054-124.indd   101 24/12/10   4:13 PM24/12/10   4:13 PM



102 Computer Networks: An Open Source Approach

 IEEE 802.11 is commonly allowed to use 11 channels from 2.412 to 2.462 GHz, 

each 5 MHz wide. Channel 1 is centered at 2.412 GHz. IEEE 802.11 applies the DSSS 

modulation at 1 and 2 Mbps, while IEEE 802.11b uses the CCK modulation at 5.5 

and 11 Mbps. IEEE 802.11g supports the extended rate PHY (ERP). The ERP-DSSS, 

ERP-CCK, and ERP-OFDM modulations are used for backward compatibility. The 

physical layer of DSSS in WLAN includes two sublayers: PLCP (Physical Layer 

Convergence Procedure) and PMD (Physical Medium Dependent) sublayers. The 

PLCP is mainly for framing. The PMD sublayer is shown in  Figure 2.36 , where the 

spreader is located in this sublayer.  

  Frequency Hopping Spread Spectrum (FHSS) 

 FHSS divides a bandwidth into N sub-channels such that a transmitted signal  hops  

among these sub-channels. The transmitted signal dwells in each sub-channel for a 

period of time, called  dwell time . In  Figure 2.37(a) , a PN code generator produces a 

PN sequence  pn t   mapped into  frequency words , which represent a frequency hopping 

sequence in a table. These frequency words are fed into a frequency synthesizer in 

turn to generate  N  carriers with different frequencies, as shown in  Figure 2.37(b) . The 

transmitter hops among these  N  carriers in order. In  Figure 2.37 , the FHSS system com-

bines the M-FSK modulator and FH modulator for modulation and frequency hopping, 

respectively. The transmitter and the receiver of FHSS use the same hop pattern. Dur-

ing each hop, the bandwidth of the transmitted signal is the same as that of the output 

signal of M-FSK. The signal dwelling in an FHSS sub-channel is a narrowband signal. 

 FHSS uses a pool of carriers of different frequencies for source signals. One 

carrier is used at a time, thus the messages can be transmitted by different carriers. 

If there are  n  carriers in this pool, the required bandwidth is  n  times the bandwidth 

used by a single carrier, plus several guard bands. Unlike DSSS, which spreads 

source codes by the PN sequence, FHSS  selects  a frequency from a mapping table 

derived from the PN code. The required bandwidth can be shared by multiple users 

only if different frequencies are used at each hop. The concept of sharing bandwidth 

among different frequencies is analogous to the technique of frequency-division 

multiplexing (FDM). A PN code generator repeatedly produces bit patterns for a 

frequency synthesizer. These patterns can be used to select carriers to carry the 

input message within a hopping period. It is possible that more than one user can 

pick the same sub-channel to transmit, which results in  jamming . When a symbol is 

repeatedly transmitted in several hops, the receiver still can recover the symbol if it 

is not jammed in the majority of hops. 

Correlator

Timing
recovery

Receiver

Descrambler
DBPSK/
DQPSK

modulator
PLCP

PLCP
DBPSK/
DQPSK

modulator
Spreader

Transmit
mask filter

Transmitter

Chip sequence

   FIGURE 2.36 DSSS transceiver. 

lin76248_ch02_054-124.indd   102lin76248_ch02_054-124.indd   102 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 103

 If the hopping period is short, it is difficult for an eavesdropper who hops to 

intercept the signals without the knowledge of the PN code. It is also difficult for an 

intruder without knowledge about the PN code to jam the traffic by hopping different 

frequencies in the sequence as a user does. FHSS is used in Bluetooth and the origi-

nal IEEE 802.11. However, when it comes to  fast hopping  under high-speed trans-

mission in short intervals,  synchronization  between the transmitter and the receiver 

becomes difficult. Therefore, it is not used in IEEE 802.11 a/b/g/n.  

  Code Division Multiple Access (CDMA) 

 Code division multiplexing (CDM) allows signals from several independent sources 

to travel over a channel at the same time and on the same frequency band simultane-

ously. CDM is a spread spectrum technique, and it is used by the multiple access 

technology of code division multiple access (CDMA). Thus CDMA is a spread 

spectrum multiple access (SSMA) technique. Unlike TDMA and FDMA, CDMA 

does not divide a physical channel into multiple sub-channels in time or frequency. 

Each user in a CDMA system occupies the  entire  bandwidth of a physical channel 

at the same time while using an individual orthogonal code or a PN code. Indeed, 

CDMA multiplexes different users by a set of orthogonal codes or PN codes. Several 

variants of CDMA have their own multiplexing methods, such as direct sequence 

CDMA (DS-CDMA), based on DSSS, and frequency hopping CDMA (FH-CDMA), 

based on FHSS. 

   FIGURE 2.37 An FHSS system 
and the spectrum of sub-channels. 

(a) FHSS with a PN code generator to select carrier hopping frequencies.

(b) The spectrum of an FHSS channel consisting of N sub-channels.

Digital signal
Output

Analog signal
Input

Carriers: f1, f2, ..., fn

pnt Frequency
word

Frequency
synthesizer

M-FSK
Modulator

PN code
generator

FH
Modulator

Spectrum
of a channel

Power

ffRF

1 2 N

BW

lin76248_ch02_054-124.indd   103lin76248_ch02_054-124.indd   103 24/12/10   4:13 PM24/12/10   4:13 PM



104 Computer Networks: An Open Source Approach

 CDMA can also be categorized as  synchronous CDMA  and  asynchronous 
CDMA . Synchronous CDMA uses orthogonal codes, while asynchronous CDMA 

uses PN codes. Orthogonal codes are  vectors  with strictly zero pair-wise  inner-
product , while the PN codes are statistical and have pair-wise autocorrelation close 

to 1 if closely correlated and pair-wise crosscorrelation close to 0 if uncorrelated. 

Both of them use the gain of spread spectrum for receivers to identify the desired 

signal against other unwanted signals. If a desired user’s signal is not correlated 

with other users’ signals, the inner-product is zero in synchronous CDMA and the 

crosscorrelation in asynchronous CDMA approaches zero. Similar to the resolution 

to multipath interference in the generic spread spectrum, a desired signal would have 

zero inner-product or low autocorrelation with a signal modulated with the  same  

orthogonal code or PN code if  shifted  more than a chip time. Again, this property 

helps to remove multipath interference.  

  Synchronous CDMA 

 In synchronous CDMA, orthogonal codes are mapped to a set of vectors mutually 

orthogonal with zero inner-product. Orthogonal codes are assigned to users for 

spreading the user data spectrum. The codes can be obtained from the orthogonal 

variable spreading factor (OVSF) code tree as shown in  Figure 2.38 . These codes are 

pair-wise orthogonal. 

 The OVSF code tree is based on Hadamard matrix, a square matrix that has +1 

or −1 entries, and whose rows are mutually orthogonal. Each code, or  chip code , is 

assigned to an individual user to denote a bit of a data stream. For example, if an or-

thogonal code is (1, −1, 1, −1), the code vector can be represented as  v =  1, −1, 1, −1. 

If  v  denotes bit 0 and − v  denotes bit 1, a data stream of “10110” can be represented as 

(- v ,  v , - v , - v ,  v ). The data stream is spread as (−(1, −1, 1, −1), (1, −1, 1, −1), −(1, −1, 

1, −1), −(1, −1, 1, −1), (1, −1, 1, −1)), and finally becomes (−1, 1, −1, 1, −1, 1, −1, 

1, −1, 1, −1, 1, −1, 1, −1, 1, 1, −1, 1, −1). The process is implemented by the  XOR  

operator, as illustrated in  Figure 2.39 . A data signal has a pulse duration  T b  , while 

an orthogonal code signal has  T c  . In other words, the bandwidth of the data signal 

is 1/  T b  , and the bandwidth of the orthogonal code is 1/  T c  . A spreading factor, or 

processing gain, is a bandwidth ratio of orthogonal signal to data signal,  T b  / T c  , which 

limits the upper bound of the total number of users.  

C(8,1) = (1,1,1,1,1,1,1,1)

C(8,2) = (1,1,1,1,–1,–1,–1,–1)

C(8,3) = (1,1,–1,–1,1,1,–1,–1)

C(8,4) = (1,1,–1,–1,–1,–1,1,1)

C(4,1) = (1,1,1,1)

C(8,5) = (1,–1,1,–1,1,–1,1,–1)

C(8,6) = (1,–1,1,–1,–1,1,–1,1)

C(8,7) = (1,–1,–1,1,1,–1,–1,1)

C(8,8) = (1,–1,–1,1,–1,1,1,–1)

C(4,3) = (1,–1,1,–1)

C(2,1) = (1,1)

C(4,4) = (1,–1,–1,1)

C(2,2) = (1,–1)

C(1,1) = (1)

C(4,2) = (1,1,–1,–1)

   FIGURE 2.38 The OVSF code tree for synchronous CDMA. 

lin76248_ch02_054-124.indd   104lin76248_ch02_054-124.indd   104 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 105

  Asynchronous CDMA 

 Asynchronous CDMA exploits PN codes. As in the generic spread spectrum, a PN 

code is a binary sequence with randomness that is reproduced with a deterministic 

behavior at a receiver. PN codes are used in asynchronous CDMA for spreading and 

despreading users’ signals as the orthogonal codes in synchronous CDMA. They 

are  statistically  nearly uncorrelated. Unlike the synchronous CDMA, the signals of 

other users do appear as noise to and slightly interfere with the desired signal. That is, 

signals with different PN codes become a wideband noise to the desired signal with 

a specific PN code. Even though a signal received has the same specified PN code 

as the intended signal, it also appears as a noise to the desired signal if it is received 

within a time offset. 

 While synchronous CDMA, TDMA, and FDMA can utterly reject other signals 

due to code orthogonality, time slots, and frequency channels, respectively, asynchro-

nous CDMA can only partially reject unwanted signals. If the unwanted signals are 

much stronger than the desired signal, the desired signal will be severely affected. 

Thus a power control scheme is required to manage the transmitted power at each sta-

tion. Despite this disadvantage, asynchronous CDMA has the following advantages.  

   1. Asynchronous CDMA use the spectrum more efficiently than TDMA and 

FDMA. Each time slot in TDMA requires a  guard time  to synchronize the 

transmission time of all users. Each channel in FDMA demands a  guard band  

to prevent interference from adjacent channels. Both guard time and guard band 

waste the usage of spectrum.  

   2. Asynchronous CDMA can allocate PN-code to active users  flexibly  without a 

strict limit on the number of users, while synchronous CDMA, TDMA, and 

FDMA can only allocate their resources to a  fixed  number of simultaneous 

users, depending on the fixed number of orthogonal codes, time slots, and 

frequency bands. This is due to the low-, but nonzero-crosscorrelation nature 

of the PN codes and the operations of autocorrelation and crosscorrelation. In 

the high-traffic bursts of telephony and data communications, asynchronous 

CDMA is more efficient in allocating PN codes to  more  users. However, the 

number of users in asynchronous CDMA is still limited by the bit error rate 

because the signal-to-interference ratio (SIR) varies inversely with the number 

of the users.  

   FIGURE 2.39 Spreading a data signal using one orthogonal code for one sub-channel. 

Tb

Tc

Data signal

Orthogonal code

Resulted signal:
(data signal) XOR
(orthogonal code)

1

1 0 1 1 0

1

–1 –1 –1 –1

1 1

11

–1 –1 –1 –1

1 1

lin76248_ch02_054-124.indd   105lin76248_ch02_054-124.indd   105 24/12/10   4:13 PM24/12/10   4:13 PM



106 Computer Networks: An Open Source Approach

   3. As with synchronous CDMA using orthogonal codes, asynchronous CDMA 

provides a significant level of privacy based on the anti-jamming capabilities of 

the PN sequences. The use of pseudo-random codes endows a spread spectrum 

signal with noise-like properties. Without the knowledge of a specified PN 

sequence, the receiver of asynchronous CDMA cannot decode the message.    

  Advantages of CDMA 

 Here we summarize the advantages of CDMA using spread spectrum. The technol-

ogy of CDMA can effectively reduce multipath fading and narrowband interference 

because the CDMA signal is a spread spectrum signal that occupies a wide range of 

bandwidth. Only a small portion of the signal is affected by narrowband interference 

and multipath fading. The interfered-with portion could be  removed  by filtering, 

while the lost data could be  recovered  by the use of error correction techniques. Mul-

tipath interference can also be  rejected  by CDMA because the delayed signals from 

multipath become nearly uncorrelated with the desired signal, even though both of 

them have the same PN code. 

 CDMA can  reuse  the same frequency because channels are separated by various 

orthogonal codes or PN codes, while FDMA and TDMA cannot. The ability to reuse 

frequencies among adjacent cells in a cellular system enables CDMA to use the tech-

nique of  soft handoff . Soft handoff is a feature whereby a cellular phone can connect 

with several cells simultaneously during a call. The cellular phone maintains a list of 

power measurement of adjacent cells to decide whether to request a soft handover. 

Soft handoff allows a mobile station to hold a better signal strength and quality.   

  2.5.2 Single-Carrier vs. Multiple-Carrier 
 Multiple-carrier modulation (MCM)  splits  a data stream into multiple data sub-

streams; each modulates a corresponding carrier for a narrowband sub-channel. The 

modulated signals could be further multiplexed by frequency-division multiplexing 

(FDM). This is called  multicarrier  transmission. A composite signal produced by 

MCM is a broadband signal that is more immune to multipath fading and inter-

symbol interference. If sub-channels are multiplexed by code division multiplexing 

(CDM) instead, we call it  multi-code  transmission. Only orthogonal frequency 

division multiplexing (OFDM) for multiple carriers is discussed here. 

  Orthogonal Frequency-Division Multiplexing (OFDM) 

 The main feature of OFDM is the orthogonality of sub-carriers that allows data to 

simultaneously travel over sub-channels constituted by these orthogonal sub-carriers 

in a  tight  frequency space without interference from each other. OFDM combines the 

techniques of multiplexing, modulation, and multiple carriers to build a communica-

tions system. OFDM is simply implemented by an inversed fast Fourier transform 

paired with a fast Fourier transform (IFFT/FFT). Unlike conventional FDM where 

each data stream occupies only a sub-channel with a specific carrier, OFDM splits 

a data stream to use multiple sub-channels at the same time. The benefit of using 

lin76248_ch02_054-124.indd   106lin76248_ch02_054-124.indd   106 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 107

multiple carriers is if one sub-channel fails, the data stream still can be recovered at 

the receiver because only a portion of data is impaired by, for example, a burst error. 

 A block diagram of an OFDM system is shown in  Figure 2.40 . IFFT performs 

the function of multicarrier modulator to produce OFDM composite signals. A cyclic 

prefix is added to the OFDM signal as a guard interval to avoid inter-symbol inter-

ference (ISI), and removed at the receiver. A symbol is a state of the channel that 

persists for a fixed period of time. It can be encoded by one or several bits. Therefore, 

a sequence of symbols or the transitions between symbols can represent data. The 

demodulator at the receiver is implemented by FFT.  

  An OFDM System with IFFT and FFT 

 The multicarrier modulator is commonly implemented by an IFFT process, as de-

picted in  Figure 2.41 . To generate an OFDM signal, IFFT combines signals from 

orthogonal carriers modulated by individual data substreams. IFFT has a counterpart 

FFT. Either a time-domain signal or a frequency-domain signal can be processed by 

FFT or IFFT. If a signal is processed by a pair of IFFT and FFT, the output is the 

same as the original one. This is how the mechanism of OFDM is implemented by a 

pair of IFFT and FFT. In  Figure 2.41 , IFFT converts frequency-domain signals to a 

time-domain signal, while FFT does the reverse. Here the time-domain input bits of 

IFFT are considered frequency amplitudes in the frequency domain; the output com-

posite signal of IFFT is a time-domain-like signal. IFFT and FFT are mathematical 

concepts; both are linear processes and completely reversible.  

Remove
cyclic prefix

Add
cyclic prefix

Decoder

Serial-to-
parallel

converter

Multicarrier
modulator

(IFFT)

Multicarrier
demodulator

(FFT)

Serial-to-
parallel

converter

Channel

Transmit

Receive

Input data
stream

Output data
stream

...

...

OFDM
Composite signal

OFDM
Composite

signal
...

m1

m2

mk

mk

m2

m1

   FIGURE 2.40 A multicarrier OFDM system. 

S/P

f0

f1

fk

...
P/S

f0

f1

fk

...

ChannelInput
data

Output
data

IFFT

OFDM
Composite signal

FFT

mk

m1

m2

m1

m2

mk

   FIGURE 2.41 A functional diagram of IFFT and FFT. 

lin76248_ch02_054-124.indd   107lin76248_ch02_054-124.indd   107 24/12/10   4:13 PM24/12/10   4:13 PM



108 Computer Networks: An Open Source Approach

  Orthogonality 

 The orthogonality of signals in the frequency domain is shown in  Figure 2.42 . Two 

signals that  cross over  at the point of  zero amplitude  are orthogonal to each other. 

Each frequency is assigned a sub-carrier or sub-channel and can be applied with a 

typical modulation scheme such as QAM or QPSK. 

 Using a cyclic prefix as a guard interval between symbols simplifies the direct 

convolution of the transmitted signals and the multipath channel response to a 

circular convolution, which is equivalent to a direct multiplication after taking the 

FFT operation, and thereby eliminates the ISI. However, OFDM requires accurate 

frequency synchronization between transmitter and receiver because any shift of 

frequencies destroys the orthogonality of the sub-carriers and causes inter-carrier 

interference (ICI) or crosstalk between sub-carriers.  

  Multipath Fading 

 In wireless communications, multipath propagation is a phenomenon that a 

transmitted signal reaches the receiver antenna through different paths at different 

times. Because reflectors surround a transmitter and a receiver, the transmitted 

signal is reflected and reaches the receiver from multiple paths. Multipath signals 

may cause different levels of constructive or destructive interference, phase shift, 

delay, and attenuation. Strong destructive interference refers to a deep fade that 

makes the signal-to-noise ratio drop suddenly and causes the communication 

between the two parties to fail. The multipath signals can be regarded as a direct 

convolution of the transmitted signals and the multipath channel response. Though 

such an effect can be removed or mitigated by channel equalization at the receiver, 

by modulating the signal at the frequency domain, and by the use of a cyclic prefix, 

the direct convolution is simplified to a circular convolution, and in turn it becomes 

a direct multiplication in the frequency domain, after taking the FFT operation at the 

receiver. Hence, OFDM removes completely the need of complicated equalization 

at the receiving end and simplifies the receiver design. In case a deep fade to 

specific sub-carriers occurs, the received signal can still be recovered by coding 

skills with error correction code.  

A
m

pl
itu

de

Frequency

   FIGURE 2.42 The orthogonality 
diagram of OFDM. 

lin76248_ch02_054-124.indd   108lin76248_ch02_054-124.indd   108 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 109

  Applications of OFDM 

 The applications of OFDM are ADSL and VDSL broadband access, Power Line 

Communication (PLC), DVB-C2, wireless LANs in IEEE 802.11a/g/n, the digi-

tal audio systems such as DAB and DAB+, the terrestrial digital TV system, and 

WiMAX in IEEE 802.16e. OFDM was designed for a bit stream to be transmitted 

over a communication channel with a sequence of OFDM symbols, but it can also 

be used with multiple access by time, frequency, or code. Orthogonal frequency-

division multiple access (OFDMA) assigns different sub-channels to different users 

to achieve FDMA.   

  2.5.3 Multiple Inputs, Multiple Outputs (MIMO) 
 A multiple input and multiple output (MIMO) system basically consists of antenna 

 arrays  and  adaptive  signal processing units at senders and receivers. The system 

exploits several  diversity  schemes for data communications. The diversity schemes, 

such as time diversity, frequency diversity, spatial diversity, and multiuser diversity, 

endow the signals with an ability to combat against fading. Time diversity demands 

a signal be transferred at different time instants, while frequency diversity requires 

a signal be conveyed by multiple frequency channels. The spatial diversity allows a 

signal to be sent from multiple transmit antennas and/or be received by multiple re-

ceive antennas. Multiuser diversity is implemented by opportunistic user scheduling 

that selects the best users based on the channel information. MIMO takes advantage 

of these diversity schemes to enhance system reliability. 

 MIMO is applied to both wired and wireless systems. For example, gigabit DSL 

(digital subscriber line) is a wired application. Here we focus on the MIMO wireless 

transmission systems using antenna arrays. The antenna arrays provide  spatial 
diversity  by using multiple transmit and receive antennas to improve the quality and 

reliability, such as bit error rate (BER), of a wireless link. The link with antenna 

arrays offers multiple propagation paths for signals to pass through. Multipath signals 

with different propagation delays and fades to the receiver then create  space-divided  

channels. MIMO turns the disadvantage of multipath propagation in conventional 

wireless systems into an advantage, especially to those systems without line-of-sight 

transmission. The user’s data rate is also increased when MIMO exploits multipath 

propagation. 

 In spatial division multiplexing (SDM), also known as  spatial multiplexing  

(SM), multiple bit streams are transmitted via different antennas in parallel. Space 

division multiple access (SDMA) is a channel access method that can create spatial 

pipes in parallel via spatial multiplexing and diversity. SDMA uses the  smart  antenna 

technology, which evolved from MIMO, and the knowledge of the spatial location 

of mobile stations to perform the radiation pattern at the base station where the 

transmission and reception are adaptive to each user to obtain the highest gain. On 

the contrary, in the conventional cellular systems, the base station has no knowledge 

of the locations of mobile stations, so the signals are sent in all directions. This could 

waste the transmission power and cause interference with the adjacent cells using the 

same frequency. 

lin76248_ch02_054-124.indd   109lin76248_ch02_054-124.indd   109 24/12/10   4:13 PM24/12/10   4:13 PM



110 Computer Networks: An Open Source Approach

  Categories of MIMO Systems 

 MIMO can be categorized based on the usage of  channel knowledge  or the  number 
of users . Based on the awareness of channel knowledge, the types of MIMO can be 

classified into three groups:  precoding, spatial multiplexing  (SM), and  diversity cod-
ing . The method of precoding requires the channel state information (CSI), yet the 

method of diversity coding does not. Spatial multiplexing can either use or not use 

the channel knowledge. 

 The channel-aware precoding exploits feedback information about channel 

states to arrange the beamforming or spatial processing at a transmitter. Beamform-

ing is a signal processing technique, or a spatial filter, that combines a set of radio 

signals from a group of small  nondirectional  antennas to simulate a larger  directional  
antenna. This simulated directional antenna is steered to determine the direction of 

a transmitted signal. This precoding method can increase the signal gain and reduce 

the multipath fading. The SM technique requires the knowledge of the configuration 

of antennas for a high-rate signal stream to be split into several lower-rate substreams 

transmitted at different antennas using the same frequency channel. The method of 

diversity coding demands no channel knowledge. A signal is coded at a transmit-

ter by space-time coding to exploit independent fadings in the multi-antenna links. 

There is no beamforming or array gain for a MIMO system using the diversity coding 

technique. 

 If a MIMO system is classified based on the number of users, the types of 

MIMO are single-user MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO). 

SU-MIMO is a point-to-point communication where link throughput and reliability 

are major concerns, with the space-time codes and stream-multiplexed transmission. 

Multiple antennas expand the degrees of freedom for signal processing and detec-

tion. Thus, SU-MIMO boosts the performance of the physical layer. 

 However, the MU-MIMO system emphasizes system throughput. MIMO applies 

to both the physical layer and the link layer. In link layers, multi-access protocols in 

the spatial dimension greatly increase the performance benefits of antenna arrays 

in MIMO, such as a greater per-user rate or channel reliability. MIMO demands 

multi-user information to design user scheduling to increase the system throughput. 

Therefore MU-MIMO combines coding and modulation in the physical layer with 

resource allocation and user scheduling in the link layer. An optimal user scheduling 

depends on the selection of precoding and channel state feedback technique. This 

leads to a  cross-layer  design issue for wireless communications using MU-MIMO.  

  A MU-MIMO System 

 We now briefly describe the architecture of a MU-MIMO system using the precoding 

technique, as shown in  Figure 2.43  with the wireless broadcast channels built with 

antenna arrays. In this figure, a base station (BS) with multiple transmit antennas 

sends messages to mobile stations (MSs). Each mobile station, equipped with an 

antenna array of  M r   antennas, has a reception entity to process multiple substreams 

in parallel. The reception entity first employs minimum mean-squared-error 

filtering (MMSE) and successive interference cancellation (SIC) to each substream. 

The module MMSE-SIC has two aspects—interference nulling and interference 

lin76248_ch02_054-124.indd   110lin76248_ch02_054-124.indd   110 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 111

canceling, either removing or subtracting the interference from those already detected 

substreams. Then those substreams are merged by spatial demultiplexing. Finally, we 

obtain the output data stream at the receiver. 

 Because this architecture is a MU-MIMO system that requires channel 

information for multiuser scheduling, the BS uses a controller to collect 

channel state information feedback from receivers. This information includes 

channel direction information (CDI) and channel quality information (CQI). 

CDI determines the direction of  beamforming , and CQI adjusts the transmitted 

power for each beam. The controller uses the information at the base station 

to perform space-time processing such as multiuser scheduling, power and 

modulation adaptation such as AMC (adaptive coding and modulation, or  link 
adaptation ), and beamforming. The controller controls AMC to select the type 

of coding, modulation, and the protocol parameters. The selections of AMC are 

based on the radio link condition such as path loss, interference, and sensitivity 

of the receiver to increase the efficiency of use of antennas for higher throughput. 

In brief, the base station combines the information of CSI feedback signaling for 

beamforming to obtain an optimal transmit pattern while transmitting messages. 

The functions of AMC and precoding aim to maximize the link throughput and 

minimize the error rate. 

 A MU-MIMO system exploits user diversity for user scheduling. An effective 

user scheduling provides several advantages in space and time domains, such as 

spatial beamforming, uplink feedback signaling, and advanced receivers. It can 

be combined with the modified SIC reception; for instance, all transmit antennas 

can be allocated to the best users based on SIC or minimum mean squared error 

(MMSE). 

 In conclusion, a MIMO system sends out multiple data streams in parallel via 

multiple antennas to improve reliability and spectral efficiency, while the space-

time block coding (STBC) may help achieve full transmit diversity. Beamforming 

can improve link reliability by rejecting interference and combining beams linearly. 

Transmit and receive diversity can reduce the fluctuation of fading to obtain the 

diversity gain. Spatial multiplexing uses the multiplexing gain by sending out 

different data signals at various transmit antennas at the same time.  

User scheduling/
rate selection/
spatial MUX

AMC

Precoding/TX
beamforming

Controller

AMC

MMSE/
MMSE-SIC

Mt

Mr

Mr

MSk

MMSE/
MMSE-SIC

MS1

1

1

1

H1

Spatial
DEMUX

Spatial
DEMUX

Output data
stream

Input data
stream

Output data
stream

BS

CSI

Hk

Channel
H

   FIGURE 2.43 A multiuser MIMO system. 

lin76248_ch02_054-124.indd   111lin76248_ch02_054-124.indd   111 24/12/10   4:13 PM24/12/10   4:13 PM



112 Computer Networks: An Open Source Approach

 Open Source Implementation 2.2: IEEE 
802.11a Transmitter with OFDM 

  Overview 
 802.11a is an IEEE standard for wireless communication. The standard employs 

the OFDM modulation scheme, which is widely used in many other wireless 

communication systems, including WiMAX and LTE. An open source example 

is available from the OpenCores website at http://opencores.org, which presents 

an implementation of 802.11a transmitter in the language of Bluespec System 

Verilog (BSV). We first give an overview of the modules and the processing flow 

in this OFDM transmitter, and then look at the operations of the convolutional 

encoder.  

  Block Diagram 
 Figure 2.44 illustrates the architecture of the OpenCores 802.11a transmitter, 

which mainly consists of controller, scrambler, convolutional encoder, inter-

leaver, mapper, inverse fast Fourier transform (IFFT), and cyclic extender. They 

are described as follows:  

� Controller: The controller receives packets from the MAC layer as a stream 

of data (PHY payload) and creates header fields for each data packet.  

  Applications of MIMO 

 EDGE (Enhanced Data rates for GSM Evolution) and HSDPA (high-speed downlink 

packet access) are MIMO systems that use a rate adaptation algorithm to manage the 

coding and modulation scheme according to the quality of the radio channel. The stan-

dard of 3GPP WCDMA/HSDPA uses MU-MIMO with user scheduling. IEEE 802.11n-

2009 improves network throughput to a maximum of 600 Mbps by adding multiple-input 

multiple-output (MIMO) with four spatial streams at each of the 40 MHz channels. 

Furthermore, IEEE 802.11n exercises frame aggregation at the link layer.          

Controller Scrambler Encoder

Interleaver Mapper

IFFT
Cyclic
Extend

   FIGURE 2.44 Block diagram of 802.11a transmitter. 

lin76248_ch02_054-124.indd   112lin76248_ch02_054-124.indd   112 24/12/10   4:13 PM24/12/10   4:13 PM

http://opencores.org


 Chapter 2 Physical Layer 113

� Scrambler: The scrambler XORs each data packet with a pseudorandom 

pattern of bits.  
� Convolutional Encoder: The convolutional encoder generates two bits of 

output for every input bit it receives.  
� Interleaver: The interleaver reorders the bits in a single packet. It operates 

on the OFDM symbols in block sizes of 48, 96, or 192 bits, depending on 

which rate is being used.  
� Mapper: The mapper also operates at the OFDM symbol level. It translates 

the interleaved data into the 64 complex numbers that are the modulation 

values for different frequency “tones.”  
� IFFT: The IFFT maps the complex modulation values to each sub-carrier 

and performs a 64-point inverse fast Fourier transform to translate them into 

the time domain.  
� Cyclic Extender: The cyclic extender extends the IFFT-ed symbol by 

appending the beginning and end of the message to the full message body.   

 The design of the OpenCores 802.11a transmitter only implements the lowest 

three data rates ({6, 12, 24} Mb/s) of the 802.11a specification. At these rates 

the puncturer does no operation on the data, so we omit it from our discussion.  

  Data Structures and Algorithm Implementations 
 The top module, called Transmitter.bsv, handles the transmission flow. The flow 

starts with Controller.bsv, which first creates a packet header (the signal field 

with length 24 bits in the PHY packet format) and then gets the data stream (data 

field in PHY packet format) from the MAC layer. Therefore, the controller has 

two FIFO outputs; one is the  toC  consisting of one 24-bit element (control ele-

ment), and another is  toS , which includes several 24-bit elements, depending on 

MAC layer data length (data elements). The data elements of  toS  then input to 

Scrambler.bsv and are XORed with a pseudorandom pattern of bits. Meanwhile, 

the control element of  toC  is passed to Convolutional.bsv and encoded at the 1/2 

coding rate. 

 At the next cycle, the scramble data elements start to encode, still at the 

1/2 coding rate since the supporting data rates are only 6, 12, and 24 Mb/s. 

Convolutional.bsv encodes the 24-bit input element to a FIFO element of 

48 coded bits (1/2 coding rate). Interleaver.bsv gets coded bits from the FIFO 

queue and operates on the OFDM symbols, in block sizes of 48, 96, or 192 bits, 

depending on which rate is being used. It reorders the bits in a single packet. 

 Assuming each block only operates on one packet at a time, this means that 

at the fastest rate we can expect to output only once every four cycles, where a 

block size of 192 bits needs four input-encoded bit streams. Mapper.bsv trans-

lates the interleaved bits (48 bits) directly into the 64 complex data (frequency 

“tones”). IFFT.bsv performs a 64-point inverse fast Fourier transform, which 

translates the complex frequency data into the time-domain data (IFFT-ed 

symbol with 64 complex data). The OpenCores 802.11a transmitter provides 

Continued

lin76248_ch02_054-124.indd   113lin76248_ch02_054-124.indd   113 24/12/10   4:13 PM24/12/10   4:13 PM



114 Computer Networks: An Open Source Approach

several implementations of IFFT and proposes a combinational design based 

on a four-point butterfly. Finally, CyclicExtender.bsv creates a full transmission 

message with the structure of the last 16 complex data of the input IFFT-ed 

symbol following the IFFT-ed symbol. 

    Bit#(n6) history; // Bit#(n6) means bit vector with 
length (n+6) 
 if(input_rate == RNone) // for new entry of the same 
packet at  next cycle  
      history = {input_data, histVal}; 
 else 
      history = {input_data, 6’b0}; // for an new packet 

 Bit#(nn) rev_output_data = 0; 
 Bit#(1) shared = 0; 
 Bit#(6) newHistVal = histVal; 

 for(Integer i = 0; i < valueOf(n); i = i + 1) 
 begin // encoding 
       shared = input_data[i]^history[i + 4]^history[i + 

3]^history[i + 0]; 
       rev_output_data[(2*i)+0] = shared^history[i + 

1];//output data A 
       rev_output_data[(2*i)+1] = shared^history[i + 

5];//output data B 
          // save the delay register status for next new 

entry 
          // only last update will be saved 
       newHistVal = {input_data[i], newHistVal[5:1]}; 
 end 
      // enqueue encoded bit stream 
 RateData#(nn) retval = RateData{ 
      rate: input_rate, 
      data: reverseBits(rev_output_data)}; 

 outputQ.enq(retval); 

 // setup for next cycle 
 histVal <= newHistVal; 

 FIGURE 2.45 A segment of codes in Convolutional.bsv.  

lin76248_ch02_054-124.indd   114lin76248_ch02_054-124.indd   114 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 115

 To avoid the verbosity, we just explain a segment of BSV codes in  Figure 2.45  

that programs the key of the convolutional encoder in detail. 

 Figure 2.46 shows a circuit of the convolutional encoder, which can be 

described concisely as one bit per cycle with a shift register and a few OR 

gates.  History  represents a bit stream consisting of input bits and the bits of all 

delay registers (T b ) in the shift register. For each  for  loop iteration, two output 

encoded bits are generated from the OR operations of the current input bit 

and the delay register bits. The encoded bits are saved as a bit stream stored in 

rev_output_data . The values of each delay register  newHistVal  will be saved for 

the next 24-bit input bit stream of the same packet. For a new packet, the value 

of each delay register is reset to zero.  

  Exercises 
 Calculate the output bits and states when one encodes these bits using the convo-

lutional encoder in  Figure 2.46 . Summarize in  Table 2.9  how the state and output 

values change with each iteration.  

   FIGURE 2.46 The circuit of the convolutional encoder defined in 802.11a. 

Output data A

Input data

Shift registers

Tb Tb Tb Tb Tb Tb

Reg#5 Reg#4 Reg#3 Reg#2 Reg#1

Output data B

Reg#0

TABLE 2.9 The Output Bits and States of the Convolutional Encoder

Iteration 1 2 3 4 5 6 7 8 9 10

Input bit 0 1 1 0 1 1 0 0 0 0

Shift 
Regs[543210]

000000

Output[A,B]

lin76248_ch02_054-124.indd   115lin76248_ch02_054-124.indd   115 24/12/10   4:13 PM24/12/10   4:13 PM



116 Computer Networks: An Open Source Approach

 Historical Evolution: Cellular Standards 

 Cellular standards have evolved from 1G, 2G, and 3G to 4G. The properties of

their physical layers are shown in  Table 2.10 . In 1G, data signals are delivered

in analog; for instance, the standard of AMPS or TACS. In 2G the transmission 

of data signals becomes digital; the GSM standard is the prevailing one. 

The 3G standards provide high-speed IP data networks for multimedia and 

spread spectrum  transmission, including CDMA2000 and LTE (long-term 

evolution). Now, the 4G standards must support the features of all-IP switched 

networks, mobile ultra-broadband access, multicarrier transmission (OFDM), 

and MIMO, or called antenna array or smart antenna. The standards of 

LTE-advanced and WiMAX-m (IEEE802.16m) are two of the proposals for 

4G. Moreover, some people believe that the converged solution supporting 

multiple protocols can also be considered 4G. Therefore software radio and 

cognitive radio are taken into account as 4G technologies. The  OFDM  technol-

ogy, rather than  CDMA , is adopted in 4G because of its simplicity in modulation 

and multiplexing; it can fulfill the speed requirement of gigabit, specified in 

the 4G standard. Turbo codes are used in 4G to minimize the required SNR at 

the reception side. 

TABLE 2.10 Properties of the Physical Layer of Cellular Standards

Cellular 

standards

AMPS GSM 850/900/

1800/1900

UMTS (WCDMA, 

3GPP FDD/TDD)

LTE

Generation 1G 2G 3G Pre-4G

Radio signal Analog Digital Digital Digital

Modulation FSK GMSK/8PSK 

(EDGE only)

BPSK/QPSK/

8PSK/16QAM

QPSK/

16QAM/

64QAM

Multiple 

access

FDMA TDMA/FDMA CDMA/TDMA DL:

OFDMAUL:

SC-FDMA

Duplex 

(uplink/

downlink)

n/a FDD FDD/TDD FDD+TDD

(FDD focus)

Channel 

bandwidth

30 kHz 200 kHz 5 MHz 1.25/2.5/5/

10/15/20 MHz

Number of 

channels

333/666/832 

channels

124/124/374/

299 (8 users per 

channel)

Depends on 

services

>200 users per

cell (for 5 MHz

spectrum)

Peak data 

rate

Signaling 

rate = 10 

kbps

14.4 kbps

53.6 kbps

(GPRS)

384 kbps

(EDGE)

144 kbps (mobile)/

384 kbps 

(pedestrian)/

2 Mbps (indoors)/

10 Mbps (HSDPA)

DL:100 

MbpsUL:

50 Mbps

(for 20 MHz

spectrum)

lin76248_ch02_054-124.indd   116lin76248_ch02_054-124.indd   116 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 117

 Historical Evolution: LTE-Advanced vs. IEEE 
802.16m 

 The LTE standard is a pre-4G technology, but it does not fully comply with 

IMT-advanced requirements. Hence, the LTE-advanced standard, an evolution of 

LTE, should meet or exceed the requirements of IMT-advanced. LTE-advanced 

is backward compatible with LTE; it has several technical features, such as 

coordinated multiple point transmission and reception, support of wider 

bandwidth, spatial-division multiplexing (SDM), and relaying functionality. 

The relaying functionality enhances the coverage of high data rates, group 

mobility, and temporary network deployment, and provides coverage in new 

areas. LTE-advanced also employs band aggregation of spectra in 20 MHz 

chunks to obtain the bandwidth for a logical channel. This can lead to a total 

of 100 MHz (5 chunks) transmission in each direction, downlink or uplink. 

The enhanced peak data rate of ITE-advanced that supports advanced services 

is 100 Mbps for high mobility, or 1 Gbps for low mobility. Unlike WiMAX, 

LTE-advanced applies SC-FDMA to uplink (UL). Both use OFDMA in down-

link (DL). Accordingly, LTE-advanced technology is more energy efficient than 

WiMAX. 

 WiMAX is a standard developed by IEEE 802.16, and its evolved standard, 

WiMAX-m, is an alternative to LTE-advanced. WiMAX-m is an amendment 

to IEEE Standard 802.16e under the PAR P802.16m. Both WiMAX-m and 

LTE-advanced are equipped with several “magic bullet” technologies— OFDM , 

 MIMO , and  smart antennas . These technologies enable all-IP networks. Both 

LTE-advanced and WiMAX-m support all-IP packet-switched networks, mobile 

ultra-broadband access, and multicarrier transmission. 

 The properties of physical layers for the standards of mobile WiMAX 

(IEEE802.16e), WiMAX-m (IEEE802.16m), 3GPP-LTE, and LTE-advanced 

are listed in  Table 2.11 . The peak data rate of WiMAX-m is expected to be 

over 350 Mbps for downlink, while for LTE-advanced, it is 1 Gbps. The 

coverage of WiMAX-m and LTE-advanced are almost the same in cell size; 

for instance, the optimized cell size is from 1 km to 5 km. When the cell size 

is 30 km, the performance is reasonable. The system should still function 

with acceptable performance if the cell size is up to 100 km. The mobility 

of WiMAX-m and that of LTE-advanced are similar, about 350 km/h up 

to 500 km/h. With WiMAX-m, the spectral efficiency for downlink is more 

than 17.5 bps/Hz, while for uplink, more than 10 bps/Hz. LTE-advanced has 

a higher requirement in spectral efficiency, which is 30 bps/Hz for downlink 

and 15 bps/Hz for uplink. Both WiMAX-m and LTE-advanced use MIMO 

techniques to improve space utilization. The legacy of WiMAX is IEEE802.16e, 

while the legacies of LTE-advanced are GSM, GPRS, EGPRS, UMTS, HSPA, 

and LTE. 

Continued

lin76248_ch02_054-124.indd   117lin76248_ch02_054-124.indd   117 24/12/10   4:13 PM24/12/10   4:13 PM



118 Computer Networks: An Open Source Approach

  2.6 SUMMARY 

TABLE 2.11 The Properties of the Physical Layer for the 
Standards of Mobile WiMAX, WiMAX-m, LTE, and LTE-Advanced

Feature Mobile 

WiMAX(3G) 

(IEEE802.16e)

WiMAX-m(4G) 

(IEEE 802.16m)

3GPP-LTE 

(pre-4G) 

(E-UTRAN)

LTE-advanced 

(4G)

Multiple 

access

WirelessMAN-

OFDMA

WirelessMAN-

OFDMA

DL: OFDMA 

UL: SC-

FDMA

DL: OFDMA 

UL: SC-

FDMA

Peak 

data rate 

(TX × RX)

DL: 64 Mbps 

(2 × 2)

UL: 28 Mbps 

(2 × 2 collaborative 

MIMO) (10 MHz)

DL: > 350 Mbps 

(4 × 4)

UL: > 200 Mbps 

(2 × 4) (20 MHz)

DL: 100 

Mbps 

UL: 50Mbps

DL: 1 Gbps

UL: 500 Mbps

Channel 

bandwidth

1.25/5/10/20 

MHz

5/10/20 MHz and 

more (scalable 

bandwidths)

1.25–20 MHz Band 

aggregation 

(chunks, each

20 MHz)

Coverage 

(cell radius, 

cell size)

2–7 km Up to 5 km 

(optimized) 

5–30 km (graceful 

degradation in 

spectral efficiency) 

30–100 km 

(system should be 

functional)

1–5 km 

(typical) up 

to 100 km

5 km (optimal)

30 km 

(reasonable 

performance),

up to 100 km 

(acceptable 

performance)

Mobility Up to 60 ~ 120 

km/h

120–350 km/h,up to 

500 km/h

Up to 250 

km/h

350 km/h, up 

to 500 km/h

Spectral 

efficiency

(bps/Hz)

(TX × RX)

DL: 6.4 (peak)

UL: 2.8 (peak)

DL: >17.5 (peak)

UL: > 10 (peak)

5 bps/Hz DL: 30 (8 × 8)

UL: 15 (4 × 4)

MIMO 

(TX×RX)

(antenna 

techniques)

DL: 2 × 2

UL: 1 × N 

(Collaborative 

SM)

DL: 2 × 2 or 2 × 4 or 

4 × 2 or 4 × 4

UL: 1 × 2 or 1 × 4 or 

2 × 2 or 2 × 4

2 × 2 DL: 2 × 2 or 4 × 

2 or 4 × 4 or 8 × 8

UL: 1 × 2 or 

2 × 4

Legacy IEEE802.16a ~ d IEEE802.16e GSM/GPRS/

EGPRS/

UMTS/

HSPA

GSM/GPRS/

EGPRS/

UMTS/HSPA/

LTE

  In this chapter we have learned the attributes of the 

physical layer and technologies used in this layer, 

mostly coding and modulation schemes. Popular line 

coding schemes, including NRZ, RZ, Manchester, 

AMI, mBnL, MLT, and RLL, and block coding 

schemes such as 4B/5B and 8B/10B, have been illus-

trated, where self-synchronization plays the domi-

nant role. We have learned the basic modulation 

lin76248_ch02_054-124.indd   118lin76248_ch02_054-124.indd   118 24/12/10   4:13 PM24/12/10   4:13 PM



 Chapter 2 Physical Layer 119

schemes, including ASK, PSK, and FSK, the hybrid 

QAM, and the advanced ones, including spread spec-

trum (DSSS, FHSS, CDMA), multi-carrier OFDM, 

and MIMO. The challenge of delivering more bits 

under a given bandwidth and SNR has been driving 

the innovations. We also covered the basic multi-

plexing schemes, such as TDM, FDM, and WDM. 

In summary, which schemes to use depends on the 

properties of the transmission medium, channel con-

dition, and the target bit rate. For wired links, QAM, 

WDM, and OFDM are considered advanced. For 

vulnerable wireless links, OFDM, MIMO, and smart 

antenna are now the preferred choices for advanced 

systems. 

 For simplicity, the physical layer does not dis-

criminate frames from the link layer. Therefore, the 

frames from the link layer are converted to raw bit 

streams and delivered to the physical layer for further 

processing. The raw bit streams are manipulated by 

line coding and modulation into signals, so the sig-

nals can travel over a physical channel with a specific 

transmission medium. At the receiver, the signals 

experience a reverse process and are converted into 

bit streams for delimiting by a mechanism,  framing,  
at the link layer. Framing is discussed in  Chapter 3 . 

 A physical channel can be shared by mul-

tiple users if the channel capacity is more than 

what is required. Multiplexing technologies such 

as FDM, WDM, TDM, SS, DSSS, FHSS, OFDM, 

SM, or STC are used in the physical layer to enable 

multiple users to access a shared physical channel. 

Correspondingly, to access a shared channel, the 

link layer must provide an arbitration mechanism 

to optimize usage of and access to the channel. The 

channel access schemes implemented in the link 

layer include FDMA, WDMA, TDMA, CDMA, 

DS-CDMA, FH-CDMA, OFDMA, SDMA, and 

STMA. 

 Signals traveling over a channel are subject to 

distortion, interference, noise, and other signals, 

especially over a wireless communication chan-

nel. Because errors are likely to happen during the 

transmission, the receiver must be able to detect 

them. To fix this problem, the link layer may drop, 

correct, or ask to retransmit a corrupted frame. 

Therefore, error control functions such as check-

sum and cyclic redundancy check (CRC) are used 

at the link layer. To access a channel, the link layer 

must check the availability of the physical channel 

to determine if it is idle/free or busy. This is the 

packet-mode channel access method. For instance, 

CSMA/CD (carrier sense multiple access with col-

lision detection) is suitable for a wired channel, 

while CSMA/CA (carrier sense multiple access 

with collision avoidance) is for a wireless channel. 

These are covered in  Chapter 3 . 

   COMMON PITFALLS 

  Data Rate, Baud Rate, and Symbol Rate 
 Data rate, also called bit rate (bitrate), is defined as the 

number of bits that are delivered or processed per unit of 

time. The unit of data rate is bit/sec or bps. The gross bi-

trate, raw bitrate, line rate, or data signaling rate is the total 

number of bits transferred per second over a communica-

tion link, including data and protocol overhead. In digital 

communications, a symbol can represent one or several 

bits of data. Symbol rate, or baud rate, is the number of 

symbols that change the states per second under a digital 

modulated signal or a line code. The unit of symbol rate is 

symbols/sec, or baud. The maximum baud rate in a base-

band channel is called the Nyquist rate, which is a half of 

the channel bandwidth.  

  Bandwidth in Computing and Signal Processing 
 Bandwidth in computing indicates the data rate, also called 

network bandwidth. The unit is in bps. Bandwidth in signal 

processing may refer to baseband bandwidth or passband 

bandwidth, depending on the context. The baseband band-

width is the upper cutoff frequency of a baseband signal. 

The passband bandwidth refers to the difference between 

the upper and lower cutoff frequencies of a passband signal. 

Bandwidth in signal processing is typically measured in hertz.  

  Narrowband, Wideband, Broadband, and 
Ultraband 

 Narrowband: In wireless communications, narrowband 

implies that a channel is sufficiently narrow where the 

lin76248_ch02_054-124.indd   119lin76248_ch02_054-124.indd   119 24/12/10   4:13 PM24/12/10   4:13 PM



120 Computer Networks: An Open Source Approach

frequency response on this channel can be considered flat, 

i.e., the values of the frequency response are similar. Fre-

quency response is a measure of system output spectra in 

response to input signals on a channel. In an audio channel, 

narrowband indicates that sounds only occupy a narrow 

range of frequencies. 

 Wideband: In communications, wideband is used

to describe a wide range of frequencies in a spectrum. It 

is the opposite of narrowband. When a channel has a high 

data rate, it is required to use a wideband bandwidth. 

 Broadband: In telecommunications, broadband re-

fers to a signaling method that handles a relatively wide 

range of  frequencies , which can be divided into chan-

nels. In data communications, it means multiple pieces 

of data are sent  simultaneously  to increase the effective 

rate of transmission. 

 Ultraband or ultra-wide band: This is a radio tech-

nology used at very  low  energy for short-range, high-

bandwidth communications using a large portion of the 

radio spectrum.     

   FURTHER READINGS  

   PHY 
 Few popular texts for computer networks have a dedicated 

chapter on the physical layer, and none of them could fully 

cover all topics. Readers interested in more details need to 

look into the texts for data communications. The Proakis book 

is a comprehensive treatment on digital communications. It 

presents communication theory for graduate-level courses. 

The one by Sklar is another good text that covers many types 

of digital communications while combining both theories 

and applications. As the book title implies, Forouzan and 

Fegan tries to balance the treatment of communications 

at the physical and link layers and networking at the 

upper layers. It gives electrical engineering students 

more computer science fl avors than other texts. Similarly, 

throughout this chapter, we try to give computer science 

students more electrical engineering fl avors and some open 

source tastes. The Web site ComplextoReal.com managed 

by Charan Langton provides a collection of online tutorials 

on various topics in analog and digital communications. 

The articles “Certain Topics in Telegraph Transmission 

Theory” by Harry Nyquist and “A Mathematical Theory 

of Communication” and “Communication in the Presence 

of Noise” by Claud Elwood Shannon are the foundation of 

modern digital communications.  

  • J. G. Proakis,  Digital Communications , McGraw-Hill, 

2007.  

  • B. Forouzan and S. Fegan,  Data Communications and 
Networking,  McGraw-Hill, 2003.  

  • C. Langton, “Intuitive Guide to Principles of Communi-

cations,”  http://www.complextoreal.com/tutorial.htm   

  • B. Sklar,  Digital Communications,  2 nd  edition, Prentice-

Hall, 2001.  

  • H. Nyquist, “Certain Factors Affecting Telegraph 

Speed,”  Bell System Technical Journal , 1924, and 

“Certain Topics in Telegraph Transmission Theory,” 

Transactions of the American Institute of Electrical 
Engineers, Vol. 47, pp. 617–644, 1928.  

  • H. Nyquist, “Certain Topics in Telegraph Transmission 

Theory,”  Proceedings of the IEEE , Vol. 90, No. 2, pp. 

280–305, 2002. (Reprinted from  Transactions of the 
AIEE , February, pp. 617–644, 1928.)  

  • C. E. Shannon, “A Mathematical Theory of Com-

munication,”  Bell System Technical Journal , Vol. 27, 

pp. 379–423, pp.623–656, July & October 1948.  

  • C. E. Shannon, “Communication in the Presence of 

Noise,”  Proceedings of the IEEE , Vol. 86, No. 2, 1998. 

(Reprinted from  Proceedings of the IRE , Vol. 37, No. 1, 

pp. 10–21, 1949.)    

   Spread Spectrum 
 Lamarr and Antheil co-invented the early form of the 

spread spectrum communication technology. In June 1941, 

they submitted the idea of a “secret communication sys-

tem” patented as the U.S. Patent 2292387. This is the 

birth of spread spectrum in the form of frequency-hopping 

spread spectrum. For further study on the theory of spread 

spectrum, readers are referred to the book by Torrieri. The 

report by Nayerlaan introduces the fundamental concepts 

and applications of spread spectrum.  

  � H. Lamarr and G. Antheil, “Secret Communication 

System,” U.S. Patent 2,292,387, Aug. 1942.  

  � D. Torrieri,  Principles of Spread-Spectrum Communi-
cation Systems , Springer, 2004.  

  � J. D. Nayerlaan, “Spread Spectrum Applications,” Oct. 

1999,  http://sss-mag.com/sstopics.html .    

lin76248_ch02_054-124.indd   120lin76248_ch02_054-124.indd   120 24/12/10   4:13 PM24/12/10   4:13 PM

http://www.complextoreal.com/tutorial.htm
http://sss-mag.com/sstopics.html


 Chapter 2 Physical Layer 121

   OFDM 
 Following spread spectrum, OFDM has evolved long 

enough to converge into some books. The following 

books address the design issues of OFDM systems. Li 

and Stuber provide comprehensive discussions on theories 

and practices of OFDM. The book by Chiueh and Tsai 

gives a concise yet comprehensive background on digital 

communications before addressing the design of OFDM 

receivers. Hardware design issues for physical IC imple-

mentations are also addressed. The Hanzo and Munster 

book is an in-depth treatment of OFDM, MIMO-OFDM, 

and MC-CDMA.  

  • T. Chiueh and P. Tsai,  OFDM Baseband Receiver De-
sign for Wireless Communications,  Wiley, 2007.  

  • L. Hanzo, M. Münster, B. J. Choi, and T. Keller,  OFDM 
and MC-CDMA for Broadband Multi-User Communi-
cations, WLANs and Broadcasting,  Wiley-IEEE Press, 

2003.  

  • G. Li and G. Stuber,  Orthogonal Frequency Division 
Multiplexing for Wireless Communications , Springer, 

2006.    

   MIMO 
 MIMO is still a young subject. The Oestges book offers 

insights into space-time division for MIMO channels. 

It associates propagation, channel modeling, signal 

processing, and space-time coding. Kim’s paper is a 

multiuser MIMO system for WCDMA/HSDPA using 

user scheduling, spatial beamforming, and feedback 

signaling control systems. Gesbert’s papers discuss 

multiuser MIMO and other theories about MIMO 

systems.  

  • C. Oestges and B. Clerckx,  MIMO Wireless Communi-
cations: From Real-World Propagation to Space-Time 
Code Design,  Computers—Academic Press, 2007.  

  • D. Gesbert and J. Akhtar, “Breaking the Barriers 

of Shannon Capacity: An Overview of MIMO Wireless 

Systems,”  Telenor’s Journal: Telektronikk , pp. 53–64, 

2002.  

  • D. Gesbert, M. Kountouris, R. Heath, C. Chae, and 

T. Salzer, “From Single User to Multiuser Communi-

cations: Shifting the MIMO Paradigm,”  IEEE Signal 
Processing Magazine , Vol. 24, No. 5, pp. 36–46, 

2007.  

  • D. Gesbert, M. Shafi, D. Shiu, P. Smith, A. Naguib, 

et al., “From Theory to Practice: An Overview of 

MIMO Space-Time Coded Wireless Systems,”  IEEE 

Journal on Selected Areas in Communications , Vol. 21, 

No. 3, pp. 281–302, Apr. 2003.  

  • S. Kim, H. Kim, C. Park, and K. Lee, “On the Per-

formance of Multiuser MIMO Systems in WCDMA/

HSDPA: Beamforming, Feedback and User Diversity,” 

 IEICE Transactions on Communications , Vol. E89-B, 

No. 8, pp. 2161–2169, 2006.   

  Development Environments 
 In computer networks, messages are sent from one node 

to another through a link where signals are processed in 

the physical layer. Actually, some signal processing can 

be handled either in hardware or in software. Software-

defi ned radio proposed in Mitola’s paper deals with some 

signal-processing steps, such as modulation and demodu-

lation, by radio functions in software in a general-purpose 

processor. The GNU Radio Project provides the open 

source solutions along that track. 

 Though parts of signal processing can be imple-

mented in software, a communications system still needs 

a hardware platform to transfer signals. The components 

on the hardware platform may include AD/DA converter, 

power amplifer (PA), mixer, oscillator, phase-locked loop 

(PLL), and microcontroller or microprocessor. These com-

ponents are either analog or digital integrated circuits. 

Therefore, tools for analog circuit design and digital circuit 

design are required to develop the hardware platform for a 

communication system. For instance, Matlab and Simulink 

can be used for system analysis, design, and simulation. 

Verilog (System Verilog) and VHDL can help to design 

and simulate digital IC. Automatic conversion tools from 

MatLab/Simulink models to HDL models have been de-

veloped to expedite the digital IC system design. SPICE 

(Simulation Program with Integrated Circuit Emphasis) 

and Agilent ADS (Advanced Design System) are tools for 

analog integrated circuit design and radio frequency IC 

design. Their references are listed as follows:  

  • J. Mitola, “Software Radio Architecture: A Mathematical 

Perspective,”  IEEE Journal on Selected Areas in Com-
munications , Vol. 17, No. 4, pp. 514–538, Apr. 1999.  

  • GNU Radio Project:  http://gnuradio.org/redmine/wiki/

gnuradio   

  • The MathWorks: A Software Provider for Technical 

Computing and Model-Based Design,  http://www

.mathworks.com/   

  • VASG: Maintaining and Extending the VHDL 

Standard (IEEE 1076),  http://www.eda.org/vasg/   

lin76248_ch02_054-124.indd   121lin76248_ch02_054-124.indd   121 24/12/10   4:13 PM24/12/10   4:13 PM

http://www.mathworks.com/
http://www.mathworks.com/
http://www.eda.org/vasg/
http://gnuradio.org/redmine/wiki/gnuradio
http://gnuradio.org/redmine/wiki/gnuradio


122 Computer Networks: An Open Source Approach

  • IEEE P1800: Standard for System Verilog: Unified 

Hardware Design, Specification and Verification 

Language,  http://www.eda.org/sv-ieee1800/   

  • SPICE: A General-Purpose Open Source Ana-

log Electronic Circuit Simulator,  http://bwrc.eecs.

berkeley.edu/Classes/IcBook/SPICE/   

  • Agilent Technologies Advanced Design System 

(ADS) 2009: A High-frequency/High-speed Plat-

form for Co-design of Integrated Circuits (IC), 

Packages, Modules and Boards,  http://www.home.

agilent.com/        

   1. What are bit rate and baud rate? 

   Answer: 

   Bit rate (or data rate): The number of bits being trans-

mitted per unit of time. 

   Baud rate (or symbol rate): The number of symbols 

being transmitted per unit of time.  

   2. What is the difference between sampling theorem, 

Nyquist theorem, and Shannon theorem? 

   Answer: 

   Sampling theorem: Calculate the sampling rate under 

which a signal can be uniquely reconstructed. 

   Nyquist theorem: Calculate the maximum data rate 

for a noiseless channel. 

   Shannon theorem: Calculate the maximum data rate 

for a noisy channel.  

   3. In digital communications, what kinds of signals are 

often used, and why? 

   Answer: 

   In digital communications, the periodic analog sig-

nals and the aperiodic digital signals are commonly 

used because the former demand less bandwidth and 

the latter represent digital data.  

   4. What are the advantages of digital signals, compared 

with analog signals? 

   Answer: 

   Digital signals: more immune to noise and easier to 

recover when signals travel over transmission media 

   Analog signals: subject to corruption by noise, inter-

ference and harder to recover completely.  

   5. Why is line coding needed in the physical layer? 

   Answer: 

   Line coding can prevent baseline wandering and 

the introduction of DC components, and can enable 

self-synchronization, provide error detection and cor-

rection, and increase signals’ immunity to noise and 

interference.  

   6. What factors may impair the transmission capability of 

a physical layer, especially over the wireless channel? 

   Answer: 

   Attenuation, fading, distortion, interference, and noise.  

   7. What is the constellation diagram? 

   Answer: 

   It is a tool that defi nes a mapping between an analog 

signal and its corresponding digital data patterns.  

   8. What are the basic modulations in digital 

communications? 

   Answer: 

   ASK, FSK, and PSK are three basic modulations in 

digital communications. 

   ASK: Different levels of carrier amplitude are used to 

represent digital data. 

   FSK: Different carrier frequencies are used to repre-

sent digital data. 

   PSK: The phases of a carrier, not the change of the 

phase, are used to represent digital data. 

   QAM: A combination of ASK and PSK changes the 

levels of carrier amplitude and phase to form wave-

forms of different signal elements.  

   9. In digital communications, why are modulations nec-

essary for signals that travel over high-frequency 

channels? 

   Answer: 

   If a baseband digital signal (with a lower frequency) 

wants to travel over a high-frequency channel, it must 

be carried by a sinusoidal carrier. In other words, the 

signal has to modulate carriers of higher frequen-

cies so that the data signals can be conveyed via the 

channel.  

   10. Why multiplexing? 

   Answer: 

   When the bandwidth of a channel is more than 

required for a data stream, the channel can be 

shared by multiple users to improve the channel 

utilization.  

   11. What are the benefi ts of spread spectrum? 

   Answer: 

   Noise-like signals after spreading, hard to detect and 

interfere with, and extra redundancy to reduce the 

vulnerability of wireless communications to eaves-

dropping, jamming, and noise.  

   FREQUENTLY ASKED QUESTIONS   

lin76248_ch02_054-124.indd   122lin76248_ch02_054-124.indd   122 24/12/10   4:13 PM24/12/10   4:13 PM

http://www.eda.org/sv-ieee1800/
http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/
http://www.home.agilent.com/
http://www.home.agilent.com/


 Chapter 2 Physical Layer 123

   12. What is the main feature of OFDM? Why OFDM, not 

CDMA, in 4G? 

   Answer: 

   Main feature of OFDM: Orthogonality of sub-carriers 

that allows data to be transmitted at the same time 

over sub-channels. 

   Advantages of OFDM: 

   1.  Combining multiplexing, modulation, and mul-

tiple carriers 

   2.  Higher rate than CDMA (a technique of spread 

spectrum)  

   13. Compare traditional radio systems to soft radio 

systems. 

   Answer: 

     Software radio implements radio functions for signal 

processing as many as possible in software, rather than 

the dedicated circuitry used in traditional radio systems. 

Moreover, the functions of modulation and demodula-

tion in a software radio system are also performed by 

software programs, instead of hardware devices  . 

   Advantages of software radio: 

   1.  More fl exible to different standards, especially 

with a reconfi gurable hardware to support the 

signal processing at higher frequencies. 

   2.  Reduced cost of switching to other standards and 

time-to-market.     

   EXERCISES  

  Hands-On Exercises  
   1. Find and summarize the network-related modules in 

 www.opencores.org  into a table. In the table, compare 

their protocol layer, purpose, programming language, 

and key implemented algorithms or mechanisms.  

   2. Find the PHY (physical) layer modules in  www.open-

cores.org . For each module, describe how complete 

the implementation is, i.e., which parts of the algo-

rithms or mechanisms are implemented and which 

parts are not. Associate your discussions with the 

algorithms or mechanisms described in this chapter.  

   3. GNU Radio is a package for software radio systems. 

Build a GNU Radio system on your machine with the 

Linux operating system.  

   a. Download the latest stable release of GNU Radio 

from  http://gnuradio.org/redmine/wiki/gnuradio/

Download .  

   b. Read the instructions from  http://gnuradio.org/

redmine/wiki/gnuradio/BuildGuide.  Follow these 

instructions and build a GNU Radio system.  

   c. Install all required and dependent packages for GNU 

Radio, as discussed on the GNU Radio Web site.  

   d. Many software radio examples reside in the folder, 

/usr/share/gnuradio/examples. Run the example 

… /gnuradio/examples/audio/dial_tone.py. This 

example is like a “Hello World” example in any 

programming languages such as C++, Java, or 

Python. Try to run more examples. (Hint: GNU 

Radio package is already collected in the Fedora 

repository. It is much easier for you to install this 

package with the tool  yum , or  rpm .)    

   4. Install the GRC (GNU Radio Companion) tool from 

 http://www.joshknows.com/grc  on your machine. 

GRC can facilitate the study of GNU Radio. Now 

exploit the GRC tool to design the following systems: 

    a. a system that can fi lter a noisy channel, and  

   b. a QAM modulator/demodulator system.

  (Hint: You may refer to “GNU Radio Testbed” written 

by Naveen Manicka.)      

   Written Exercises 
    1. Why is a data stream usually represented as an aperi-

odic digital signal? Why is a modulated signal repre-

sented as an aperiodic analog signal?  

   2. Compare the number of required frequencies and the 

size of bandwidth to represent the following signals: 

(a) periodic analog, (b) aperiodic analog, (c) periodic 

digital, and (d) aperiodic digital.  

   3. What is the difference between fading and attenuation?  

   4. What is the difference between noise and interference?  

   5. Explain what sdr (signal-to-data-ratio) and SNR 

(signal-to-noise-ratio) mean and how they can be 

used for evaluation.  

   6. Compare the capability of high-frequency signals and 

low-frequency signals in straight-line propagation, 

refl ection, refraction, and diffraction.  

   7. Among unipolar NRZ-L, Polar NRZ-L, NRZ-I, and RZ, 

Manchester, differential Manchester, AMI, and MLT-3, 

which schemes have no issues on synchronization, base-

line wandering, and DC components, respectively?  

lin76248_ch02_054-124.indd   123lin76248_ch02_054-124.indd   123 24/12/10   4:13 PM24/12/10   4:13 PM

www.opencores.org
http://www.joshknows.com/grc
www.opencores.org
www.opencores.org
http://gnuradio.org/redmine/wiki/gnuradio/Download
http://gnuradio.org/redmine/wiki/gnuradio/BuildGuide
http://gnuradio.org/redmine/wiki/gnuradio/BuildGuide
http://gnuradio.org/redmine/wiki/gnuradio/Download


124 Computer Networks: An Open Source Approach

   8. Draw the waveforms using the schemes of unipolar 

NRZ-L, Polar NRZ-L, NRZ-I, and RZ for the follow-

ing data streams. Calculate the value of sdr (signal-to-

data ratio) and the average baud rate.  

   a. 101010101010  

   b. 111111000000  

   c. 111000111000  

   d. 000000000000  

   e. 111111111111    

   9. Draw the waveforms using the schemes of Man-

chester and differential Manchester for the fol-

lowing data streams. Calculate the value of sdr 

(signal-to-data ratio) and the average baud rate.  
   a. 101010101010  

   b. 111111000000  

   c. 111000111000  

   d. 000000000000  

   e. 111111111111    

   10. Draw the waveforms using the scheme of MLT-3 

for the following data streams. Calculate the 

value of sdr (signal-to-data ratio) and the aver-

age baud rate.  
   a. 101010101010  

   b. 111111000000  

   c. 111000111000  

   d. 000000000000  

   e. 111111111111    

   11. Given a data stream of a bit rate 1 Mbps, 2 Mbps, or 

54 Mbps, calculate the baud rate using the modulation 

of BFSK, BASK, BPSK, QPSK, 16-PSK, 4-QAM, 

16-QAM, and 64-QAM.  

   12. Given the baud rates of 8 kBd and 64 kBd, calculate 

the bit rate for the modulation of BFSK, BASK, 

BPSK, QPSK, 16-PSK, 4-QAM, 16-QAM, and 

64-QAM.  

   13. Given a data stream of a bit rate 56 kbps or 256 kbps, 

what are the chip rate and process gain if the 11-bit or 

13-bit Barker code is used as the PN code to spread 

the data stream?  

   14. What are the major differences between synchronous 

CDMA and asynchronous CDMA?  

   15. Compare the PN codes and the orthogonal codes used 

in CDMA. Why can we support more users with PN 

codes than with orthogonal codes?  

   16. How can we tell whether two PN codes used in asyn-

chronous CDMA are correlated or uncorrelated?  

   17. How can we tell whether two codes used in synchro-

nous CDMA are orthogonal to each other?  

   18. Explain why spread spectrum can mitigate sur-

rounding noise and remove interference from other 

adjacent users, either narrowband or wideband. 

Why is it able to provide a better protection for 

privacy?  

   19. In FHSS, is it possible for two transmitting stations to 

hop to the same sub-channel at the same time, that is, 

to collide? Justify your answer.  

   20. What are the main components used to implement the 

multicarrier mechanism in OFDM? How does a data 

stream exploit multiple carriers and travel through an 

OFDM channel?  

   21. What are the criteria for two signals to be orthogonal 

to each other in OFDM?  

   22. What are the advantages and disadvantages for a 

MIMO system with or without the knowledge of 

channel state information?  

   23. What are the major differences between single-user 

MIMO and multi-user MIMO?                                                   

lin76248_ch02_054-124.indd   124lin76248_ch02_054-124.indd   124 24/12/10   4:13 PM24/12/10   4:13 PM



CC h a pp t e rr 3

 125

 Link Layer 

  Effective and efficient data transmission over physical links from one node 

to another is more than simply  modulating  or  encoding  bit streams into sig-

nals. Several issues must be addressed first for successful data transmission. 

For example, crosstalk noise between adjacent link pairs can unexpectedly impair 

transmission signals and result in errors, so the link layer needs proper error control 

mechanisms for reliable data transmission. The transmitter might transmit at a rate 

 faster  than what the receiver can handle, and has to slow down if this situation hap-

pens notify the receiver where the source of the packets is. If multiple nodes share 

a LAN, an  arbitration  mechanism is required to determine who can transmit next. 

Beyond all of the above, we need to interconnect LANs—that is, we need to bridge 

different LANs to extend packet forwarding beyond a single LAN. Although these is-

sues need to be addressed by a set of functions above the physical link, the link layer 

in the OSI architecture manages physical links for the upper-layer functions and 

therefore exempts the upper layers from the tedious work of controlling the physical 

link. The link layer greatly alleviates upper-layer protocol design and makes it virtu-

ally independent of physical transmission characteristics. 

 In this chapter, we present (1) functions or services provided in the link layer, 

(2) popular real-world link protocols, and (3) a set of selected open-source software 

and  hardware  implementations of link-layer technologies. Section 3.1 addresses the 

general issues in designing link layer functions, including  framing ,  addressing ,  error 
control ,  flow control ,  access control , and  interfaces  with other layers. We illustrated 

the interfaces and packet flows with the network adaptor, and the upper IP layer with 

function calls in Linux, as a  zoom-in  of a packet’s life in Section 1.5. 

 Given a vast variety of real-world link technologies summarized in  Table 3.1 , it is 

hardly possible to describe all of them in this chapter, so here we focus on only a few 

mainstream link technologies. We detail (1) Point-to-Point Protocol, or PPP for short, 

in Section 3.2, along with its open-source implementation, (2) a wired broadcast link 

protocol, Ethernet, in Section 3.3 along with its Verilog  hardware  implementation, 

and (3) a wireless broadcast link protocol, wireless LAN or WLAN, in Section 3.4, 

plus a summary on Bluetooth, and WiMAX. We select these examples due to their 

popularity. PPP is popular in the last-mile dial-up services or in routers carrying 

various network protocols over point-to-point links. Ethernet has been dominating 

the wired LAN technology, and is also poised to be  ubiquitous  in MANs and WANs. 

In contrast to desktop PCs that usually use wired links to connect to the network, us-

ers of mobile devices such as laptop computers and cellular phones prefer wireless 

lin76248_ch03_125-222.indd   125lin76248_ch03_125-222.indd   125 24/12/10   4:24 PM24/12/10   4:24 PM



126 Computer Networks: An Open Source Approach

link technologies, i.e., WLAN, Bluetooth and WiMAX. Since multiple LANs can be 

interconnected by bridging, we cover this technology in Section 3.5, along with the 

open-source implementations of its two key components,  self-learning  and  spanning 
tree . Finally, Section 3.6 illustrates the general concepts of Linux device  drivers , and 

we then go into details of Ethernet driver implementation. 

    3.1 GENERAL ISSUES 

  Sandwiched between the physical link and the network layer, the link layer provides 

control over physical communications and services to the upper network layer. This 

layer performs the following major functions. 

    Framing:  Data transmitted on a physical link are packed in units of  frames . 

A frame contains two main parts: control information in the header, and the 

data in the payload. Control information, such as the destination address, 

the upper-layer protocol in use, the error detection code, and so on, are 

critical to frame processing. The data part handed from the upper layer is 

 encapsulated  with the control information into the frame. Because frames 

are transmitted as raw bit streams in the physical layer, the link layer service 

should turn frames into bit streams upon transmission, and break the bit 

stream into frames upon reception. Most literature uses the two terms, 

 packets  and  frames , interchangeably, but we specifically refer to a  packet 
data unit  in the link layer as a  frame .  

TABLE 3.1 Link Protocols

PAN/LAN MAN/WAN

Obsolete or 
fading away

Token Bus (802.4) 

Token Ring (802.5) 

HIPPI

Fiber Channel

Isochronous (802.9)

Demand Priority (802.12)

FDDI

ATM

HIPERLAN

DQDB (802.6)

HDLC

X.25

Frame Relay

SMDS

ISDN

B-ISDN

Mainstream 
or still active

Ethernet (802.3)

WLAN (802.11)

Bluetooth (802.15)

Fiber Channel

HomeRF

HomePlug

Ethernet (802.3) 

Point-to-Point Protocol (PPP)

DOCSIS

xDSL

SONET

Cellular (3G, LTE, WiMAX ([802.16])

Resilient Packet Ring (802.17)

ATM

lin76248_ch03_125-222.indd   126lin76248_ch03_125-222.indd   126 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 127

   Addressing:  We need to specify an address when writing a letter to our 

friends, and we also need a phone number when making phone calls 

to them. Addressing in the link layer is needed for the same reason. A 

link-layer address, often presented in a numeric form of a certain length, 

specifies the identity of a host. When host  A  wants to transmit a frame 

to host  B , it includes its address and host  B ’s address as the source and 

destination addresses in the frame’s control information.  

   Error control and reliability:  Frames transmitted over physical media are 

subject to errors, and the receiver must be capable of detecting these errors 

through a certain mechanism. Upon detecting an error, the receiver may 

simply drop the frame, or it may acknowledge the error occurrence and 

request that the transmitter retransmit the frame. For data-link technology 

like Ethernet, the bit error rate is extremely low, so the retransmission 

mechanism could be left to a high-layer protocol such as TCP for high 

efficiency. For wireless link technology like 802.11, the transmitter will 

wait for an acknowledgment from the receiver for a certain amount of time, 

and if no acknowledgment is received upon timeout, the transmitter will 

retransmit the last frame so as to ensure the retransmission could be in 

time.  

   Flow control:  The transmitter may send at a rate faster than what the receiver 

can afford. In this case, the receiver has to discard the excess frames and 

make the transmitter retransmit the discarded frames, but doing so just 

wastes their capacity. Flow control provides a mechanism to let the receiver 

 slow down  the transmitter in order to avoid the receiver being overloaded 

with the data from the transmitter side.  

   Medium access control:  There must be an arbitration mechanism to 

decide who gets to transmit next when multiple hosts want to transmit 

data over shared media. A good arbitration mechanism must offer fair 

access to the shared medium while keeping the shared medium highly 

utilized in case many hosts have backlogs; that is, data queued to be 

transmitted.   

  3.1.1 Framing 
 Since data are transmitted as raw bit streams in the physical layer, the link layer must 

identify the beginning and the end of each frame when receiving a bit stream. On the 

other hand, it must also turn frames into a raw bit stream for physical transmission. 

This function is called framing. 

  Frame Delimiting 

 Several methods can be used to delimit the frames. Special bit patterns or  sentinel  
characters can be used to mark the frame boundary, such as the HDLC frames which 

will be introduced later. Some Ethernet systems use special  physical encoding  to 

mark frame boundaries, while others identify the boundary simply by the presence 

lin76248_ch03_125-222.indd   127lin76248_ch03_125-222.indd   127 24/12/10   4:24 PM24/12/10   4:24 PM



128 Computer Networks: An Open Source Approach

or absence of signal.  1   The former has been used since the birth of fast Ethernet (i.e., 

100 Mbps) because it can detect the physical link status. The latter is unable to do so 

because it cannot tell whether the physical link is broken or whether no frames are 

being transmitted (no signal is on the link in both cases). It was once used in 10 Mbps 

Ethernet, but is no longer used with newer Ethernet technology. 

 A frame could be bit-oriented or byte-oriented, depending on its basic unit. 

A bit-oriented framing protocol can specify a special bit pattern, say 01111110 in 

HDLC, to mark the beginning and the end of the frame, while a byte-oriented fram-

ing protocol can specify special characters, say SOH (start of header) and STX (start 

of text), to mark the beginning of frame header and data. Since an ambiguity may 

exist when normal data characters or bits exhibit the same pattern as the special ones, 

a technique called  byte-  or  bit-stuffing  is used to resolve the ambiguity, as illustrated 

in  Figure 3.1 . In a byte-oriented frame, a special  escape  character, namely DLE (data 

link escape), precedes a special character to indicate the next character is normal 

data. Because DLE itself is also a special character, two consecutive DLEs represent 

a normal DLE character. In HDLC, a binary 0 is inserted after every sequence of  five  

consecutive 1’s so that the pattern 01111110 never appears in normal data. Both the 

transmitter and the receiver follow the same rule to resolve the ambiguity. 

 Ethernet takes a different framing approach. For example, 100BASE-X uses 

special encoding to mark the boundary; by  4B/5B  encoding, described in  Chapter 2 , 

only  16  out of  32  (= 2 5 ) possible codes come from actual data while the rest serve 

as  control codes . These control codes are uniquely recognizable by the receiver 

and thus used to delimit a frame out of a bit stream. Another Ethernet system, 

10BASE-T, recognizes the frame boundary simply based on the presence or absence 

of a signal.  

   FIGURE 3.1 (a) Byte-stuffing and (b) bit-stuffing. 

SOH Header information DLESTX

Data-link
escape 

(a) 

01111110101011100011101111100000110111001101010101010101111101011…

Start of a frame 
Stuffing bit 

Five consecutive 1’s Five consecutive 1’s

(b)

Start
of text End of text

DLE DLE Data portion

Stuffing bit 

Start of a frame header

ETX

  1  Ethernet uses the term “stream” to refer to physical encapsulation of a frame. Strictly speaking, special 

encoding or presence of signal delimit stream, not frame. However, we do not with bother the details here. 

lin76248_ch03_125-222.indd   128lin76248_ch03_125-222.indd   128 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 129

  Frame Format 

 The frame header contains control information, and the frame data includes data of 

the link layer or the network layer. The latter again contains control information and 

data from the higher layers. Typical control information in the frame header includes 

the following fields:

    Address : This usually indicates both the source and the destination address. 

A receiver knows the frame is destined for itself if the destination address 

in the frame header matches its own. The receiver also can respond to the 

source of an incoming frame by filling in the destination address of the 

outgoing frame with the source address of the incoming frame. 

    Length : This may indicate the entire frame length or merely the data length.  

   Type : The type of the network layer protocol is encoded in this field. The link 

layer protocol can read the code to determine which network layer module, 

say Internet Protocol (IP), to invoke to further process the data field.  

   Error detection code : This is the value of a mathematical  function  for the 

content in a frame as the input argument. The transmitter computes the 

function and embeds the value in the frame. Upon receiving the frame, the 

receiver computes the function in the same way to see if the result matches 

the value embedded in the frame. If not, it implies the content has been 

altered somewhere during transmission.      

  3.1.2 Addressing 
 An address is an identifier for distinguishing a host from others in communications. 

Although a  name  is easier to remember, a numerical address is a more compact 

representation in low-layer protocols. We leave the concept of using names as host 

identifiers to  Chapter 5  (see  Domain Name System ). 

  Global or Local Address 

 An address can be globally unique or locally unique. A globally unique address is 

unique worldwide, while a locally unique address is only unique in a local site. In 

general, a locally unique address consumes fewer bits but requires the administra-

tor’s efforts to ensure the local uniqueness. Since a few bits of overhead in the 

address are trivial, globally unique addresses are preferred nowadays so that the 

administrator simply adds a host to the network at will, and does not need to worry 

about the conflict over local addresses.  

  Address Length 

 How long should an address be? A long address takes more bits to be transmitted, 

and is harder to remember or refer to, but a short address may not be enough to 

ensure global uniqueness. For a set of locally unique addresses, 8 or 16 bits should 

be enough, but much more is required to support globally unique addresses. A very 

popular addressing format in IEEE 802 is 48-bit long. We leave it as an exercise for 

readers to determine whether this length is sufficient for global usage.  

lin76248_ch03_125-222.indd   129lin76248_ch03_125-222.indd   129 24/12/10   4:24 PM24/12/10   4:24 PM



130 Computer Networks: An Open Source Approach

  IEEE 802 MAC Address 

 IEEE 802 standards provide excellent examples of the link addressing format be-

cause they are widely adopted in many link protocols, including Ethernet, Fiber 

Distribution Data Interface (FDDI), and wireless LAN. While IEEE 802 specifies 

the use of either 2-byte- or 6-byte-long addresses, most implementations adopt the 

6-byte (or 48-bit) addressing format. To ensure its global uniqueness, the address is 

partitioned into two parts:  Organization-Unique Identifier  (OUI) and Organization-

Assigned Portion, each occupying three bytes. The IEEE administers the former, so 

organizations can contact the IEEE to apply for an OUI,  2   and after that they are in 

charge of the uniqueness of their OUI’s Organization-Assigned Portion. In theory, 

with IEEE 802 specifications, 2 48  (around 10 15 ) addresses can be assigned, and this 

number is large enough to ensure global uniqueness. An IEEE 802 address is often 

written in  hexadecimal,  with every two digits separated by a dash or a colon, e.g., 

00-32-4f-cc-30-58.  Figure 3.2  illustrates IEEE 802 address format. 

 The first bit in transmission order is reserved to indicate whether the address is 

 unicast  or  multicast .  3   A unicast address is destined for a single host, while a multicast 

address is destined for a group of hosts. A special case of multicast is  broadcast , where 

 all  bits in the address are  1 ’s. A broadcast-type frame is destined for all hosts as far 

as it can reach in the link layer. Note that the transmission order of  bits  in each byte 

in the address may be different from the order in which they are stored in memory. In 

Ethernet, the transmission order is  least  significant bit (LSB) first in each byte, called 

 little-endian . For example, given a byte b 7 b 6 …b 0 , Ethernet first transmits b 0 , then b 1 , b 2 , 

and so on. In other protocols such as FDDI and Token Ring, the transmission order is 

 most  significant bit (MSB) first in each byte, which is called  big-endian .   

  3.1.3 Error Control and Reliability 
 Frames are subject to errors during transmission, and the link-layer devices are sup-

posed to detect these errors in time. As mentioned in Subsection 3.1.1, error detec-

tion code is a function of the frame content, computed by the transmitter to fill in a 

  2  See  http://standards.ieee.org/regauth/oui/oui.txt  for information about how OUI has been assigned. 

   3  The second bit can indicate whether the address is globally unique or locally unique. However, such 

usage is infrequent, so we ignore it here.  

   FIGURE 3.2 IEEE 802 address format. 

First byte

First bit transmitted
0: unicast address
1: multicast address

Second byte Third byte Fourth byte Fifth byte Sixth byte

MAC address

Organization-Unique
Identifier (OUI)

Organization-Assigned
Portion

lin76248_ch03_125-222.indd   130lin76248_ch03_125-222.indd   130 24/12/10   4:24 PM24/12/10   4:24 PM

http://standards.ieee.org/regauth/oui/oui.txt


 Chapter 3 Link Layer 131

field of the frame. The receiver will use the same algorithm to recompute the error 

detection code with the received frame content to and see if both code values match. 

If not, an error must have occurred during transmission. In the following we illus-

trate two commonly used error detection functions:  checksum  and  cyclic redundancy 
check  (CRC). 

  Error Detection Code 

 The checksum computation simply divides the frame content into blocks of  m  bits 

and takes the  m -bit  sum  of these blocks. The computation is simple, and can be easily 

implemented in software. In Open Source Implementation 3.1, we will introduce a 

piece of code that implements the checksum computation. 

 Another powerful technique is cyclic redundancy check, which is more compli-

cated than checksum but easy to implement in hardware. Suppose  m  bits are in the 

frame content. The transmitter can generate a sequence of  k  bits as the  frame check 
sequence  (FCS) such that the whole frame of  m+k  bits can be divided by a prede-

termined bit pattern called  generator . The receiver divides the received frame in the 

same way to see if the remainder is  zero . If the remainder is nonzero, there are errors 

during transmission. The following example demonstrates a trivial CRC procedure 

to generate the FCS.

       frame content F = 11010001110 (11 bits) 

  generator B = 101011 (6 bits) 

  FCS = (5 bits) 

 The procedure goes as follows: 

    Step 1  Shift F by 2 5  and append five 0’s to it, which yields 1101000111000000.  

   Step 2  The resulting pattern in Step 1 is divided by B. The process is as 

follows: 

 (the computation is all module-2 arithmetic)

   

1101000111000000101011

11000001111

101011

111110
101011

101011
101011

110000
101011

110110
101011

111010
101011

10001 the remainder    

lin76248_ch03_125-222.indd   131lin76248_ch03_125-222.indd   131 24/12/10   4:24 PM24/12/10   4:24 PM



132 Computer Networks: An Open Source Approach

   Step 3  The remainder in this computation is appended to the original frame 

content, yielding 11010001110 10001.  The frame is then transmitted. The 

receiver divides the incoming frame content by the same generator to verify 

the frame. We leave the verification on the receiver side as an exercise.   

 The above description is simplified because the reasoning behind the practical CRC 

computation is rather mathematically complex. It has been proven that the CRC can 

detect many kinds of errors, including 

  1.   single-bit error.  

   2. double-bit error.  

   3. any burst errors whose length is less than that of the FCS.   

 The CRC computation can be easily implemented in hardware with  exclusive-OR  

gates and  shift registers . Suppose we represent the generator with the form a n a n-1  

a n-2 …a 1 a 0 , where bits a n  and a 0  must be 1. We plot a general circuit architecture that 

implements the CRC computation in  Figure 3.3 . The frame content is shifted into 

this circuit bit by bit, and the final bit pattern in the shift registers is the FCS, i.e., 

C n-1 C n-2 …C 1 C 0 . The initial values of C n-1 C n-2 …C 1 C 0  are insignificant because they 

will be shifted out once the computation begins. For very high-speed links, circuits of 

parallel CRC computation are employed to meet the high-speed requirement. 

   Data Reliability 

 But how does the receiver respond to an erroneous frame? The receiver can respond 

in the following ways:

  1.   Silently discard the incorrect incoming frame.  

   2. Reply with positive acknowledgment when the incoming frame is correct.  

   3. Reply with negative acknowledgment when the incoming frame is incorrect.    

 The transmitter may retransmit the received erroneous frame or simply just ignore the 

errors. In the latter case, higher-layer protocols, say TCP, will handle the retransmission. 

 Another decision to make is whether to implement data acknowledgment in the 

link layer. Ethernet does not use the acknowledgment mechanism because its bit 

error rate is quite low, so demanding an acknowledgment for each transmitted frame 

is overkill. The acknowledgment mechanism is therefore left to the higher-layer pro-

tocol such as TCP. For wireless links, the bit error rate is much higher than Ethernet 

(i.e., less reliable), so it is safer to acknowledge every transmitted frame. The use 

of the acknowledgment mechanism, however, is at the price of lowered throughput 

because the sender must wait for the acknowledgment before the next transmission. 

There is still a trade-off between high throughput and the capability to detect an error 

in time in a link-layer design. 

   FIGURE 3.3 CRC circuit diagram. 

Frame bitsC1 C0Cn–1 Cn–2

an–1 a2 a1

lin76248_ch03_125-222.indd   132lin76248_ch03_125-222.indd   132 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 133

 Principle in Action: Error Correction Code 

 Error  detection  codes like CRC and checksum can only detect transmission 

error. Once an error is found, the receiver is unable to do anything but discard the 

frame. An alternative is  forward error correction  (FEC) using error  correction  

code. By FEC, the sender side appends even  more  redundant bits to the mes-

sage. The key difference between error correction and error detection is that it 

is possible to  infer  the bits with errors and correct them. After the erroneous bits 

in a frame are “corrected,” the frame can be accepted without retransmission. 

We will not go into the mathematical details here, but rather point out a general 

principle: More bits to be corrected require more redundant bits to be used. A 

question therefore arises: Is it worthwhile to add more redundant bits for error 

correction? 

 The answer depends on the  bit error rate , the possible  direction  of trans-

mission, and the  importance  of data. In common data-link protocols such as 

Ethernet, the bit error rate is pretty low, e.g., 1 bit error every 10 10  bits transmit-

ted in Ethernet. Using error correction codes in this case apparently is overkill, 

and even for a wireless LAN, error detection is sufficient. When data are trans-

mitted over the Internet, most errors come from packet dropping due to Internet 

congestion, so error correction codes still cannot help too much here. 

 Common applications of error correction codes are space telecommunica-

tions, data storage, and satellite broadcasting. The cost of retransmission in 

space telecommunications is high, so it is worthwhile to use error correction 

codes. Since satellite broadcasting is  one-way , there is no acknowledgment or 

retransmission; thus error correction is needed. In data storage, if an error oc-

curs, error detection helps little because the data storage is the  only  data source 

and the error cannot be recovered anyway. In this case, error correction codes 

can at least recover bit errors to a certain degree. In satellite broadcasting, since 

there is no way for the receiver to notify the source of bit errors, error correction 

is preferred. 

 Principle in Action: CRC or Checksum? 

 Checksum is used in higher-layer protocols such as TCP, UDP, and IP, while 

CRC is found in Ethernet and wireless LAN. There are two reasons behind this 

distinction. First, CRC is easily implemented in hardware, but  not  in software. 

Because higher-layer protocols are almost always implemented in software, 

using checksum for them is a natural choice. Second, CRC is mathematically 

proven to be robust to a number of errors in physical transmission. Since CRC 

has filtered out  most  transmission errors, using checksum to  double-check  

unusual errors (e.g., those that happen within a network device) should be suf-

ficient in practice. 

lin76248_ch03_125-222.indd   133lin76248_ch03_125-222.indd   133 24/12/10   4:24 PM24/12/10   4:24 PM



134 Computer Networks: An Open Source Approach

 Open Source Implementation 3.1: Checksum 

  Overview 
 Checksum computation is a common error detection code used in Internet 

protocols, such as IP, UDP, and TCP. Its efficiency is critical to good routing 

performance, as  every  packet needs the checksum computation in its network-

layer header and transport-layer header. For example, the checksum field in the 

TCP header covers both the header and payload content in the TCP segment as 

well as a pseudo header of additional information such as the source and destina-

tion IP addresses. If the checksum computation in the TCP protocol stack is not 

implemented well, it will consume a significant number of CPU cycles in the 

packet forwarding process.  

  Block Diagram 
  Figure 3.4  is a block diagram that illustrates how checksum is implemented. In 

the beginning, the  sum  and  checksum  variables are initialized to 0 and kept 

updated for each batch of 16-bit word input from the covered range of octets 

of a packet. After the final-batch computation, the  sum’s  value is folded (see 

following discussion) to derive the  checksum  value. The following details the 

Linux implementation of checksum computation. 

   Data Structures 
 The data structure of checksum computation is trivial. It contains a  sum  variable 

that accumulates the 16-bit words throughout the fields and payload being cov-

ered, and a  count  variable to count how many 16-bit words are left. Note that 

the  sum  variable is a 32-bit word to capture overflow from the accumulation. 

After computing the last 16-bit word, the  sum  variable is folded into a 16-bit 

word, and the  checksum  value is the 1’s complement of the folded value.  

  Algorithm Implementations 
 For those octets to be covered in the checksum computation, the adjacent octets 

are first paired to form 16-bit words, and then the 1’s complement sum of these 

pairs is computed. If there is a byte left without a pair, it is added into the check-

sum directly. Finally, the 1’s complement of the result is filled into the checksum 

   FIGURE 3.4 Block diagram of checksum computation. 

folding

checksum

sum

1’s complement
addition

16-bit word
checksum = 0 (initially)

lin76248_ch03_125-222.indd   134lin76248_ch03_125-222.indd   134 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 135

field. The receiver follows the same procedure to compute over the same octets 

for the checksum field. If the result is all 1’s, the check succeeds. Because the 

Linux implementation of checksum is usually written in assembly languages 

for efficiency, we present the C code in RFC 1071 for better readability. Open 

Source Implementation 4.3 in  Chapter 4  explains the assembly version of IP 

checksum computation in the Linux kernel. 

/* Compute Internet Checksum for “count” bytes 
 * beginning at location “addr”. 
 */ 
 register long sum = 0; 
 while( count > 1 ) { 

 sum += * (unsigned short) addr++; 
 count -= 2; 

 } 
 /* Add left-over byte, if any */ 
 if( count > 0 ) 

 sum += * (unsigned char *) addr; 
 /* Fold 32-bit sum to 16 bits */ 
 while (sum>>16) 

 sum = (sum & 0xffff) + (sum >> 16); 
 checksum = ~sum;   

  Exercises 
  1.   The TTL field of an IP packet is subtracted by 1 when the IP packet passes 

through a router, and thus the checksum value after the subtraction must be 

changed. Please find an efficient algorithm to recompute the new checksum 

value. (Hint: See RFC 1071 and 1141.)  

   2. Explain why the IP checksum does not cover the payload in its computation.    

 Open Source Implementation 3.2: Hardware 
CRC-32 

  Overview 
 CRC-32 is a commonly used error detection code for many MAC protocols, 

including Ethernet and 802.11 Wireless LAN. For high-speed computation, 

CRC-32 is usually implemented in hardware as part of the on-chip functions 

in the network interface card. As the data in batches of 4 bits are input from or 

output to the physical link, they are processed sequentially   to derive the 32-bit 

CRC value. The computation result is either used to verify the correctness of a 

frame or appended to a frame to be transmitted.  

Continued

lin76248_ch03_125-222.indd   135lin76248_ch03_125-222.indd   135 24/12/10   4:24 PM24/12/10   4:24 PM



136 Computer Networks: An Open Source Approach

  Block Diagram 
  Figure 3.5  is a block diagram that illustrates how CRC is implemented in 

hardware. Initially, 32 bits of 1’s are assigned to the  crc  variable. When 

each batch of four bits is swept in, the bits update the current  crc  variable to 

 crc_next , which is assigned back to  crc  for the next batch of 4-bit data. 

The updating process involves computation with many parameters, so we omit 

its details. After all data is processed, the value stored in the  crc  variable is 

the final result.  

  Data Structures 
 The data structure of CRC-32 computation is mainly the 32-bit  crc  variable 

that keeps the latest state after reading each batch of 4-bit data. The final result 

of CRC-32 computation is the state after reading the final batch of data.  

  Algorithm Implementations 
 An open-source implementation of CRC-32 can be found in the Ethernet 

MAC project on the OpenCores Web site ( http://www.opencores.org ). See the 

Verilog implementation  eth_crc.v  in the CVS repository of the project. 

In this implementation, the data come into the CRC module sequentially in 

batches of four bits. The CRC value is initialized to all 1’s in the beginning. 

Each bit of the current CRC value comes from xor’ing the selected bits in the 

incoming 4-bit input and those of the CRC value from the previous round. 

Because of the complication in computation, we refer the readers to  eth_
crc.v  for the relevant details in each bit’s computation. After the data bits’ 

computation finishes, the final CRC value is derived at the same time. The 

receiver follows the same procedure to compute the CRC value and check the 

correctness of the incoming frames.  

  Exercises 
    1. Could the algorithm in  eth_src.v  be easily implemented in software? 

Justify your answer.  

   2. Why do we use CRC-32 rather than the checksum computation in the link 

layer?    

   FIGURE 3.5 Block diagram of CRC-32 computation. 

crc_next[31:0]

crc[31:0]
CRC

data[3:0]
crc = 32’hffffffff (initially)

lin76248_ch03_125-222.indd   136lin76248_ch03_125-222.indd   136 24/12/10   4:24 PM24/12/10   4:24 PM

http://www.opencores.org


 Chapter 3 Link Layer 137

    3.1.4 Flow Control 
 Flow control addresses the problem of a fast transmitter and a slow receiver. It 

provides a method that allows an overwhelmed receiver to tell the transmitter 

to slow down its transmission rate. The simplest flow-control method is  stop-
and-wait , in which the transmitter transmits one frame, waits for the acknowledg-

ment from the receiver, and then transmits the next. This method, however, results 

in a very low utilization of the transmission link. Better methods are introduced 

as follows. 

  Sliding Window Protocol 

 More efficient flow control can be achieved by the  sliding window protocol , in which 

the transmitter can transmit up to a fixed number of frames without acknowledg-

ments. When the acknowledgments are returned from the receiver, the transmitter 

can move forward to transmit more frames. For the purpose of tracking which out-

going frame corresponds to which returned acknowledgment, each frame is labeled 

with a  sequence number . The range of sequence numbers should be large enough to 

prevent the number from being used by more than one frame at the same time; other-

wise, there will be ambiguity since we have no way of telling whether the sequence 

number represents an old or a new frame. 

  Figure 3.6  illustrates an example of sliding window. Suppose the  window size  

of the transmitter is 9, meaning that the transmitter can transmit up to nine frames, 

say frame no. 1 to no. 9, without acknowledgments. Suppose the transmitter has 

transmitted four frames (see  Figure 3.6 [a]) and received an acknowledgment that the 

first three frames are successfully received. The window will slide forward by three 

frames meaning that by now eight frames (i.e., frames no. 5 to no. 12) can be trans-

mitted without acknowledgments (See  Figure 3.6 [b]). The window originally cover-

ing frames no. 1 to no. 9 now covers frames no. 4 to no. 12, which in some sense acts 

as if the window slides along the sequence of frames. Sliding window flow control 

   FIGURE 3.6 Sliding window over transmitted frames. 

Sent frames Frames to be sent

Window size (9 frames)

1 2 3 4 5 6 7 8 9 10 11 12

Sent frames Frames to be sent

1 2 3 4 5 6 7 8 9 10 11 12

Acknowledged frames Window size (9 frames)

lin76248_ch03_125-222.indd   137lin76248_ch03_125-222.indd   137 24/12/10   4:24 PM24/12/10   4:24 PM



138 Computer Networks: An Open Source Approach

is a very important technique in Transmission Control Protocol (TCP), an excellent 

and most practical example that adopts the sliding window. We shall introduce its 

application in TCP in  Chapter 4 . 

   Other Approaches 

 There are more methods to implement flow control. For example, the mechanisms 

in Ethernet include  back pressure  and  PAUSE frame . However, to understand these 

methods requires the knowledge of how these protocols operate. We leave these flow 

control techniques to Subsection 3.3.2.   

  3.1.5 Medium Access Control 
 Medium access control, also simply referred to as MAC, is needed when multiple 

nodes share a common physical medium. It includes an arbitration mechanism that 

every node should obey in order to share fairly and efficiently. We summarize the 

techniques into two categories. 

  Contention-Based Approach 

 By this approach, multiple nodes contend for the use of the shared medium. A clas-

sical example is ALOHA, in which nodes transmit data at will. If two or more nodes 

transmit at the same time, a  collision  occurs, and their frames in transmission will be 

garbled, degrading the throughput performance. A refinement is the  slotted  ALOHA, 

in which a node is allowed to transmit only in the beginning of its time slot. Further 

refinements include  carrier sense  and  collision detection . Carrier sense means the 

node  senses  if there is an ongoing transmission (in a signal called a  carrier ) over 

the shared medium. The transmitter will  wait  politely until the shared medium is free. 

Collision detection  shortens  the garbled bit stream by stopping the transmission once 

a collision is detected.  

  Contention-Free Approach 

 The contention-based approach becomes inefficient if a collision cannot be detected 

in time. A complete frame might have been garbled  before  the transmission can 

be stopped. Two commonly seen contention-free approaches are round-robin and 

reservation-based. In the former, a token is circulated among nodes one after another 

to allow fair share of the medium, and only a node in possession of the token has the 

right to transmit its frame. Typical examples include Token Ring and FDDI; their 

mechanisms are similar despite different structures. The reservation-based approach 

manages to reserve a channel of the shared medium before the transmitter actually 

transmits the frame. A well-known example is the RTS/CTS mechanism in IEEE 

802.11 WLAN. We will talk more about this mechanism in Section 3.4. Using res-

ervation incurs a performance trade-off since the process itself induces overhead. If 

a frame loss is insignificant, e.g., a  short  frame, a contention-based approach may 

work better in this case. If only two nodes are on a point-to-point link, the access 

control might not be necessary at all if it is a full-duplex link. We will further discuss 

full-duplex operation in Section 3.2.   

lin76248_ch03_125-222.indd   138lin76248_ch03_125-222.indd   138 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 139

  3.1.6 Bridging 
 Connecting separate LANs into an interconnected network can extend the network’s 

communication range. An interconnection device operating in the link layer is called 

a  MAC bridge , or simply  bridge , which interconnects LANs as if their nodes were in 

the same LAN. The bridge knows  whether  it should forward an incoming frame and 

to  which  interface port. To support  plug-and-play  operation and easy administration, 

the bridge should automatically learn which port a destination host belongs to. 

 As the topology of a bridged network gets larger, network administrators may 

inadvertently create a  loop  within the topology. IEEE 802.1D, or the IEEE MAC 

bridges standard, stipulates a  spanning tree protocol  ( STP ) to eliminate loops in a 

bridged network. There are other issues such as separating LANs logically, combin-

ing multiple links into a trunk for a higher transmission rate, and specifying the prior-

ity of a frame. We shall introduce the details in Section 3.5.  

  3.1.7 Link-Layer Packet Flows 
 The link layer lies above the physical link and below the network layer. During 

packet transmission, it receives a packet from the network layer, encapsulates the 

packet with appropriate link information such as MAC addresses in the frame 

header and the frame check sequence in the tail, and transmits the frame over the 

physical link. Upon receiving a packet from the physical link, the link layer extracts 

the header information, verifies the frame check sequence, and passes the payload 

to the network layer according to the protocol information in the header. But what 

are the actual  packet flows  between these layers? Continued from a packet’s life in 

Section 1.5, we illustrate the packet flows for both frame reception and transmission 

in Open Source Implementation 3.3. 

 Open Source Implementation 3.3: Link-Layer 
Packet Flows in Call Graphs 

  Overview 
 The packet flow of the link layer follows two paths. In the reception path, a 

frame is received from the physical link and then passed to the network layer. 

In the transmission path, a frame is received from the network layer and then 

passed to the physical link. Part of the interface between the link layer and the 

physical link is located in hardware. The Ethernet interface, for example, will 

be introduced in Open Source Implementation 3.5. We introduce the code in the 

device driver to emphasize the  software  part in frame transmission or reception.  

  Block Diagram 
  Figure 3.7  illustrates the interfaces above and below the link layer and the 

overall packet flows. The “Algorithms” section will explain the details of how 

Continued

lin76248_ch03_125-222.indd   139lin76248_ch03_125-222.indd   139 24/12/10   4:24 PM24/12/10   4:24 PM



140 Computer Networks: An Open Source Approach

packets flow through the functions in  Figure 3.7 . For the hardware interfaces 

between the MAC and PHY, please refer to Open Source Implementation 3.5: 

CSMA/CD for a typical Ethernet example. 

   Data Structures 
 The most critical data structure is the  sk_buff  structure, which represents a 

packet in the Linux kernel. Some fields in  sk_buff  are for bookkeeping pur-

poses, and the others store the packet content, including the header and payload. 

For example, the following fields in the structure contain the header and payload 

information. 

   sk_buff_data_t transport_header; 
  sk_buff_data_t network_header; 
  sk_buff_data_t mac_header; 
  unsigned char *head, 
   *data; 

    Algorithm Implementations 
  Packet Flow in the Reception Path 
 When the network interface receives a frame, an interrupt is generated to signal 

the CPU to deal with the frame. The interrupt handler allocates the  sk_buff  

structure with the  dev_alloc_skb()  function and copies the frame into the 

structure. The handler then initializes some fields in  sk_buff , particularly 

the  protocol  field for use of the upper layer, and notifies the kernel about the 

frame arrival for further processing. 

   FIGURE 3.7 Link-layer packet flows. 

Physical link

Link layer

Medium Access Control (MAC)

Network layer

PHY

Device driver

IP

net_tx_action

net_rx_action

netif_receive_skb

qdisc_run

ip_finish_output2ip_rcv ipv6_rcv arp_rcv

poll (process_backlog)

dqueue_skb

q    dequeue

lin76248_ch03_125-222.indd   140lin76248_ch03_125-222.indd   140 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 141

 Two mechanisms can implement the notification process: (1) the old func-

tion  netif_rx() , and (2) the new API  net_rx_action()  for handling 

ingress frames since kernel version 2.6. The former is purely interrupt-driven, 

while the latter uses a hybrid of  interrupts  and  polling  for higher efficiency. For 

example, when the kernel is handling a frame and another new frame has ar-

rived, the kernel can keep handling the former frame and frames in the ingress 

queue until the queue is empty without being interrupted by the new arrival. Ac-

cording to some benchmark results, the CPU load is lower in cases of using the 

new API at high traffic loads, so we focus on the new API here. 

 The interrupt handling routine may involve one or more frames, depending 

on the driver’s design. When the kernel is interrupted by a new frame arrival, 

it calls the  net_rx_action()  function to poll a list of interfaces from a 

software interrupt  NET_RX_SOFTIRQ . The software interrupt is a  bottom-
half  handler, which can be executed in the background to avoid occupying 

the CPU too long for processing the frame arrival. The polling is executed in 

a round-robin fashion with a maximum number of frames that are allowed to 

be processed. The  net_rx_action()  function invokes the  poll()  virtual 

function (a generic function which will in turn call the specific polling function 

on a device) on each device to dequeue from the ingress queue. If an interface is 

unable to clear out its ingress queue because the number of frames allowed to be 

processed or the available execution time of  net_rx_action()  has reached 

the limit, it must wait until the next poll. In this example, the default handler 

 process_backlog()  is used for the  poll()  function. 

 The  poll()  virtual function in turn calls  netif_receive_skb()  to 

process the frame. When  net_rx_action()  is invoked, the L3 protocol type 

has already been in the protocol field of  sk_buff , set by the interrupt handler. 

Therefore,  netif_receive_skb()  knows the L3 protocol type and can 

copy the frame to the L3 protocol handler associated with the  protocol  field 

by calling 

  ret = pt _ prev->func(skb, skb->dev, pt _ prev, orig _
dev);  

 Here the function pointer  func  points to common L3 protocol handlers, 

such as  ip_rcv() ,  ip_ipv6_rcv() , and  arp_rcv() , which handle IPv4, 

IPv6, and ARP, respectively (to be covered in  Chapter 4 ). Up to now, the frame 

reception process is complete, and the L3 protocol handler takes over the frame 

and decides what to do next.  

  Packet Flow in the Transmission Path 
 Packet flow in the transmission path is symmetric to that in the reception 

path. The function  net_tx_action()  is the counterpart of  net_rx_
action() , and it is called when some device is ready to transmit a frame 

from the software interrupt  NET_TX_SOFTIRQ . Like  net_rx_action()  

from  NET_RX_SOFTIRQ , the bottom-half handler  net_tx_action()  can 

Continued

lin76248_ch03_125-222.indd   141lin76248_ch03_125-222.indd   141 24/12/10   4:24 PM24/12/10   4:24 PM



142 Computer Networks: An Open Source Approach

manage time-consuming tasks, such as releasing the buffer space after a frame 

has been transmitted. The  net_tx_action()  performs two tasks: (1) ensur-

ing the frames waiting to be sent are really sent by the  dev_queue_xmit()
function, and (2) deallocating the  sk_buff  structure after the transmission is 

completed. The frames in the egress queue may be scheduled for transmission 

following a certain  queuing discipline . The  qdisc_run()  function selects the 

next frame to transmit, and calls  dequeue_skb()  to release a packet from the 

queue  q . This function then calls the  dequeue()  virtual function of the associ-

ated queuing discipline on the queue  q .   

  Exercises 
 Explain why the CPU load could be lowered by using the new  net_rx_
action() function at high traffic loads.  

     3.2 POINT-TO-POINT PROTOCOL 

  This section focuses on the  Point-to-Point Protocol  (PPP), a widely used protocol 

in traditional dial-up lines or ADSL to the Internet. PPP was derived from an old 

but widely used protocol,  High-Level Data Link Control  ( HDLC ). Within its opera-

tions are two protocols,  Link Control Protocol  ( LCP ) and  Network Control Protocol
( NCP ). As Ethernet extends to homes and organizations with a bridge device such as 

an ADSL modem connected to the  Internet Service Provider  ( ISP ), there is the need 

for  PPP over Ethernet  ( PPPoE ).  Figure 3.8  shows the relationship between these 

components. 

   FIGURE 3.8 Relationship between PPP-related protocols. 

HDLC

• Broad purposes; serve as the basis
  of many data link protocols
• Point-to-point or point-to-multipoint;
  primary-secondary model

• Build a PPP link over Ethernet
• For access control and billing
• Discovery stage       PPP session

• Establish and configure
  different layer protocols
• Followed by datagram
  transmission

• Operations: NRM, ARM, ABM

PPP PPPoE

NCPLCP

is inherited from

is part of

is related to

NCP

• Carry multi-protocol datagrams over
  point-to-point link

• Establish, configure,
  test PPP connection

• Followed by an NCP

• Point-to-point only; peer-peer model

• LCP       NCP       carry datagrams

• A kind of NCP or IP
• Establish and configure IP
  protocol stacks on both peers
• Followed by IP datagrams
  transmission

lin76248_ch03_125-222.indd   142lin76248_ch03_125-222.indd   142 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 143

  3.2.1 High-Level Data Link Control (HDLC) 
 Derived from an early protocol,  Synchronous Data Link Control (SDLC) protocol  
by IBM, the HDLC protocol is an ISO standard and the basis of many other link 

protocols. For example, the PPP uses HDLC-like framing. IEEE 802.2  Logical 
Link Control  (LLC) is a modification of HDLC. CCITT (renamed ITU in 1993) 

modified HDLC as part of the X.25 standard, called  Link Access Procedure, Bal-
anced  (LAP-B). Among all the variants, HDLC supports point-to-point and point-

to-multipoint link, and half-duplex and full-duplex link. Next we take a look at the 

HDLC operation. 

  HDLC Operation: Medium Access Control 

 In HDLC, nodes are either  primary  or  secondary   stations . HDLC supports the fol-

lowing three transfer modes, each of which offers a way of controlling nodes to 

access the medium. 

    Normal response mode (NRM):  The secondary station can only  passively  

transmit data in response to the primary’s  poll . The response may consist of 

one or more frames. In a point-to-multipoint scenario, secondary stations 

must communicate through the primary.  

   Asynchronous response mode (ARM):  The secondary station can  initiate  the 

data transfer without the primary’s poll, but the primary is still responsible 

for controlling the connection.  

   Asynchronous balanced mode (ABM):  Both parties in communication can play 

the role of the primary and the secondary, which means both stations have 

equal status. This type of station is called a  combined station .   

 NRM is often used in a point-to-multipoint link such as the one between a computer 

and its terminals. Although ARM is rarely used, it has advantages at point-to-point 

links, but ABM is even better. ABM has less overhead such as that of the primary’s 

poll, and both parties can have control over the link. ABM is especially suitable for 

point-to-point links.  

  Data Link Functions: Framing, Addressing, and Error Control 

 We look at the HDLC’s framing, addressing, and error control issues by directly 

examining the frame format, and then we discuss flow control and medium access 

control.  Figure 3.9  depicts the HDLC frame format. 

    Flag : The flag value is fixed at 01111110 to delimit the beginning and the end 

of the frame. As illustrated in Subsection 3.1.1, bit stuffing is used to avoid 

ambiguity between actual data and the flag value.  

   FIGURE 3.9 HDLC frame format. 

Flag FlagAddress Control Information FCS

8bits 88 8 Any 16

lin76248_ch03_125-222.indd   143lin76248_ch03_125-222.indd   143 24/12/10   4:24 PM24/12/10   4:24 PM



144 Computer Networks: An Open Source Approach

   Address : The address indicates the  secondary station  involved in transmission, 

particularly in the point-to-multipoint situation. A secondary station 

works under the control of the  primary station , as mentioned in the HDLC 

operation.  

   Control : This field indicates the frame type as well as other control 

information such as the frame’s  sequence number . HDLC has three types of 

frames:  information ,  supervisory , and  unnumbered . We will look at them in 

more detail later.  

   Information : The information field can be of an arbitrary length in bits. It 

carries the data payload to be transmitted.  

   FCS : A 16-bit CRC-CCITT code is used. HDLC allows both positive and 

negative acknowledgments. The error control in HDLC is complex. Positive 

acknowledgments can indicate a successful frame or all frames up to a 

point, while negative acknowledgments can reject a received frame or a 

specified frame. We do not go into the details here. Interested readers are 

encouraged to read on from the list of supplementary materials in “Further 

Readings.”    

  Data Link Functions: Flow Control and Error Control 

 Flow control in HDLC also uses a sliding-window mechanism. The transmitter 

keeps a counter to record the  sequence number  of the  next  frame to send. On the 

other side, the receiver keeps a counter to record the  expected  sequence number of 

the next incoming frame, and checks whether the sequence number of the received 

frame matches the expected one. If the sequence number is correct and the frame is 

not garbled, the receiver increases its counter by 1 and positively acknowledges the 

sender by transmitting a message containing the next expected sequence number. If 

the received frame is unexpected or an error with the frame is detected using the FCS 

field, the frame is dropped, and a negative acknowledgment asking for retransmis-

sion is sent back to the sender. Upon receiving the negative acknowledgment that 

indicates the frame to be retransmitted, the transmitter will do the retransmission. 

This approach is the error-control mechanism in HDLC.  

  Frame Type 

 These functions are achieved through various kinds of frames. An information frame, 

called I-frame, carries data from the upper layer and also carries some control infor-

mation, including  two  three-bit fields that record its own sequence number and the 

acknowledged sequence number from the receiver. These sequence numbers are for 

flow-control and error-control purposes, as mentioned previously. A  poll/final  (P/F) 

is also included in the control information to indicate a poll from the primary station 

or the last response from the secondary station. 

 A supervisory frame, called an S-frame, carries control information only. As 

we have seen in the previous discussion of HDLC frame format, both positive and 

negative acknowledgments are supported for error control. Once there is an error, the 

transmitter can retransmit either all outstanding frames or only the erroneous frame 

lin76248_ch03_125-222.indd   144lin76248_ch03_125-222.indd   144 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 145

   FIGURE 3.10 Phase diagram of PPP connection setup and teardown. 

Dead
Up 

Establish
Open

Authenticate
Success/None

Network
Close 

Terminate
Down 

Fail Fail

as specified in the control information. The receiver can also send the transmitter an 

S-frame, asking it to temporarily halt the transmit operation. 

 An unnumbered frame, called a U-frame, is also used for the control purpose, 

but it does not carry any sequence number, so that is how the name is derived. The 

U-frame includes miscellaneous commands for mode settings, information transfer, 

and recovery, but we do not go into details here.   

  3.2.2 Point-to-Point Protocol (PPP) 
 The PPP is a standard protocol defined by IETF to carry multi-protocol packets over 

a point-to-point link. It is widely used for dial-up and leased-line access to the Inter-

net. To carry multi-protocol packets, it has three main components: 

    1. An encapsulation method to encapsulate packets from the network layer.  

  2.  A  Link Control Protocol  (LCP) to handle the cycle of connection setup, configu-

ration, and teardown.  

  3.  A  Network Control Protocol  (NCP) to configure different network-layer options. 

We first look at the PPP operation and then study its functions.   

  PPP Operation 

 In a  service subscription  scenario, before entering the HDLC-like MAC operation, 

PPP needs to complete the login and the configuration before sending any data 

packets. The PPP operation follows the phase diagram in  Figure 3.10 . PPP first 

sends LCP packets to  establish  and test the connection. After the connection is set 

up, the peer that initiated the connection may  authenticate  itself before any network-

layer packets are exchanged. Then PPP starts to send NCP packets to  configure  one 

or more  network  layer protocols for the communication. Once the configuration is 

done, the network-layer packets can be sent over the link before the connection goes 

to the terminate phase. 

 We explain each major transition in the diagram as follows: 

    Dead to Establish : The transition is invoked by carrier detection or network 

administrator configuration when a peer starts using the physical link.  

   Establish to Authenticate : The LCP starts to set up the connection by 

exchanging configuration packets between peers. All options not negotiated 

are set to their default values. Only options independent of the network 

layer are negotiated, and the options for network layer configuration are left 

to the NCP.  

lin76248_ch03_125-222.indd   145lin76248_ch03_125-222.indd   145 24/12/10   4:24 PM24/12/10   4:24 PM



146 Computer Networks: An Open Source Approach

   Authenticate to Network : Authentication is optional in PPP, but if it is required 

in the link establishment phase, the operation will switch to the authentication 

phase. If the authentication fails, the connection will be terminated; otherwise, 

the proper NCP starts to negotiate each network layer protocol.  

   Network to Terminate : The termination happens in many situations, including 

loss of carrier, authentication failure, expiration of an idle connection, user 

termination, etc. The LCP is responsible for exchanging Terminate packets to 

close the connection, and later the PPP tells the network layer protocol to close.   

 There are three classes of LCP frames: Configuration, Termination, and Maintenance. 

A pair of Configure-request and Configure-ack frames can open a connection. The 

options such as the maximum receive unit or the authentication protocol are nego-

tiable during the connection setup.  Table 3.2  summarizes the other functions. The 

LCP frame is a special case of the PPP frame. Therefore, before we look at the LCP 

frame format, we first introduce the PPP frame format. 

   Data Link Functions: Framing, Addressing, and Error Control 

 The PPP frame is encapsulated in an HDLC-like format, as depicted in  Figure 3.11 . 

The flag value is exactly the same as in HDLC. It serves as the delimiter for framing. 

 The differences between the PPP frame and the HDLC frame are summarized 

as follows: 

    1. The address value is fixed at 11111111, which is the all-stations address in the 

HDLC format. Since only two peers are in a point-to-point link, there is no need 

to indicate an individual station address.  

TABLE 3.2 The LCP Frame Types

Class Type Function

Configuration Configure-request

Configure-ack

Configure-nak

Configure-reject

Open a connection by giving desired changes to options

Acknowledge Configure-request

Deny Configure-request because of unacceptable options

Deny Configure-request because of unrecognizable options

Termination Terminate-request

Terminate-ack

Request to close the connection

Acknowledge Terminate-request

Maintenance Code-reject

Protocol-reject

Echo-request

Echo-reply

Discard-request

Unknown requests from the peer

Unsupported protocol from the peer

Echo back the request (for debugging)

The echo for Echo-request (for debugging)

Just discard the request (for debugging)

   FIGURE 3.11 PPP frame format. 

Flag
01111110

FCS
Address

11111111
Control

00000011
Protocol Information

8bits 16 or 32

Flag
01111110

88 8 8 or 16 Any

lin76248_ch03_125-222.indd   146lin76248_ch03_125-222.indd   146 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 147

   2. The control code has the fixed value 00000011, which corresponds to an un-

numbered frame in the HDLC format. This implies that by default,  no  sequence 

numbers and acknowledgment are used in the PPP. Interested readers are re-

ferred to RFC 1663, which defines an extension to make the PPP connection 

reliable.  

   3. A Protocol field is added to indicate which type of network layer protocol the 

frame is carrying, say IP or IPX. The default field length is 16 bits, but it can be 

reduced to 8 bits using the LCP negotiation.  

   4. The maximum length of the Information field, called the Maximum Receive 

Unit (MRU), is by default 1500 bytes. Other values for MRU are negotiable.  

   5. The default FCS is 16 bits long, but it can be extended to 32 bits through the LCP 

negotiation. The receiver drops the received frame if an error is detected within 

the frame. The responsibility of frame retransmission falls on the upper-layer 

protocols.    

  Data Link Functions: No Flow Control and Medium Access Control 

 Because PPP is full-duplex and only two stations are in a point-to-point link,  no  me-

dium access control is needed for PPP. On the other hand, PPP does  not  provide flow 

control, which is left to upper-layer protocols.  

  LCP and NCP negotiation 

 The LCP frame is a PPP frame with the Protocol field value 0xc021, where 0x stands 

for a hexadecimal number. The negotiation information is embedded in the Infor-

mation field as four main fields:  Code  to indicate the LCP type,  Identifier  to match 

requests and replies,  Length  to indicate the total length of the four fields, and  Data  to 

carry the negotiation options. 

 Since IP is the dominant network-layer protocol in the Internet, we are particu-

larly interested in IP over PPP. We introduce NCP for IP—  Internet Protocol Control 
Protocol  (IPCP)—in Subsection 3.2.3.   

  3.2.3 Internet Protocol Control Protocol (IPCP) 
 IPCP is a member of NCP to configure IP over PPP. PPP first establishes a connec-

tion by LCP, and then uses NCP to configure the network layer protocol it carries. 

After the configuration, data packets can be transmitted over the link. IPCP uses a 

frame format similar to that of the LCP, and its frame is also a special case of the PPP 

frame with the Protocol field set to 0x8021. The exchange mechanism used by IPCP 

is the same as that used by the LCP. Through IPCP, IP modules on both peers can be 

enabled, configured, and disabled. 

 IPCP provides the configuration options: IP-Addresses, IP-Compression-

Protocol, and IP-Address. The first is obsolete and is replaced by the third. The 

second indicates the use of Van Jacobson’s  TCP/IP header compression . The third 

allows the peer to provide an  IP address  to be used on the local end. After IPCP ne-

gotiation, normal IP packets can be transmitted over the PPP link by encapsulating 

IP packets in the PPP frame with the Protocol field value 0x0021. 

lin76248_ch03_125-222.indd   147lin76248_ch03_125-222.indd   147 24/12/10   4:24 PM24/12/10   4:24 PM



148 Computer Networks: An Open Source Approach

 Open Source Implementation 3.4: PPP Drivers 

  Overview 
 The implementation of PPP in Linux is primarily composed of two parts: the 

data-plane PPP driver and the control-plane PPP daemon (PPPd). A PPP driver 

establishes a network interface and passes packets between the serial port, the 

kernel networking code, and the PPP daemon. The PPP driver handles the func-

tions in the data link layer described in previous subsections. PPPd negotiates 

with the peer to establish the link connection and sets up the PPP network inter-

face. PPPd also supports authentication, so it can control which other systems 

may establish a PPP connection and can specify their IP addresses.  

  Block Diagram 
 A PPP driver is made of the PPP generic layer and the PPP channel driver, as 

shown in  Figure 3.12 . 

  Data Structures 
 There are asynchronous and synchronous PPP drivers in Linux (see  ppp_
async.c  and  ppp_synctty.c  under the  drivers/net  directory). Their 

difference resides in the type of  tty  device to which a PPP channel driver is at-

tached. When the attached  tty  device is a synchronous HDLC card, such as the 

FarSync T-Series cards manufactured by FarSite Communications Ltd., the syn-

chronous PPP channel driver is used. On the other hand, when the  tty  devices 

are asynchronous serial lines, such as the PEB 20534 controller manufactured 

by Infineon Technologies AG, the asynchronous PPP channel driver is used. 

 The associated I/O function pointers for both drivers are defined in the 

 tty_ldisc_ops  structure by which the associated I/O functions can be 

correctly invoked. For example, the  read  field points to  ppp_asynctty_
read()  for asynchronous PPP, while it points to  ppp_sync_read()  for 

synchronous PPP. 

   FIGURE 3.12 PPP software architecture. 

handles control-plane packetspppd

pppd

handles data-plane packetskernel

kernel

handles PPP network interface, /dev/ppp
device, VJ compression, multilink

ppp
generic
layer

ppp generic layer

handles encapsulation and framingppp
channel
driver

ppp channel driver

tty device driver

serial line

lin76248_ch03_125-222.indd   148lin76248_ch03_125-222.indd   148 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 149

 Rather than going into the details of both PPP drivers, we introduce the ge-

neric flows of packet transmission and reception below as they can better reflect 

the packet flow in the PPP driver.  

  Algorithm Implementations 
  Packet Transmission 
 A data packet to be sent is stored in the  sk_buff  structure. It is passed to 

ppp_start_xmit() , which prepends the PPP header to the packet and 

stores the packet in the transmit queue, namely  xq  (see the  ppp_file  structure 

in  ppp_generic.c ). Finally,  ppp_start_xmit()  invokes  ppp_xmit_
process() , which takes the packets out of the  xq  queue, and calls  ppp_
send_frame()  for some packet processing such as header compression. 

After this step,  ppp_send_frame()  calls either the asynchronous PPP func-

tion,  ppp_async_send() , or the synchronous PPP function,  ppp_sync_
send() , to send the packets through individual drivers.   

  Packet Reception 
 When either the asynchronous or synchronous driver receives an incoming 

packet, the packet is passed to the  ppp_input()  function of the PPP generic 

driver, which adds the incoming packet into the receive queue, namely  rq . The 

PPPd will read the packets from the queue over the  /dev/ppp  device.   

  Exercises 
 Discuss why the PPP functions are implemented in software, while the Ethernet 

functions are implemented in hardware.  

   3.2.4 PPP over Ethernet (PPPoE) 
  The Need for PPPoE 

 As Ethernet technology becomes cheap and dominant, it is not uncommon that users set 

up their own Ethernet LAN at home or in the office. On the other hand, the broadband 

access technology, say ADSL, has become a common method to access the Internet 

from home or office. Multiple users on an Ethernet LAN access the Internet through the 

same broadband bridging devices, so service providers desire a method to have access 

control and billing on a  per-user  basis, similar to conventional dial-up services. 

 PPP has conventionally been a solution to building the point-to-point relation-

ship between peers, but an Ethernet network involves multiple stations. The  PPP 
over Ethernet (PPPoE) protocol  is designed to coordinate the two conflicting philos-

ophies. It creates a  virtual interface  on an Ethernet interface so that each individual 

station on a LAN can establish a PPP session with a remote PPPoE server, which is 

located in the ISP and known as  Access Concentrator  ( AC ), through common bridg-

ing devices. Each user on the LAN sees a PPP interface just like that seen in the 

lin76248_ch03_125-222.indd   149lin76248_ch03_125-222.indd   149 24/12/10   4:24 PM24/12/10   4:24 PM



150 Computer Networks: An Open Source Approach

dial-up service, but the PPP frames are encapsulated in the Ethernet frames. Through 

PPPoE, the user’s computer obtains an IP address, and the ISP can easily associate 

the IP address with a specific user name and password.  

  PPPoE Operation 

 The PPPoE runs in two stages: the Discovery stage and the PPP Session stage. In the 

Discovery stage, the user station discovers the MAC address of the access concentra-

tor and establishes a PPPoE session with the access concentrator; a unique PPPoE 

session identifier is also assigned to the session. Once the session is established, both 

peers enter the PPP Session stage and do exactly what a PPP session does, say LCP 

negotiation. 

 The Discovery stage proceeds in the following four steps:

    1. The station to access the Internet broadcasts an Initiation frame to ask remote 

access concentrators to return their MAC addresses.  

   2. The remote access concentrators reply with their MAC addresses.  

   3. The original station selects one access concentrator and sends a Session-Request 

frame to the selected access concentrator.  

   4. The access concentrator generates a PPPoE session identifier and returns a 

Confirm frame with the session id.    

 The PPP Session stage runs in the same way as a normal PPP session does, as ex-

plained in Subsection 3.2.2, except only PPP frames are carried on Ethernet frames. 

When the LCP terminates a PPP session, the PPPoE session is torn down as well. A 

new PPP session requires a new PPPoE session starting from the Discovery stage. 

 A normal PPP termination process can terminate a PPPoE session. PPPoE al-

lows either the initiating station or the access concentrator to send an explicit Termi-

nate frame to close a session. Once the Terminate frame is sent or received, no further 

frame transmission is allowed, even for normal PPP termination frames.     

  3.3 ETHERNET (IEEE 802.3) 

  Originally proposed by Bob Metcalfe in 1973, Ethernet is a former competitor for 

LAN technology that eventually became the winner. In over 30 years, Ethernet has 

been reinvented many times to accommodate new demands, resulting in the large 

IEEE 802.3 standard, and the evolution continues well into the future. We introduce 

readers to the evolution and philosophy of Ethernet and also describe the hot topics 

currently under development. 

  3.3.1 Ethernet Evolution: A Big Picture 
 As the title of the standard, “Carrier sense multiple access with collision detection 

(CSMA/CD) access method and physical layer specification,” suggests, Ethernet 

is most clearly distinguished from other LAN technologies, such as Token Bus 

and Token Ring, by its medium access method. A lab at Xerox gave birth to the 

technology in 1973, which was later standardized by DEC, Intel, and Xerox in 1981 

lin76248_ch03_125-222.indd   150lin76248_ch03_125-222.indd   150 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 151

and known as the DIX Ethernet. Although this standard bore little resemblance to the 

original design at Xerox, the essence of CSMA/CD was preserved in the standard. 

In 1983, the IEEE 802.3 Working Group approved a standard based on the DIX Eth-

ernet with only insignificant changes. This standard became the well-known IEEE 

802.3 standard. Since Xerox relinquished the trademark name “Ethernet,” the dis-

tinction between the two terms Ethernet and the IEEE 802.3 standard no longer exists 

when people refer to them. In fact, the IEEE 802.3 Working Group has been leading 

Ethernet development since its first version of the standard.  Figure 3.13  illustrates 

the milestones in the development of Ethernet standards. It has experienced several 

significant revisions during the past 30 years. We list the major trends. 

    From low to high speed : Starting from a prototype running at 3 Mbps, 

Ethernet has grown up to 10 Gbps—a boost of more than 3000 times in 

speed. An ongoing work (IEEE 802.3ba) aiming to further boost the data 

rate up to 40 Gbps and 100 Gbps has started. As astonishing as that is, 

the technology still remains cheap, making it widely accepted around the 

world. Ethernet has been built into almost every motherboard of desktop 

computers and laptops. We are sure that Ethernet will be ubiquitous for 

wired connectivity.  

   From shared to dedicated media : The original Ethernet runs on a  bus  

topology of coaxial cables. Multiple stations  share  the bus with the CSMA/

CD MAC algorithm, and collisions on the Ethernet bus are common. As 

of the development of 10BASE-T,  dedicated  media between two devices 

become the majority. Dedicated media are necessary to the later development 

   FIGURE 3.13 Milestones in the development of Ethernet standards. 

Full-duplex
Ethernet

3 Mb/s experimental
Ethernet

DIX Consortium
formed

DIX Ethernet
Spec ver. 1
10 Mb/s Ethernet

DIX Ethernet
Spec ver. 2

IEEE 802.3
10BASE5

1973

1997

1000BASE-X 1000BASE-T Link aggregation 10GBASE on fiber Ethernet in the First Mile

1995 1993 1990 1985

1998 1999 2000

40G and 100G
development

10GBASE-T

2002

2008 2006

2003

1980 1981 1982 1983

100BASE-T 10BASE-F 10BASE-T 10BASE-2

lin76248_ch03_125-222.indd   151lin76248_ch03_125-222.indd   151 24/12/10   4:24 PM24/12/10   4:24 PM



152 Computer Networks: An Open Source Approach

of  full-duplex  Ethernet. Full-duplex allows both stations to transmit over the 

dedicated media simultaneously, which in effect doubles the bandwidth!  

   From LAN to MAN and to WAN : Ethernet was well known as a LAN 

technology. Two factors helped the technology move toward the MAN and 

WAN markets. The first is the cost. Ethernet has low cost in implementation 

because of its simplicity. It takes less pain and money to build up the 

interoperability if the MAN and WAN are also Ethernet. The second comes 

from  full duplex , which eliminates the need for CSMA/CD and thus lifts the 

 distance restriction  on Ethernet usage—the data can be transmitted as far as 

a physical link can reach.  

   Richer medium : The term “ether” was once thought of as the medium to 

propagate electromagnetic waves through space. Although Ethernet never 

uses ether to transmit data, it does carry messages on a variety of media: 

coaxial cables, twisted pairs, and optical fibers. “Ethernet is Multimedia!”—

the amusing words by Rich Seifert in his book  Gigabit Ethernet  (1998) best 

depict the scenario.  Table 3.3  lists all the 802.3 family members in terms of 

their speed and the media they can run on.   

 Not all the 802.3 members are commercially successful. For example, 100BASE-T2 

has never been a commercial product. In contrast, some are so successful that 

almost everybody can find a  network interface card  (NIC) of 10BASE-T or 

100BASE-TX behind a computer on a LAN. Most new motherboards for desktop 

computers come with an Ethernet interface of 100BASE-TX or 1000BASE-T 

nowadays. The number in the parentheses indicates the year when the IEEE ap-

proved the specification. 

TABLE 3.3 The 802.3 Family

Speed 
Medium

Coaxial Cable Twisted Pairs Fiber

under 10 Mbps 1BASE5 (1987)

2BASE-TL (2003)

10 Mbps 10BASE5 (1983)

10BASE2 (1985)

10BROAD36 (1985)

10BASE-T (1990)

10PASS-TS (2003)

10BASE-FL (1993)

10BASE-FP (1993)

10BASE-FB (1993)

100 Mbps 100BASE-TX (1995)

100BASE-T4 (1995)

100BASE-T2 (1997)

100BASE-FX (1995)

100BASE-LX/BX10 (2003)

1 Gbps 1000BASE-CX (1998)

1000BASE-T (1999)

1000BASE-SX (1998)

1000BASE-LX (1998)

1000BASE-LX/BX10 (2003)

1000BASE-PX10/20 (2003)

10 Gbps 10GBASE-T (2006) 10GBASE-R (2002)

10GBASE-W (2002)

10GBASE-X (2002)

lin76248_ch03_125-222.indd   152lin76248_ch03_125-222.indd   152 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 153

  The Ethernet Nomenclature 

 Ethernet is rich in its physical specification, as presented in  Table 3.3 . The nota-

tion follows the format {1/10/100/1000/10G}{BASE/BROAD/PASS}[-]phy. The 

first item is the speed. The second item states whether the signaling is baseband or 

broadband. Almost all Ethernet signaling is  baseband , except the old 10BROAD36 

and 10PASS-TS. Originally the third item represented the maximum length in units 

of 100 m, with no dash in between the second and the third item. It had later been 

changed to indicate the physical specifications such as medium type and signal en-

coding, with a dash connecting it to the second item. 

 Historical Evolution: Competitors to Ethernet 

 Historically, there were a number of LAN technologies such as Token Ring, 

Token Bus, FDDI, DQDB, and ATM LAN emulation competing with Ethernet, 

but Ethernet eventually stood out above others in wired LAN systems. A fun-

damental reason behind Ethernet’s success is that Ethernet is simpler than other 

technologies, and simplicity means lower cost. People do not want to pay more 

than what is necessary, and in this regard Ethernet certainly wins. 

 Why is Ethernet cheaper than others? Ethernet lacks fancy functions that 

the other technologies can offer, such as priority, mechanisms for quality of 

service, and central control. Hence Ethernet does not need to handle tokens, and 

neither does it have the complexities of joining and leaving a ring. CSMA/CD 

is quite simple and can be easily implemented into hardware logic (see Open 

Source Implementation 3.5). Full duplex is even simpler. This advantage makes 

Ethernet the winner. 

 However, Ethernet still encounters a number of competitors for the time 

being. The strongest one among them is the wireless LAN. Wireless LAN has 

higher mobility, the characteristic that Ethernet does not possess. Wherever 

mobility is needed, wireless LAN wins. However, when mobility is unneces-

sary, e.g., using a desktop computer, Ethernet is still the choice since most 

motherboards have built-in Ethernet interfaces. On the other hand, Ethernet also 

attempts to extend itself to first-mile and WAN technologies. Given the large in-

stallation bases of existing xDSL and SONET technologies, we think it will take 

a long time for Ethernet to gradually replace them if the replacement eventually 

happens. However, for the same reason Ethernet is so popular, if the existing 

installations are cheap and satisfactory, the replacement may never happen. 

    3.3.2 The Ethernet MAC 
  Ethernet Framing, Addressing, and Error Control 

 The 802.3 MAC sublayer is the medium-independent part of Ethernet. Along with the 

 Logical Link Control  (LLC) sublayer specified in IEEE 802.2, they compose the data-

link layer in the OSI layer model. The functions associated with the MAC sublayer 

lin76248_ch03_125-222.indd   153lin76248_ch03_125-222.indd   153 24/12/10   4:24 PM24/12/10   4:24 PM



154 Computer Networks: An Open Source Approach

include data encapsulation and media access control, and those for the LLC sublayer 

are intended to be common interfaces for Ethernet, Token Ring, WLAN, and so on. 

Linux also implements the latter part in functions like bridge configuration, since the 

configuration frames are specified in the LLC format (See Section 3.6).  Figure 3.14  

presents the untagged  4   Ethernet frame. Through the frame format, we first introduce 

Ethernet framing, addressing, and error control, and we leave issues of medium 

access control and flow control to a later discussion.  

    Preamble : This field synchronizes the physical signal timing on the receiver 

side. Its value is fixed at 1010…1010 in the transmission order,  5   56 bits 

long. Note that the frame boundary may be marked by special physical 

encoding or by the absence of the signal, depending on what is specified 

in the PHY. For example, 100BASE-X Ethernet converts the first byte 

of the preamble, /1010/1010/, into two special code groups /J/K/ of the 

value /11000/10001/ using 4B/5B encoding. The 4B/5B encoding converts 

the normal data value 1010 (in the transmission order) to 01011 to avoid 

ambiguity. Similarly, 100BASE-X appends two special code groups /T/R/ of 

the value /01101/10001/ to mark a frame end.   

   SFD : This field indicates the start of the frame with the value 10101011 in 

the transmission order. Historically, the DIX Ethernet standard specified 

an 8-byte preamble with exactly the same value as the first two fields in an 

802.3 frame, but they differed only in nomenclature.  

   DA : This field includes the 48-bit destination MAC address in the format 

introduced in Subsection 3.1.2.  

   SA : This field includes the 48-bit source MAC address.  

   Type/Length : This field has two meanings, for historical reasons. The DIX 

standard specified this field to be a code of payload protocol type, say IP, 

while the IEEE 802.3 standard specified this field to be the length of the  data  

field  6   and left the protocol type to the LLC sublayer. The 802.3 standard later 

(in 1997) approved the type field, resulting in the  dual  interpretations of this 

field today. The way to distinguish them is simple: Because the data field 

is never larger than 1500 bytes, a value less than or equal to  1500  means a 

  5  Ethernet transmission is in Little-Endian bit ordering which is clarified in the Pitfalls and Misleading. 

  6  There is a wide misconception that the length field indicates the frame size. This is not true. The frame 

end is marked by special physical encoding or the absence of signal. The Ethernet MAC can easily count 
how many bytes it has received in a frame. 

  4  An Ethernet frame can carry a VLAN tag. We shall see that frame format when we cover VLAN in 

Section 3.5. 

   FIGURE 3.14 Ethernet frame format. 

Preamble SFD DA SA T/L Data FCS

7bytes

SFD: Start of Frame Delimit

FCS: Frame Check Sequence

DA: Destination Address SA: Source Address T/L: Type length

1 6 6 2 46-1500 4

lin76248_ch03_125-222.indd   154lin76248_ch03_125-222.indd   154 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 155

   FIGURE 3.15 Frame transmission and reception in the MAC sublayer. 

MAC client (IP, LLC, etc.)

Data encapsulation Data decapsulation

Transmit medium management Receive medium management

Transmit data encoding Receive data decoding

Line signal 

MAC sublayer

Physical layer

length field and a value larger than or equal to  1536  (=0x600) means a type 

field. Although the purposes are different, these two interpretations can 

coexist due to the easy distinction mentioned above. The values in between 

are intentionally not defined. Most frames use this field as the type field 

because the dominating network layer protocol, IP, uses it as the type field.    

   Data : This field carries the data varying from 46 to 1500 bytes.  

   FCS : This field carries a 32-bit CRC code as a frame check sequence. If 

the receiver finds an incorrect frame, it discards the frame silently. The 

transmitter knows nothing about whether the frame is discarded. The 

responsibility of frame retransmission is left to upper-layer protocols such 

as TCP. This approach is quite efficient because the transmitter does not 

need to wait for an acknowledgment in order to start the next transmission. 

The error is not a big problem here because the bit error rate is assumed to 

be very low in the Ethernet physical layer.   

 The frame size is variable. We often  exclude  the first two fields and say an Ethernet 

frame has the minimum length of 64 (=6+6+2+46+4) bytes and the maximum length 

of 1518 (=6+6+2+1500+4) bytes.  

  Medium Access Control: Transmission and Reception Flow 

 We now show how a frame is transmitted and received inside the Ethernet MAC, and 

you shall see how CSMA/CD works in great detail.  Figure 3.15  shows what role the 

MAC sublayer plays during the frame transmission and reception. 

 CSMA/CD works in a simple way, as its name implies. With a frame to transmit, 

CSMA/CD  senses  the cable first. If a carrier signal is sensed, i.e., the cable is busy, 

it continues sensing the cable until the cable becomes idle; otherwise, it waits for a 

small gap, and then transmits. If a  collision  is detected during transmission, CSMA/

CD  jams  the cable,  aborts  the transmission, and waits for a random  back-off  time 

interval before retrying.  Figure 3.16  presents the transmission flow, and the exact 

procedure following. Note that on  full-duplex  links, carrier sense and collision detec-

tion effectively disappear. 

lin76248_ch03_125-222.indd   155lin76248_ch03_125-222.indd   155 24/12/10   4:24 PM24/12/10   4:24 PM



156 Computer Networks: An Open Source Approach

    1. The MAC client (IP, LLC, etc.) asks for frame transmission.  

   2. The MAC sublayer prepends and appends MAC information (preamble, SFD, 

DA, SA, type, and FCS) to the data from the MAC client.  

   3. In the half-duplex mode, the CSMA/CD method senses the carrier to determine 

whether the transmission channel is busy. If so, the transmission is deferred until 

the channel is clear.  

   4. Wait for a period of time called  inter-frame gap  (IFG). The time length is 96 bit 

times for all Ethernet types. The  bit time  is the duration of one bit transmission 

and thus is the reciprocal of the bit rate. The IFG allows time for the receiver to 

do processing such as interrupts and pointer adjustment for incoming frames.  

   5. Start to transmit the frame.  

   6. In the half-duplex mode, the transmitter should keep monitoring if there is a 

collision during transmission. The monitoring method depends on the attached 

medium. Multiple transmissions on a coaxial cable result in higher absolute 

   FIGURE 3.16 Frame transmission flow of CSMA/CD. 

Transmit start 

Assemble frame

Half duplex and
Carrier sensed? 

yes 

no 

Wait interframe gap

Start transmission

Half duplex
and Collision

detected?

Transmission done?

Transmission OK.

yes

no 

Send jam

Increment attempts

Too many
attempts?

yes 

Abort transmission 

Compute backoff

Wait backoff time

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

no 

yes

no

1.

lin76248_ch03_125-222.indd   156lin76248_ch03_125-222.indd   156 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 157

voltage levels than normal. For twisted pairs, a collision is asserted by perceiv-

ing a received signal on the receive pair while transmitting the frame.  

   7. In case no collision is detected during transmission, the frame is transmitted until 

done. If a collision is detected in the half-duplex mode, proceed with steps 8–12. 

    8. The transmitter transmits a 32-bit-long  jam  signal to ensure that the collision is 

long enough that all involved stations are aware of it. The pattern of the jam sig-

nal is unspecified. Common implementations are to keep transmitting 32 more 

data bits or to use the circuit that generates the preamble to transmit alternating 

1’s and 0’s.  

   9. Abort the current transmission and attempt to schedule another transmission!  

   10. The maximum number of attempts to retransmit is 16. If still not able to trans-

mit, abort the frame.  

   11. On an attempt to retransmit, a back-off time interval in units of slots is chosen 

randomly from the range of 0 to 2  k   − 1, where  k  =  min(n, 10)  and  n  is the num-

ber of attempts. The range grows exponentially, so the algorithm is referred to 

as  truncated binary exponential back-off . The duration of a time slot is 512 bit 

times for 10/100 Mbps Ethernet and 4096 bit times for 1 Gbps Ethernet. We 

shall talk about the reason behind the choice of the time-slot duration when we 

discuss Gigabit Ethernet in Subsection 3.3.3.  

   12. Wait the back-off time interval and then attempt to retransmit.   

 Receiving a frame is much easier when a sequence of checks is done on the frame 

length (check if the frame is too short or too long), destination MAC address, FCS, 

and octet boundary before passing it to the MAC client.  Figure 3.17  illustrates the 

reception flow. The procedure follows. 

   FIGURE 3.17 Frame reception flow of CSMA/CD. 

Receive start

Start receiving

Receiving
done?

no

yes 

Frame too
small? (collision

fragment) 

yes

no 

Address
recognized?

no

Frame
too long?

yes

yes

Valid FCS?
no

no 

1.

2.

3.

4.

5.

6.

7.

Proper octet
boundary?

yes

no
8.

9. Frame decapsulation

Reception OK Done
with errors

lin76248_ch03_125-222.indd   157lin76248_ch03_125-222.indd   157 24/12/10   4:24 PM24/12/10   4:24 PM



158 Computer Networks: An Open Source Approach

   FIGURE 3.18 Collision detection with propagation delay. 

Frame from A

Frame from B

Propagation time = t

1. Transmit a
minimum frame

2. Transmit just
before t

May transmit
before t, but will

have collision
3.  A detects

collision at 2t

A B

Collision domain extent

Principle: round-trip time 2t < time to transmit a minimum frame

    1. The arrival of a frame is detected by the physical layer of the receiver.  

   2. The receiver decodes the received signal and passes the data, except the pre-

amble and SFD, up to the MAC sublayer.  

   3. The receiving process goes on as long as the received signal continues. When the 

signal ceases, the incoming frame is truncated to an octet boundary.  

   4. If the frame is too short (shorter than 512 bits), it is treated as a collision frag-

ment and dropped.  

   5. If the destination address is not for the receiver, the frame is dropped.  

   6. If the frame is too long, it is dropped and the error is recorded for management 

statistics.  

   7. If the frame has an incorrect FCS, it is dropped and the error is recorded.  

   8. If the frame size is not an integer number of octets, it is dropped and the error is 

recorded.  

   9. If everything is OK, the frame is de-capsulated and the fields are passed up to the 

MAC client.    

  Can Collision Cause Bad Performance? 

 The term  collision  sounds terrible! However, collision is part of the normal arbitra-

tion mechanism of CSMA/CD and not a result of system malfunction. Collision can 

cause a garbled frame, but it is not so bad if the transmission can be stopped when a 

collision is detected. Before further analyzing the wasted bit times caused by a colli-

sion, we first answer a critical question: Where can a collision occur? We answer this 

question with the frame transmission model in  Figure 3.18 . 

 Suppose Station A transmits a minimum frame of 64 bytes, and the propaga-

tion time before the frame’s first bit arrives at station B is  t . Even with carrier sense, 

Station B is likely to transmit anytime before  t  and cause a collision. Further, suppose 

the worst-case scenario in which Station B transmits right at time t, which results in a 

collision. The collision then takes another  t  to propagate back to station A. If Station A 

finishes transmitting the minimum frame before the round-trip time  2t  expires, it has 

no chance to invoke collision detection and to schedule a retransmission, and thus the 

frame is lost. For CSMA/CD to function normally, the round-trip time should be  less  

lin76248_ch03_125-222.indd   158lin76248_ch03_125-222.indd   158 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 159

than the time required to transmit a minimum frame, meaning the CSMA/CD mecha-

nism limits the extent between two stations in a  collision domain . This limitation com-

plicates the half-duplex Gigabit Ethernet design, and we shall talk more about this issue 

when we introduce Gigabit Ethernet in Subsection 3.3.3. Because the minimum frame 

size is 64 bytes, it also means that a collision must occur during the first 64 bytes of a 

frame under the distance limitation. If more than 64 bytes have been transmitted, the 

chance of collision has been ruled out due to carrier sense by other stations. 

 If we take the 32-bit jam into consideration, the actual number of bits in a frame 

that have been transmitted plus the jam cannot exceed 511 bits, as described in step 4 

of the frame reception flow, because 512 bits (= 64 bytes) is the minimum length of 

a normal frame. Otherwise, the receiver will think of these bits as a normal frame 

rather than a collision fragment. Therefore, the maximum number of wasted bit times 

is 511 + 64 (from the preamble) + 96 (from the IFG) = 671. This is only a small por-

tion for a large frame. In addition, we must emphasize that it is the worst case. Most 

collisions are detected during the preamble phase because the distance between two 

transmitting stations is not that far. In this case, the number of wasted bit times is 

only 64 (from the preamble) + 32 (from the jam) + 96 (from the IFG) = 192.  

  Maximum Frame Rate 

 How many frames can a transmitter (receiver) transmit (receive) in a second? This is 

an interesting question, especially when you design or analyze a packet processing 

device, say a switch, to find out how many frames per second your device may need 

to process. 

 Frame transmission begins with a 7-byte preamble and a 1-byte SFD. For a 

link to reach its maximum transmission rate in frames per second, all frames to be 

transmitted should be kept to the minimum size, i.e., 64 bytes. Do not forget the IFG 

of 12 bytes (= 96 bits) between two successive frame transmissions. In total, a frame 

transmission occupies (7 + 1 + 64 + 12) × 8 = 672 bit times. In a 100 Mbps system, 

the maximum number of frames that can be transmitted each second is therefore 

100 × 10 6  / 672 = 148,800. This value is referred to as the  maximum frame rate  for 

the 100 Mbps link. If a switch has 48 interface ports, the aggregated maximum frame 

rate would be 148,800 × 48 = 7,140,400; that is, over 7 million.  

  Full-Duplex MAC 

 Early Ethernet used coaxial cables as the transmission medium and connected sta-

tions into a bus topology. Twisted pairs have replaced most uses of coaxial cables 

due to ease of management. The dominant approach is to use a twisted-pair cable 

connecting each station with a concentration device such as a hub or switch to 

form a  star  topology. For popular 10BASE-T and 100BASE-TX, a wire  pair  in a 

twisted-pair cable is dedicated to either transmitting or receiving.  7   A collision is thus 

identified by perceiving a received signal on the receive pair while transmitting on 

  7  In 1000BASE-T, transmission and reception can happen simultaneously in a pair. Arbitration is still not 

necessary at the cost of sophisticated DSP circuits to separate the two signals. 

lin76248_ch03_125-222.indd   159lin76248_ch03_125-222.indd   159 24/12/10   4:24 PM24/12/10   4:24 PM



160 Computer Networks: An Open Source Approach

the transmit pair. However, this is still inefficient. Since the medium is dedicated 

to point-to-point communication in the star topology setting, why does the new 

Ethernet technology need collision as an “arbitration” method?  

 In 1997, the IEEE 802.3x Task Force added full-duplex operation in Ethernet—

that is, transmission and reception can proceed at the same time. No carrier sense or 

collision detection is supported in the full duplex mode because they are not needed 

anymore—there is no “multiple access” on a dedicated medium. Therefore, CS, MA, 

and CD are all gone! Interestingly, this is quite a dramatic change in Ethernet design 

since Ethernet was known for its CSMA/CD. Three conditions should be satisfied in 

order to run full-duplex Ethernet: 

    1. The transmission medium must be capable of transmitting and receiving on  both  

ends without interference.  

   2. The transmission medium should be dedicated for exactly two stations, forming 

a  point-to-point  link.  

   3.  Both  stations should be able to be configured into the full-duplex mode.   

 The IEEE 802.3 standard explicitly rules out the possibility of running the full-

duplex mode on a repeater hub because the bandwidth in the hub is shared, not dedi-

cated. Three typical scenarios of full-duplex transmission are the station-to-station 

link, the station-to-switch link, and the switch-to-switch link. In any case, these links 

need to be dedicated point-to-point links. 

 Full-duplex Ethernet in effect  doubles  the bandwidth between two stations. 

It also lifts the  distance  limitation that resulted from the use of CSMA/CD. This 

is very important to  high-speed  and  wide-area  transmission, as we shall discuss in 

Subsection 3.3.3. Nowadays, virtually all Ethernet interfaces support full duplex. Either 

communication party’s interface can perform  autonegotiation  to determine whether both 

parties support full duplex. If so, both will operate in full duplex for higher efficiency.  

  Ethernet Flow Control 

 Flow control in Ethernet depends on the duplex mode. The half-duplex mode em-

ploys a technique called  false carrier , by which if the receiver cannot afford more 

incoming frames, it can transmit a carrier, say a series of 1010…10, on the shared 

medium until it can afford more frames. The transmitter will sense the carrier and 

defer its subsequent transmission. Alternatively, the congested receiver can force a 

collision whenever a frame transmission is detected, causing the transmitter to back 

off and reschedule its transmission. This technique is referred to as  force collision . 

Both techniques are collectively called  back pressure . 

 However, back pressure is void in the full-duplex mode because CSMA/CD is 

no longer in use. IEEE 802.3 specifies a PAUSE frame for flow control in the full-

duplex mode. The receiver explicitly sends a PAUSE frame to the transmitter, and 

upon receiving the PAUSE frame, the transmitter stops transmitting immediately. 

The PAUSE frame carries a field,  pause_time , to tell the transmitter how long it 

should halt its transmission. Since it is not easy to estimate the pause time in advance, 

in practice  pause_time  is set to the maximum value to stop the transmission, and 

another PAUSE frame with  pause_time =  0 is sent to the transmitter to resume 

the transmitter’s transmission when the receiver can accept more frames. 

lin76248_ch03_125-222.indd   160lin76248_ch03_125-222.indd   160 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 161

 Flow control is optional in Ethernet. It can be enabled by the user or through 

autonegotiation. IEEE 802.3 provides an optional sublayer between MAC and LLC, 

namely the MAC control sublayer, which defines MAC control frames to provide 

real-time manipulation of MAC sublayer operation. The PAUSE frame is a kind of 

MAC control frame. 

 Open Source Implementation 3.5: CSMA/CD 

  Overview 
 CSMA/CD is part of the Ethernet MAC, and most of the Ethernet MAC is 

implemented in hardware. An open source Ethernet example is available from 

OPENCORE ( www.opencores.org ), which presents a  synthesizable  Verilog 

code. By synthesizable, we mean the Verilog code is complete enough to be 

compiled through a series of tools into a circuit. It provides the implementation 

of the layer-2 protocol according to the IEEE specifications for 10 Mbps and 

100 Mbps Ethernet.  

  Block Diagram 
  Figure 3.19  illustrates the architecture of OPENCORE Ethernet Core, which 

mainly consists of host interface, transmit (TX) module, receive (RX) module, 

MAC control module, and media independent interface (MII) management 

module. They are described as follows: 

Continued

   FIGURE 3.19 Architecture of Ethernet MAC core. 

Ethernet Core

Host Interface
(Registers, WISHBONE interface, DMA support)

MAC
RX data

RX Ethernet
MAC

MAC Control
Module

(Flow Control)

TX Ethernet
MAC

MII
Management

Module

Ethernet PHY

Ethernet

TX data
Control
signals

TX control
signals

TX data
TX PHY
control signalsRX data

RX PHY
control signals

Management
data

TX control
signals

Wishbone bus

RX control
signals

lin76248_ch03_125-222.indd   161lin76248_ch03_125-222.indd   161 24/12/10   4:24 PM24/12/10   4:24 PM

www.opencores.org


162 Computer Networks: An Open Source Approach

    1. The TX and RX modules enable all transmit and receive functionalities. 

These modules handle preamble generation and removal. Both modules 

incorporate the CRC generators for error detection. In addition, the TX 

module conducts the random time generation used in the back-off process 

and monitors the  CarrierSense  and  Collision  signals to exercise 

the main body of CSMA/CD.  

   2. The MAC control module provides full-duplex flow control, which trans-

fers the PAUSE control frames between the communicating stations. 

Therefore, the MAC control module supports control frame detection and 

generation, interfaces to TX and RX MAC, PAUSE timer, and Slot timer.  

   3. The MII management module implements the standard of IEEE 802.3 

MII, which provides the interconnections between the Ethernet PHY and 

MAC layers. Through the MII interface, the processor can force Ethernet 

PHY to run at 10 Mbps or 100 Mbps, and configure it to perform in full- 

or half-duplex mode. The MII management module has the submodules 

for operation controller, shift registers, output control module, and clock 

generator.  

   4. The host interface is a WISHBONE (WB) bus connecting the Ethernet 

MAC to the processor and external memory. The WB is an interconnection 

specification of OPENCORE projects, and only DMA transfers are sup-

ported for data transfer so far. The host interface also has status and register 

modules. The status module records the statuses written to the related buffer 

descriptors. The register module is used for Ethernet MAC operations, and 

it includes configuration registers, DMA operation, and transmit status and 

receive status.    

  Data Structures and Algorithm Implementations 
  State Machines: TX and RX 
 In the TX and RX modules, TX and RX state machines control their behaviors, 

respectively.  Figure 3.20  presents both state machines. We only describe the 

behaviors of the TX state machine here, since the RX state machine works simi-

larly. The TX state machine starts from the  Defer  state, waits until the carrier 

is absent (i.e., the  CarrierSense  signal is false), and then enters the  IFG  

state. After the inter-frame gap (IFG), the TX state machine enters the  Idle  

state, waiting for a transmission request from the WB interface. If there is still 

no carrier present, the state machine goes to the  Preamble  state and starts a 

transmission; otherwise, it goes back to the  Defer  state and waits until the car-

rier is absent again. In the  Preamble  state, the preamble 0x5555555 and start 

frame delimiter 0xd are sent, and the TX state machine goes to the  Data[0]  

and  Data[1]  states to transmit nibbles, i.e., in units of 4 bits, of the data byte. 

The nibble transmission starts from the least significant byte (LSB) until the end 

of the frame, and each time a byte is transmitted, the TX state machine tells the 

Wishbone interface to provide the next data byte to transmit. 

lin76248_ch03_125-222.indd   162lin76248_ch03_125-222.indd   162 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 163

 �    If a collision occurs during transmission, the TX state machine goes to the 

Jam  state to send a jam signal, waits for a period of backoff time in the 

Backoff  state, and then goes back to the  Defer  state for the next trans-

mission attempt.  

 �   When only one byte is left to be sent (no collision during transmission),

 1. If the total frame length is greater than or equal to the minimum frame 

length, then the TX state machine enters the  FCS  state to calculate the 

32-bit CRC value from the data and append the value to the end of the 

Continued

   FIGURE 3.20 The TX (upper) and RX (lower) state machines. 

IFG
Pre-

amble
Defer

Idle

Data[0]

Data[1]
Jam

Backoff

TX DonePAD

FCS

Pre-
amble

SFD

Drop Idle

Data0

Data1

lin76248_ch03_125-222.indd   163lin76248_ch03_125-222.indd   163 24/12/10   4:24 PM24/12/10   4:24 PM



164 Computer Networks: An Open Source Approach

frame if CRC is enabled, and then goes to the  TxDone  state; otherwise, 

the TX state machine directly goes to the  TxDone  state.  

   2. If the frame length is shorter than the minimum frame length and 

padding is enabled, then the TX state machine goes to the  PAD  state and 

the data is padded with zeros until the condition of the minimum frame 

length is satisfied. The remaining states are the same as those stated in 

(1). However, the  PAD  state is skipped when padding is disabled. 

     Programming CSMA/CD Signals and Nibble Transmission 
  Figure 3.21  is a segment of Verilog code that  programs  the key CSMA/CD 

signals and nibble transmission. An  output signal  is an arithmetic combination 

of various  input signals,  updated once in every  clock cycle . All output signals are 

updated in  parallel , which is the key difference from the  sequentially  executed 

software code. The symbols ~, &, |, ^ , and = denote the operations “not,” “and,” 

“or,” “xor,” and “assign,” respectively. The conditional expression “exp1 ? exp2 : 

   CSMA/CD Signals 
  assign StartDefer = StateIFG & ~Rule1 &  CarrierSense  & NibCnt[6:0] 
<= IPGR1 & NibCnt[6:0] != IPGR2 
 | StateIdle &  CarrierSense  
 | StateJam & NibCntEq7 & (NoBckof | RandomEq0 | ~ColWindow | 
RetryMax) 
 | StateBackOff & (TxUnderRun | RandomEqByteCnt) 
 | StartTxDone | TooBig; 
 assign StartDefer = StateIdle & ~TxStartFrm &  CarrierSense  
  | StateBackOff & (TxUnderRun | RandomEqByteCnt); 
 assign StartData[1] =  ~Collision  & StateData[0] & ~TxUnderRun &  
  ~MaxFrame; 
 assign StartJam = ( Collision  | UnderRun) & ((StatePreamble 
 & NibCntEq15) 
  |(StateData[1:0]) | StatePAD | StateFCS); 
 assign StartBackoff = StateJam & ~RandomEq0 & ColWindow &
~RetryMax   & NibCntEq7 & ~NoBckof; 

  Nibble transmission  
 always @ (StatePreamble or StateData or StateData or StateFCS or 
StateJam or StateSFD or TxData or Crc or NibCnt or NibCntEq15) 
 begin 
 if(StateData[0]) MTxD_d[3:0] = TxData[3:0];   // Lower nibble 
 else if(StateData[1]) MTxD_d[3:0] = TxData[7:4]; // Higher nibble 
 else if(StateFCS) MTxD_d[3:0]={~Crc[28],~Crc[29],~Crc[30], 
~Crc[31]};   // Crc 
 else if(StateJam)     MTxD_d[3:0] = 4’h9;     // Jam pattern 
 else if(StatePreamble) 
 if(NibCntEq15)     MTxD_d[3:0] = 4’hd;   // SFD 
 else      MTxD_d[3:0] = 4’h5;           // Preamble 
    else     MTxD_d[3:0] = 4’h0; 
 end 

 FIGURE 3.21  CSMA/CD signals and nibble transmission. 

lin76248_ch03_125-222.indd   164lin76248_ch03_125-222.indd   164 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 165

exp3” has exactly the same meaning (i.e., if the result of exp1 is true, exp2 is 

evaluated; otherwise, exp3 is evaluated) as that in the C language. 

 A station in the half-duplex mode observes the activity on the PHY media. 

Besides the carrier due to the transmission of a frame, a collision resulting 

from simultaneous transmission of more than one station (denoted by the 

Collision  variable) is also observed. If a collision occurs, all stations stop 

transmitting, set  StartJam  (entering the  Jam  state) and back off for a ran-

dom time ( StartBackOff  is set) in the  Backoff  state. The state machine 

may go back to the  Defer  state if the carrier is present in the  Jam  state or the 

Backoff  state. 

 The code under “nibble transmission” selects the nibble (4 bits) to be 

transmitted based on which state the TX machine is in. The TX state machine 

switches between the  Data[0]  and  Data[1 ] states during little-endian trans-

mission, so  MTxD_d , the transmit data nibble, is loaded with  TxData[3:0]
and  TxData[7:4]  alternatively. In the  FCS  state, the CRC value is loaded 

nibble by nibble, as the CRC calculation is implemented with the  cr  c  shift 

register. In the  Jam  state, the arbitrary hex value of 1001 (i.e., 4′h9) is loaded as 

the jam signal, though the content of the jam signal is unspecified in the 802.3 

standard. In the  Preambl  e  state, the preamble 0x5555555 and start frame de-

limiter 0xd are loaded in turn. 

 Since the TX module starts the backoff process after a collision has been 

detected, it waits for some duration derived from a pseudorandom, as shown in 

 Figure 3.22 . The “binary exponential” algorithm is applied to generate a random 

backoff time within the predefined restriction. An element  x[i]  in the array  x

    assign Random [0] = x[0]; 
 assign Random [1] = (RetryCnt > 1) ? x[1] : 1’b0; 
 assign Random [2] = (RetryCnt > 2) ? x[2] : 1’b0; 
 assign Random [3] = (RetryCnt > 3) ? x[3] : 1’b0; 
 assign Random [4] = (RetryCnt > 4) ? x[4] : 1’b0; 
 assign Random [5] = (RetryCnt > 5) ? x[5] : 1’b0; 
 assign Random [6] = (RetryCnt > 6) ? x[6] : 1’b0; 
 assign Random [7] = (RetryCnt > 7) ? x[7] : 1’b0; 
 assign Random [8] = (RetryCnt > 8) ? x[8] : 1’b0; 
 assign Random [9] = (RetryCnt > 9) ? x[9] : 1’b0; 
 always @ (posedge MTxClk or posedge Reset) 
 begin 
  if(Reset) 
  RandomLatched <= 10’h000; 
  else 
  begin 
  if(StateJam & StateJam _ q) 
  RandomLatched <= Random; 
  end 
 end 

 assign RandomEq0 = RandomLatched == 10’h0;  

 FIGURE 3.22 Backoff random generator. 
Continued

lin76248_ch03_125-222.indd   165lin76248_ch03_125-222.indd   165 24/12/10   4:24 PM24/12/10   4:24 PM



166 Computer Networks: An Open Source Approach

is a random bit with value 0 or 1, and the array  x  can be viewed as the binary 

representation of a 10-bit random value (total 10 bits, as the range of the random 

number is from 0 to  2  k  –1 , where  k = min(n, 10)  and  n  is the number of 

retrials.) According to each statement in  Figure 3.22 , when  RetryCnt  is larger 

than  i ,  Random[i]  may be set to 1 if  x[i] = 1 ; otherwise,  Random[i]  is 

set to 0 by assigning bit 0 (denoted by 1’b0) to it. In other words, one more high-

bit in the random values is likely to be set to 1 when  RetryCnt  is increased 

by one, which means the range of the random values grows exponentially with 

the number of retrials. After the random value is derived, it will be latched into 

the  RandomLatched  variable if the transmission channel is jammed (judged 

from the  StateJam  and  StateJam_q  variables), e.g., due to collision. If the 

random value happens to be 0 (i.e., backoff time is 0), the  RandomEq0  variable 

is set and the backoff procedure will not be started ( StartBackoff  is false in 

the last assign statement of  Figure 3.21 ). 

    Exercises 
  1.   If the Ethernet MAC operates in the full-duplex mode (very common at 

present), which components in the design should be disabled?  

   2. Since the full-duplex mode has a simpler design than the half-duplex mode, 

and the former’s efficiency is higher than the latter’s, why do we still bother 

implementing half-duplex mode in the Ethernet MAC?    

 Historical Evolution: Power-Line Networking: 
HomePlug 

 Ethernet is a dominant technology for LANs, but it demands to deploy network 

cables from one node to another for wired connection. Although wireless LAN 

can eliminate the wires completely, the wireless signals are subject to various 

interferences and are less stable. A less popular but useful solution between the 

former two technologies, HomePlug, leverages the power lines to transmit data. 

Ethernet cables can be hooked up to a power-line adapter, which is then plugged 

into a power outlet. The other device can also do the same to finish the connec-

tion, and the data is transmitted via the power-line infrastructure. The infra-

structure is commonly available in ordinary homes, so no extra lines are needed 

between two power outlets. 

 HomePlug relies on the OFDM modulation over the power lines. The 

HomePlug 1.0 specification allows for speeds up to 14 Mbit/s in half-duplex. A 

proprietary solution allows up to 85 Mbps in the turbo mode. A later specifica-

tion boosts the speed to 189 Mbps. The solution could be a cheap alternative to 

the deployment of wires in ordinary homes or offices. 

lin76248_ch03_125-222.indd   166lin76248_ch03_125-222.indd   166 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 167

    3.3.3 Selected Topics in Ethernet 
  Gigabit Ethernet 

 The task of creating specifications for Gigabit Ethernet was originally divided be-

tween two task forces: 802.3z and 803.3ab. A later task force for Ethernet in the First 

Mile (EFM) also specified three new PHYs running at the gigabit rate. For clarity, we 

leave the latter part to our discussion of EFM.  Table 3.4  lists only the specifications 

in 802.3z and 803.3ab. 

 A difficulty in Gigabit Ethernet design is the distance restriction of CSMA/CD, 

which is not a problem for 10 Mbps and 100 Mbps Ethernet. The distance is about 

200 m for copper connection in 100 Mbps Ethernet, and it is enough for normal 

configurations. The distance is even longer for 10 Mbps Ethernet. However, Gigabit 

Ethernet transmits ten times faster than 100 Mbps Ethernet does, making the distance 

restriction ten times shorter. A restriction of about 20 m is unacceptable for many 

network deployments, and an objective of Gigabit Ethernet is to lift the distance re-

striction with the frame format (i.e., the minimum frame size) unchanged. 

 The IEEE 802.3 standard appends a series of  extension bits  after a frame to en-

sure the frame transmission time exceeds the round-trip time. These bits can be any 

nondata symbols in the physical layer. The technique, called  carrier extension , in 

effect extends the frame length without changing the minimum frame size. Neverthe-

less, the resultant throughput is poor despite the technique’s good intent. In contrast, 

full-duplex Ethernet does not need CSMA/CD at all, making this solution unneces-

sary. Full-duplex Ethernet’s implementation is simpler than half-duplex Ethernet. 

The throughput is much higher, and the restriction on distance is no longer a concern. 

Why do we bother implementing half-duplex Gigabit Ethernet if it is unnecessary? 

Gigabit Ethernet switches can support full duplex, and they are cheaper than ever 

with the advance of ASIC technology that implements the switching function. For the 

deployment of Gigabit Ethernet, it is the performance rather than the cost that is of 

concern now. The market has proved the failure of half-duplex Gigabit Ethernet since 

only full-duplex Gigabit Ethernet products exist on the market nowadays.  

TABLE 3.4 Physical Specifications of Gigabit Ethernet

Task Forces Specification Name Description

IEEE 802.3z (1998)

1000BASE-CX 25 m 2-pair shielded twisted pairs 

(STP) with 8B/10B encoding

1000BASE-SX Multi-mode fiber of short-wave laser 

with 8B/10B encoding

1000BASE-LX Multi- or single-mode fiber of long-wave 

laser with 8B/10B encoding

IEEE 802.3ab (1999) 1000BASE-T 100 m 4-pair Category 5 (or better) 

unshielded twisted pairs (UTP) with 

8B1Q4

lin76248_ch03_125-222.indd   167lin76248_ch03_125-222.indd   167 24/12/10   4:24 PM24/12/10   4:24 PM



168 Computer Networks: An Open Source Approach

TABLE 3.5 Physical Specifications in the IEEE 802.3ae

Code Name Wave Length Transmission Distance (m)

10GBASE-LX4 1310 nm  300

10GBASE-SR 850 nm  300

10GBASE-LR 1310 nm  10,000

10GBASE-ER 1550 nm  10,000

10GBASE-SW 850 nm  300

10GBASE-LW 1310 nm  10,000

10GBASE-EW 1550 nm  40,000

  10 Gigabit Ethernet 

 Just like  Moore’s Law , which states that the power of microprocessors doubles every 

18 months, the speed of Ethernet has also grown exponentially since its early days. 

The 10 Gigabit Ethernet standard developed by the IEEE 802.3ae Task Force came 

out in 2002. It was later extended to operate on twisted pairs in 2006, 10GBASE-T. 

The 10 Gigabit Ethernet bears the following features: 

    Full duplex only : The IEEE 802.3 people learned a lesson from the 

development of Gigabit Ethernet: Only the full-duplex mode is in the 

10 Gigabit Ethernet; the half-duplex mode is not even considered.  

   Compatibility with past standards : The frame format and the MAC 

operations remain unchanged, making the interoperability with existing 

products rather easy.  

   Move toward the WAN market : Since Gigabit Ethernet has moved toward 

the MAN market, 10 Gigabit Ethernet will go further into the WAN market. 

On one hand, the longest distance in the new standard is 40 km; on the 

other hand, a WAN PHY is defined to interface with OC-192 (OC: Optical 

Carrier) in the synchronous optical networking ( SONET)  infrastructure, 

which operates at a rate very close to 10 gigabit. The IEEE 802.3ae comes 

with an optional WAN PHY besides the LAN PHY. Both PHYs have the 

same transmission media, and thus the same transmission distance. The 

difference is that the WAN PHY has a  WAN Interface Sublayer  (WIS) 

in the  Physical Coding Sublayer  (PCS). The WIS is a framer that maps 

an Ethernet frame into a SONET payload, which simplifies the task of 

attaching Ethernet to OC-192 devices.   

  Table 3.5  lists the physical specifications in IEEE802.ae. The character “W” 

in the code names denotes a WAN PHY, which can be directly connected to an 

OC-192 interface. The others are for LAN only. Every physical specification ex-

cept 10GBASE-LX4 uses a complex 64B/66B block coding. 10GBASE-LX4 uses 

lin76248_ch03_125-222.indd   168lin76248_ch03_125-222.indd   168 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 169

 Historical Evolution: Backbone Networking: 
SONET/SDH and MPLS 

 SONET and SDH are multiplexing protocols over optical fibers. SONET stands 

for  synchronous optical network , and SDH stands for  synchronous digital 
hierarchy . The former is used in the United States and Canada, and the latter 

is for the rest of world. The carrier level of SONET is denoted by OC-x, the 

line rate of which is roughly 51.8*x Mbps. Therefore, the line rate of OC-3 is 

roughly 155 Mbps, and that of OC-12 is roughly 622 Mbps, and so on. High-

speed SONET/SDH, such as OC-192 at roughly 10 Gbps, is usually deployed 

in the backbone. 

 Due to the large infrastructure of SONET/SDH, it is difficult to replace it 

with Ethernet rapidly. This is why 10 Gigabit Ethernet supports the so-called 

WAN PHY, which can be  directly  connected to an OC-192 interface. Therefore, 

it is feasible to make 10 Gigabit Ethernet  coexist  with the existing SONET/SDH 

infrastructure. 

 To forward packets in such high-speed networks, multi-protocol label 

switching (MPLS) allows an edge router to tag packets with  labels , and the core 

routers can just examine the labels for packet forwarding. This mechanism is 

faster than expensive IP longest prefix match in ordinary routers, as we shall see 

in  Chapter 4 . 

8B/10B blocking coding, and relies on four wavelength division multiplexing 

(WDM) channels to achieve a 10 Gbps transmission rate. Except for the first batch 

of 10 gigabit specifications in IEEE 802.3ae, later specifications such as 10GBASE-

CX4 and 10GBASE-T allow even  copper wires  to transmit at 10 Gbps. An extension 

to Ethernet Passive Optical Network (EPON) running at 10 Gbps has also been under 

development since 2008. 

   Ethernet in the First Mile 

 We see Ethernet dominating the wired LAN, and are seeing it taking over the WAN, 

but how about the interface between LAN and WAN? Given abundant bandwidth 

on both the LAN and WAN, you might still access Internet at home through ADSL, 

cable modems, and so on. The segment of the subscriber access network between 

LAN and WAN, also called the  first mile  or  last mile , may become the bottleneck of 

an end-to-end connection. The protocol conversion due to the use of different tech-

nologies in LAN, first mile, and WAN incurs nontrivial overhead. With the popular-

ity of subscriber access network, this potential market becomes highly noticeable to 

Ethernet developers. 

 An effort in the IEEE 802.3ah  Ethernet in the First Mile (EFM)  Task Force 

defined a standard for this market. If Ethernet could be everywhere in the wired 

networks, no protocol conversion would be needed, which also would reduce the 

overall overhead cost. All in all, the standard is expected to provide a cheap and fast 

lin76248_ch03_125-222.indd   169lin76248_ch03_125-222.indd   169 24/12/10   4:24 PM24/12/10   4:24 PM



170 Computer Networks: An Open Source Approach

TABLE 3.6 Physical Specifications in the IEEE 802.3ah

Code Name Description

100BASE-LX10 100 Mbps on a pair of optical fibers up to 10 km

100BASE-BX10 100 Mbps on an optical fiber up to 10 km

1000BASE-LX10 1000 Mbps on a pair of optical fibers up to 10 km

1000BASE-BX10 1000 Mbps on an optical fiber up to 10 km

1000BASE-PX10 1000 Mbps on passive optical network up to 10 km

1000BASE-PX20 1000 Mbps on passive optical network up to 20 km

2BASE-TL At least 2 Mbps over SHDSL up to 2700 m

10PASS-TS At least 10 Mbps over VDSL up to 750 m

technology to the potentially broad first-mile market. Ethernet is poised to be ubi-

quitous, and the goals of the standard include the following: 

    New topologies : The requirements for the subscriber access network include 

point-to-point on fiber, point-to-multipoint on fiber, and point-to-point on 

copper. The standard meets these requirements.  

   New PHYs :  Table 3.6  summarizes the PHYs in IEEE 802.3ah, including the 

following specifications:

    Point-to-point optics : The PHYs are single-mode fibers from one 

point to the other. They include 100BASE-LX10, 100BASE-BX10, 

1000BASE-LX10, and 1000BASE-BX10, where LX denotes a pair of 

fibers and BX denotes a single fiber. Here 10 means the transmission 

distance is 10 km, which is longer than the maximum distance of 5 km in 

IEEE 802.3z Gigabit Ethernet.  

   Point-to-multipoint optics : In this topology, a single point serves multiple 

premises. In the branch is a passive optical splitter that is not powered, 

so the topology is also called passive optical network (PON). The 

PHYs include 1000BASE-PX10 and 1000BASE-PX20. The former 

can transmit 10 km, while the latter can transmit up to 20 km. 

Another effort to push Ethernet PON up to the 10 Gbps transmission 

rate is ongoing in IEEE 802.3av. Zheng and Mouftah in 2005 gave 

an overview of the media access control in Ethernet PON.  

   Point-to-point copper : The PHYs are for nonloaded, voice grade copper 

cables. The PHYs include 2BASE-TL and 10PASS-TS. The former 

is at least 2 Mbps up to 2700 m over SHDSL, and the latter is at least 

10 Mbps up to 750 m over VDSL. They are more economical solutions if 

the optical fibers are unavailable.

        Far-end operations, administration, and maintenance (OAM) : Reliability 

is critical to the subscriber access network. For easy OAM, the standard 

defines new methods for remote failure indication, remote loopback, and 

link monitoring.   

lin76248_ch03_125-222.indd   170lin76248_ch03_125-222.indd   170 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 171

      3.4 WIRELESS LINKS 

  Wireless links are appealing because users are free from the distance constraints of 

wires, which may be inconvenient or expensive to deploy. However, wireless links 

feature characteristics different from wired links, imposing special requirements on 

the protocol design. We list these characteristics below. 

    Less reliability : Signals propagate in the air without any protection, making 

the transmission easily impaired by  interference ,  path loss , or  multipath 
distortion . Outside interference comes from nearby wireless signal sources. 

Microwave ovens and Bluetooth devices to wireless links are possible 

sources of noise because they all operate in the  unlicensed  ISM (industrial, 

scientific, and medical) band. Path loss is the  attenuation  that the signal 

undergoes as it propagates in the air. The attenuation is more serious than 

the one in the wire because the signal is distributed over the air rather than 

concentrated on a wired link. Multipath distortion results from  delayed 

 Historical Evolution: First-Mile Networking: 
xDSL and Cable Modem 

 The various  digital subscriber line  (DSL) technologies provide data transmission 

over the old telephone lines. Since telephone lines are ubiquitous, the DSL tech-

nologies are also very popular. The letter “x” in xDSL denotes a type in the DSL 

technologies, including ADSL for  asymmetric DSL , vDSL for  very high-speed  

DSL, SHDSL for  symmetric high-speed DSL , and so on. Due to their popularity, 

even the point-to-point copper in the EFM leverages the technology of SHDSL 

and vDSL in the physical layer, while keeping Ethernet frames in the link layer. 

 Among the types of DSL technologies, ADSL is the most popular. ADSL 

provides different speeds for downstream and upstream. The downstream speed 

is up to 24 Mbps, and the upstream speed is up to 3.5 Mbps, depending on the 

distance from the ADSL modem to the local telephone office. vDSL is also popu-

lar for the application of fiber-to-the-block (FTTB), since the cost of fiber-to-the-

home (FTTH) is high. The fiber can reach a street cabinet close to the homes, 

from which the vDSL is deployed. Since the distance of copper wires is short, the 

speed could be very high, up to 100 Mbps in the latest vDSL2 standard. 

 In contrast to xDSL, which transmits data via phone lines, cable modems 

are based on the data over cable service interface specification (DOCSIS), 

which is the standard that specifies data transmission via the cable TV system. 

The upstream and downstream throughput is around 30 to 40 Mbps. Although 

cable modems enjoy larger overall bandwidth and long distance due to their 

transmission media, the CATV cable, the bandwidth is  shared  among the CATV 

subscribers. In comparison, the xDSL users have  dedicated  bandwidth over the 

access network in the first mile. Both are still competing technologies. 

lin76248_ch03_125-222.indd   171lin76248_ch03_125-222.indd   171 24/12/10   4:24 PM24/12/10   4:24 PM



172 Computer Networks: An Open Source Approach

parts  of the signal because they bounce off physical obstacles and thus 

travel through different paths to the receiver.  

   More mobility : Because there is no wire limiting the mobility of a station, the 

network topology of wireless networks may vary dynamically. Note that 

mobility and wireless are  different  concepts though they are often mentioned 

together. Wireless is not necessary for mobility. For example, a mobile station 

can be carried to a location and then plugged into a wired network. Mobility 

is also not necessary for wireless. For example, two high buildings can 

communicate with  fixed  wireless relay devices because wiring between them is 

too expensive. This example is quite common in network deployment.  

   Less power availability : Mobile stations are often battery powered, and they 

may sometimes be put into  sleep  mode to conserve power. If the receiver is 

in sleep mode, transmitters shall  buffer  the data until the receiver awakens to 

receive them.  

   Less security : All stations within the transmission range can easily eavesdrop 

on the data propagating in the air. Optional encryption and authentication 

mechanisms could keep the data secure from outside threats.   

 In this section, we select the IEEE 802.11 wireless LAN, Bluetooth, and WiMAX as 

the examples to introduce wireless links. We select these three because IEEE 802.11 

undoubtedly dominates wireless local area network, Bluetooth dominates wireless 

personal area network, and WiMAX is promising in becoming popular in wireless 

metropolitan area network. Because of their dominance and importance, they can 

represent the technology of wireless links. 

  3.4.1 IEEE 802.11 Wireless LAN 
  WLAN Evolution 

 The IEEE 802.11 Working Group was established in 1990 to develop MAC and PHY 

specifications for wireless local area networks. The development process took so 

long that the first version of standards did not appear until 1997. Initially, three kinds 

of PHYs, infrared,  direct sequence spread spectrum  ( DSSS ), and  frequency-hopping 
spread spectrum  ( FHSS ), were specified to allow transmission at 1 Mbps and 2 Mbps. 

Spread spectrum techniques are intended to make signals robust against interference. 

It was later enhanced in two amendments, 802.11a and 802.11b, in 1999. IEEE 

802.11b extends the DSSS system to a higher data rate at 5.5 Mbps and 11 Mbps. 

IEEE 802.11a specifies a new  orthogonal frequency division multiplexing  ( OFDM ) 
operating at the  5 GHz  band, as opposed to the 2.4 GHz band of previous standards. 

The data rate is increased significantly to 54 Mbps. However, these two standards 

are not compatible with each other. IEEE 802.11b products operating at 11 Mbps 

have been popular in the market. The 802.11g standard with OFDM also operates 

at 54 Mbps, and is compatible with 802.11b by using its modulation for backward 

compatibility. IEEE 802.11n, which could operate at 300 Mbps with MIMO-OFDM, 

features multiple transmitters and receivers with OFDM as described in  Chapter 2 . 

 Besides the ever-increasing speed in wireless LAN, IEEE 802.11 also enhances 

itself in terms of other functions. IEEE 802.11e defines a set of  QoS  functions for 

lin76248_ch03_125-222.indd   172lin76248_ch03_125-222.indd   172 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 173

certain time-critical applications. IEEE 802.11 i  specifies an enhancement mecha-

nism for  security  because the wired equivalent privacy (WEP) in the original 802.11 

standard was proved to be insecure. Some standards under development are also 

interesting. IEEE 802.11 s  defines how devices in the ad hoc mode create a  mesh  

network; IEEE 802.11 k  and IEEE 802.11 r  are for wireless  roaming . The former pro-

vides information to find the most appropriate access point, while the latter allows 

connectivity of devices in motion and fast handoffs.  

  Building Blocks 

 The basic building block of an 802.11 wireless LAN is a  basic service set  ( BSS ). A 

BSS is composed of stations capable of MAC and PHY that conform to the IEEE 

802.11 standard. A standalone BSS is called an  independent BSS  ( IBSS ), or more 

often than not, is referred to as an  ad hoc network  because it is often formed without 

planning in advance. A minimum BSS contains only two stations. Multiple BSSs can 

be connected through a  distribution system  ( DS ). The IEEE 802.11 standard does not 

mandate what the DS should be, but an Ethernet network is a commonly used DS. A 

DS and a BSS are connected through an  access point  ( AP ). This extended network 

structure is called an  infrastructure .  Figure 3.23  illustrates the building blocks in 

wireless LAN.  Figure 3.24  depicts the layering in the IEEE 802.11. The IEEE 802.11 

PHYs consist of infrared, DSSS, FHSS, and OFDM, as described in  Chapter 2 . Above 

them is the MAC sublayer. We shall focus on the IEEE 802.11 MAC in this section. 

For issues on PHY, we encourage interested readers to refer to “Further Readings.” 

   CSMA/CA 

 The IEEE 802.11 MAC allocates bandwidth with two major functions:  distributed 
coordination function  ( DCF ) and  point coordination function  ( PCF ). The DCF is 

   FIGURE 3.23 IEEE 802.11 building blocks in wireless LAN. 

Independent Basic Service Set

(IBSS)

  Also ad hoc network
station

Basic Service Set

(BSS)

station

station
Basic Service Set

(BSS)

station

station

station

Access Point (AP)

AP

Distribution system
(can be any type of LAN)

Infrastructure

Ad hoc network

lin76248_ch03_125-222.indd   173lin76248_ch03_125-222.indd   173 24/12/10   4:24 PM24/12/10   4:24 PM



174 Computer Networks: An Open Source Approach

mandatory in IEEE 802.11. The PCF is performed only in an infrastructure network. 

Both coordination functions can operate within the same BSS simultaneously. 

 The philosophy behind DCF is known as  carrier sense multiple access with 
collision avoidance  ( CSMA/CA ). The most noticeable difference from the Ethernet MAC 

is the collision avoidance. As with CSMA/CD, a station must listen before transmitting. 

If a station is transmitting, other stations will be deferred until the channel is free. Once 

the channel is clear, the station will wait for a short period of time, known as  inter-frame 
space  (IFS), which is the same as inter-frame gap (IFG) in Ethernet. During the time of 

last transmission, it is likely that multiple stations are waiting to transmit. If they all are 

allowed to transmit after IFS, it is very likely to result in a collision. To  avoid  possible 

collisions, the stations have to wait a random backoff time in units of  slots  before trans-

mission. The backoff time is randomly selected from the range of 0 to CW. CW stands for 

   FIGURE 3.24 Layering in the IEEE 802.11. 

FHSS

802.2 LLC

802.11 MAC

DSSS IR OFDM Physical layer 

Data link
layer

FHSS: Frequency Hopping Spread Spectrum
DSSS: Direct Sequence Spread Spectrum
OFDM: Orthogonal Frequency Division Multiplexing
IR: Infrared

   FIGURE 3.25 CSMA/CA flowchart. 

Transmit process

Assemble frame

yes

yes

Wait interframe space

Backoff timer > 0?

Generate a new
backoff time

Wait backoff time

Start transmit

Successful
transmission

Too many attempts?
no

Channel busy?

no

no

ACK received?
yes

No

Increment attempts

yes

Transmission
fail

Receive process

Channel active?

no

yes

Start receiving

Channel still active?

yes

no

Receiving frame
too small?

yes

no

Recognize address?
no

Valid FCS?

Receive error

Successful reception

yes

*Send ACK*Send ACK only if the DA is unicast

lin76248_ch03_125-222.indd   174lin76248_ch03_125-222.indd   174 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 175

Contention Window , ranging from  CWmin  to  CWmax .  CWmin ,  CWmax , and the slot 

time all depend on the PHY characteristics. Initially, CW is set to  CWmin . The backoff time 

is decreased by one slot time if the channel is free for an IFS period; otherwise, the back-

off time is fixed until the channel is free. When the backoff time finally reaches zero, the 

station starts to transmit. The receiver sends an acknowledgment back to the sender when 

a frame is received successfully. The acknowledgment is needed for the sender to judge 

whether the frame has collided at the receiver. Principle in Action: “Why Not CSMA/CD 

in WLAN?” has more on this.  Figure 3.25  summarizes the CSMA/CA procedure. The 

receive process is similar to that of CSMA/CD except for the acknowledgment. 

   RTS/CTS: Clear Up First 

 An optional refinement to reduce the cost of collisions is an explicit RTS/CTS 

mechanism, as illustrated in  Figure 3.27 . Before transmitting a frame, the transmitter 

 Principle in Action: Why Not CSMA/CD 
in WLAN? 

 An obvious distinction between the IEEE 802.11 MAC and the IEEE 802.3 

MAC is that  collision detection  in WLAN is difficult to implement. The cost of 

 full-duplex RF  (short for radio frequency) is high, and potentially hidden stations 

make collision detection fail. The latter is known as the  hidden terminal problem , 

as illustrated in  Figure 3.26 . Station A and Station C cannot sense each other’s 

presence because they are located out of each other’s transmission range. If they 

both transmit data to Station B simultaneously, a collision will occur  at Station B  

but cannot be detected by Station A and Station C. Unlike collision detection in 

Ethernet, which stops transmission immediately if a collision is detected, the 

sender has no way to find out if a frame in transmission is impaired until the trans-

mission is completed with no acknowledgment being received at the sender. Thus, 

the cost of collision is significant if a  long  frame is transmitted. On the other hand, 

the receiver should reply with an acknowledgment if the frame is received success-

fully and the FCS is correct. Ethernet has no need for such an acknowledgment. 

   FIGURE 3.26 The hidden terminal problem. 

A B C

lin76248_ch03_125-222.indd   175lin76248_ch03_125-222.indd   175 24/12/10   4:24 PM24/12/10   4:24 PM



176 Computer Networks: An Open Source Approach

(Station A) notifies the target receiver (Station B) with a  small request to send  ( RTS ). 
The RTS is vulnerable to collision, but its cost is small. The receiver responds with a 

small  clear to send  ( CTS ) frame, which also notifies all stations (including Station A 

and Station D) within its transmission range. Both frames carry a duration field. 

The duration field in the RTS signals stations (such as Station C) around the sender 

(Station A) to wait as the receiver transmits the CTS back to the sender. Other stations 

(such as Station D) within the transmission range of the receiver (Station B) would 

refrain from sending in the duration specified in the CTS and do not need to perform 

carrier sense physically, so the frame following CTS would be free from collision at the 

receiver (Station B). Therefore this mechanism is also called  virtual carrier sense . Note 

that collision only matters at the  receiver , not at the  sender . Furthermore, the RTS/CTS 

mechanism is only applicable to  unicast  frames. In the case of multicast and broadcast, 

multiple CTSs from the receivers will result in a collision. Similarly, the acknowledg-

ment frame in reply to the transmitted frame will not be sent in this case. 

   Interleaved PCF and DCF 

 A  point coordinator  ( PC ) that resides in the AP exercises the PCF within each BSS. 

The PC periodically transmits a  beacon  frame to announce a  contention-free period  

( CFP ). Every station within the BSS is aware of the beacon frame and keeps silent 

during the CFP. The PC has the authority to determine who can transmit, and only the 

station  polled  by the PC is allowed to transmit. The polling sequence is left unspeci-

fied in the standard and is  vendor specific . 

 The DCF and PCF can coexist in the scenario illustrated in  Figure 3.28 . The CFP 

is in the first step and the CP is in the second step in the illustration. 

   FIGURE 3.27 RTS/CTS mechanism. 

C A B

E

A’s transmission
range

B’s transmission
range

D C A BCTSRTS

E

A’s transmission
range

B’s transmission
range

D

   FIGURE 3.28 DCF and PCF coexistence. 

CFP Repetition Period Delay CFP Repetition Period

DCFPCFBeaconBusyDCFPCFBeacon

Contention-Free Period (CFP) Contention Period

Time line

lin76248_ch03_125-222.indd   176lin76248_ch03_125-222.indd   176 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 177

    1. The DCF can immediately follow a CFP, and the BSS enters a period called a 

contention period  ( CP ).  
   2. Afterwards, the PC transmits a beacon frame with a field called  CFP repetition 

period , but a CFP repetition period is delayed if the channel happens to be busy 

at the end of the CP.   

  Figure 3.29  depicts the generic IEEE 802.11 MAC frame format. Certain frame 

types may contain only a subset of these fields. The four address fields can record 

the source address, the destination address, the transmitter address (from the access 

point to a wireless station in wireless bridging), and the receiver address (to the ac-

cess point connected to another interface). The latter two addresses are optional, and 

are used in bridging with an access point. We categorize the frames into three types:

    1. Control frames: RTS, CTS, ACK, etc.  

   2. Data frames: normal data  

   3. Management frames: beacon, etc.    

 To fully cover these types requires deep understanding of every IEEE 802.11 opera-

tion. Besides the four addresses, the frame control field specifies the frame type and 

some information associated with the frame. The duration/ID field specifies the ex-

pected busy period of the medium or the BSS identifier that a station belongs to. The 

sequence control field specifies the sequence number of a frame to avoid duplicate 

frames. Because the usage of the format is complex and depends on the frame type, 

readers can refer to the IEEE 802.11 standard for details. 

 Open Source Implementation 3.6: IEEE 802.11 
MAC Simulation with NS-2 

  Overview 
 Unlike CSMA/CD, CSMA/CA has had no open source hardware implementa-

tion available until now. We therefore introduce an 802.11 MAC simulation 

with a popular open source simulator NS-2. NS-2 is a discrete event simulator 

for networking research, and it provides substantial support for simulating TCP, 

routing, and multicast protocols over wired and wireless networks. In an event-

based simulator, all activities in the network are statistically generated as  events  

with  timestamp , which are scheduled to happen by the event scheduler. Many 

researchers use NS-2 to evaluate their protocols in the early design stage. Re-

cently NS-2 has been widely used to simulate the behavior of 802.11 networks.  

   FIGURE 3.29 Generic IEEE 802.11 frame format. 

FCS
Frame
body

Frame
control

General frame format

Address
4

Address
3

Address
2

Address
1

Duration/
ID

Sequence
control

40-23122bytes 66662 2

Continued

lin76248_ch03_125-222.indd   177lin76248_ch03_125-222.indd   177 24/12/10   4:24 PM24/12/10   4:24 PM



178 Computer Networks: An Open Source Approach

  Block Diagram 
  Figure 3.30  presents the architecture of NS-2 802.11 MAC and PHY, which 

consists of several network modules. For simplicity, they can be classified into 

the following three major layers:

 �    Layer 2 has three sublayers. The first is Link Layer Object, which is 

the counterpart of Logical Link Control (LLC) in a conventional LAN. 

Link Layer Object works together with the address resolution protocol 

(ARP), which will be described in  Chapter 4 . The second is the interface 

queue, which assigns the priority to routing protocol messages such as 

dynamic source routing protocol (DSR). The third sublayer is the 802.11 

MAC layer, which handles all unicast frames for RTS/CTS/DATA/ACK 

and all broadcast frames for DATA. The CSMA/CA is implemented in 

this layer.  

 �   Layer 1 is the 802.11 PHY, a network interface that can set the parameters 

based on direct sequence spread spectrum. These parameters include the 

type of antenna, energy model, and radio-propagation model.  

 �   Layer 0 is the channel layer. It simulates the physical air media for wire-

less communication. The channel layer delivers frames from a wireless 

node to its neighbors within the sensing range, and duplicates frames to 

layer 1. 

      Data Structures 
 The most important data structures in this design are a set of timers, includ-

ing transmit timer, backoff timer, receive timer, defer timer, and so on as 

described below. The following section will elaborate on the operation of 

802.11 MAC and PHY by describing the interaction of these timers with the 

function calls.  

   FIGURE 3.30 The architecture of NS-2 802.11 MAC and PHY. 

Link Layer Object ARP

Interface Queue

MAC Object

802.11 PHY
Antenna

Propagation
Energy

Channel

Layer 2

Layer 1

Layer 0

lin76248_ch03_125-222.indd   178lin76248_ch03_125-222.indd   178 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 179

  Algorithm Implementations 
  NS-2 Source Code for 802.11 MAC 
 The 802.11 MAC is a subclass of MAC, and its related source codes are 

mac-802_11.cc ,  mac-802_11.h ,  mac-timer.cc , and  mac-timer.h . 

To provide a better understanding of the NS-2 MAC source code,  Figure 3.31  

lists the major entry functions and depicts the calling sequences of their related 

functions. Since NS-2 is event-based, besides the major  recv()  function, 

 send_timer() ,  deferHandler() ,  recv_timer() , and  backoff-
Handler()  are also the entry points when their corresponding events are trig-

gered. As for the reception and transmission flows of 802.11 MAC, the  recv()
function handles incoming frames from both the physical layer and the upper 

layer. Another  send()  function is an entry point of the transmission flow, but 

it is called by the  recv()  function for the outgoing frames. 

 Following is a detailed explanation of the major entry points. 

 � send_timer()  is used to handle the acknowledgment frames from 

other mobile nodes and is called when the transmit timer expires. The timer 

expiration is interpreted differently depending on which type of frame is 

sent. For example, if the last frame sent is an RTS, the expiration means a 

CTS is not received, either because the RTS collides or because the receiv-

ing node is deferring the transmission. The MAC responds by retransmit-

ting the RTS with the function  RetransmitRTS() . If the last frame 

is a data frame, the expiration means that an ACK has not been received, 

and the MAC calls  RetransmitDATA()  to handle this situation. After 

the timer expiration is handled accordingly and a frame has been prepared 

for retransmission, the control returns to  tx_resume()  function. The 

send_timer()  function directly calls  tx_resume()  without further 

retransmission when the last frame is CTS or ACK. After  tx_resume() , 

 FIGURE 3.31 The NS-2 source code of 802.11 MAC. 

send_timer()
retransmitRTS()

check_pktRTS()

check_pktCTRL()

check_pktTx()

tx_resume() start backofftimer

deferHandler()

recv()
send() sendDATA() and sendRTS() start defer timer

transmit()

transmit()

transmit()

start sendtimer

start receivetimer

check_pktRTS()backoffHandler() transmit()

recvACK()

recvRTS()

recvCTS()

recvDATA()

recv_timer()

tx_resume()

sendCTS()

tx_resume()

sendCTS()

callback_

tx_resume()

start defer timer

uptarget_

rx_resume()

rx_resume()

recv() start defer timer rx_resume()

start receive timer

Continued

lin76248_ch03_125-222.indd   179lin76248_ch03_125-222.indd   179 24/12/10   4:24 PM24/12/10   4:24 PM



180 Computer Networks: An Open Source Approach

if a frame is retransmitted, the backoff timer is started with an increased 

contention window.  

 � recv()  handles an incoming frame from both the physical layer and the 

upper layer, and  send()  is called by  recv()  when there is a frame to 

transmit. Also,  send()  calls  sendDATA()  and  sendRTS()  to build the 

MAC header for the data frame and the RTS frame. If  recv()  is ready to 

receive any frame, the incoming frame is passed to  recv_timer()  with 

the receive timer of the frame being started.  

 � backoffHandler()  is an event service routine called when the backoff 

timer expires. The backoff timer is used to pause the transmission when 

the channel is busy. After  backoffHandler()  is called, the function 

check_pktRTS()  then checks whether there is an RTS frame waiting 

to be sent. If there is no pending RTS frame, an RTS or a data frame will 

be transmitted at the timer expiration, depending on whether the RTS/CTS 

mechanism is enabled.  

 � recv_timer()  is the receive timer handler, which checks the type and 

subtype of the received frames. The receive timer handler is called when 

the receive timer expires. The timer expiration means that a frame has been 

fully received and can be readily acted on. The decision of MAC  recv_
timer()  is based on the received frame’s type. A frame will be dropped if 

it is  MAC_Type_Management . If an RTS, CTS, ACK, or DATA frame is 

received, the  recvRTS() ,  recvCTS() ,  recvACK() , or  recvDATA()  

will be called, respectively. After the frames are handled properly, the con-

trol is handed to  rx_resume() .  

 �    deferHandler()  is also an event service routine and is called when 

the defer timer has expired. The defer timer represents the defer time plus 

a backoff time, which ensures the wireless node waits enough time be-

fore transmission to decrease the chance of collision. After the routine is 

called, the check function calls  check_pktRTS() ,  check_pktTx() , 

and  check_pktCTRL()  to prepare a new transmission. If any of these 

 check_  functions return a value of zero, the  check_  functions must have 

succeeded in transmitting a frame, so the defer handler ends. For the RTS 

and control frames, the transmitting procedure may also start the receive 

timer and the send timer to receive an acknowledgment frame from another 

mobile node.    

  CSMA/CA Operation 
 The CSMA/CA operation is exercised in the  send(  )  function.  Figure 3.32  

shows the code, where  mhBackoff_.busy() == 0  means the backoff timer 

is not busy,  is_idle()==1  the wireless channel is idle, and  mhDefer_.
busy() == 0  the defer timer is not busy. If the wireless channel is idle and 

both the backoff and the defer timers are not busy, the  send()  function will 

proceed with a defer operation; otherwise, the waiting continues without the 

timer reset. If it proceeds with a defer operation, the sending frame has to defer 

lin76248_ch03_125-222.indd   180lin76248_ch03_125-222.indd   180 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 181

a DIFS time plus a random time as  phymib_.getDIFS() + rTime . The 

random time is computed from ( Random::random()  %  cw_ )* ( phymib_.
getSlotTime() ) and in the interval from zero to  cw_  value, where  cw_ is 

the current contention window. If the backoff timer is not busy but the wire-

less channel is not idle, which means the PHY medium is detected to be busy, 

the node starts the backoff timer by calling  mhBackoff_.start(cw_, 
is_idle() ). 

   Simulation with Tcl Script 
 An NS-2 simulation can be started by a Tcl script file that defines the simulation 

scenario. A Tcl script contains network topology definition, wireless node con-

figuration, node coordinates, and movement scenario and packet tracing. 

  Figure 3.33  depicts a simple scenario for an ad hoc network consisting of 

two mobile nodes, node 0 and node 1. The move area of the mobile nodes is 

within 500 m × 500 m. A TCP connection is also set up for the FTP service. 

 Table 3.7  describes the detailed scenario in the  wireless.tcl  script file, which 

defines the example in  Figure 3.33 . 

    Exercises 
    1. Why is the  send()  function called from  recv() ?  

   2. Why should a sending frame wait for a random period of time?    

void send(Packet *p, Handler *h) { 
 … 
 if(mhBackoff_.busy() == 0) { 
  if(is_idle()) { 
  if (mhDefer_.busy() == 0) { 
  rTime = (Random::random() % cw_)* 
 (phymib_.getSlotTime()); 
  mhDefer_.start(phymib_.getDIFS() + rTime); 
  } 
 } else { 
  mhBackoff_.start(cw_, is_idle()); 
  } 
   } 

 } 

  FIGURE 3.32 CSMA/CA operation in send() function. 

   FIGURE 3.33 An NS-2 example of two mobile nodes with TCP and FTP. 

FTP TCP
agent

802.11 ad hoc network

node 0

TCP sink

node 1

Continued

lin76248_ch03_125-222.indd   181lin76248_ch03_125-222.indd   181 24/12/10   4:24 PM24/12/10   4:24 PM



182 Computer Networks: An Open Source Approach

TABLE 3.7 NS-2 Tcl Script for Figure 3.33

Description Major Codes of wireless.tcl

Define options: 

channel 

type, radio-

propagation 

model, etc.

set val(chan) Channel/WirelessChannel    ;# channel type

set val(prop)  Propagation/TwoRayGround  ;# radio-

                 propagation model

set val(netif)  Phy/WirelessPhy       ;# network interface type

…

Create a 

simulation, trace, 

and topography

set ns_  [new Simulator]  # Create a simulation object

set tracefd [open simple.tr w]  #Define a trace file to 

record all frames

…

set topo  [new Topography]  #Create a topography

$topo load_flatgrid 500 500   # Set the range of topography

500m × 500m

Setup channel 

and configure 

MAC node

create-god $val(nn)  # Create God

set chan_1_ [new $val(chan)]  # configure node

$ns_ node-config -adhocRouting $val(rp) \  # Set the

    parameters for node-llType $val(ll) \

…

Setup parameters 

for 802.11 PHY

Phy/WirelessPhy set Pt_ 0.031622777

Phy/Wireless Phy set bandwidth_ 11Mb…

Disable random 

motion

for {set i 0} {$i < $val(nn) } {incr i} {

     set node_($i) [$ns_ node]

     $node_($i) random-motion 0 }

Setup and 

initialize 

coordinates 

(X,Y,Z) for two 

wireless nodes

$node_(0) set X_ 10.0   # Setup coordinate node 0 at (10.0,

      20.0, 0.0)

…

$ns_ initial_node_pos $node_(0) 10

$ns_ initial_node_pos $node_(1) 10

Setup TCP 

and FTP flow 

between nodes

set tcp [new Agent/TCP/Sack1]  #Create a TCP connection

…

$ftp attach-agent $tcp

Start the 

simulation

$ns_ at 1.0 “$ftp start” #at 1.0 s, start the transmission

…

$ns_ run

    3.4.2 Bluetooth Technology 
 Besides plenty of cables behind our computer to connect computer peripherals, there 

are even more cables connecting different kinds of communication and networking 

devices. These cables are so cumbersome that it is better to get rid of them for the sake 

of convenience. Bluetooth, named after a Danish king in the tenth century, is the very 

technology supporting short-range (usually within 10 m) radio links to replace cables 

connecting electronic devices. In 1998, five major companies, Ericsson, Nokia, IBM, 

lin76248_ch03_125-222.indd   182lin76248_ch03_125-222.indd   182 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 183

Toshiba, and Intel cooperated to develop Bluetooth technology. To ensure the prolif-

eration of Bluetooth, the development goal was to integrate many functions in a single 

chip to reduce the cost. A  Bluetooth Special Interest Group  ( Bluetooth SIG ), composed 

of many companies, was formed later to promote and define the new standard. 

 Bluetooth devices operate at the 2.4 GHz ISM band, the same as most IEEE 

802.11 devices using frequency hopping. The frequency band ranges from 2.400 

GHz to 2.4835 GHz, within which are 79 1 MHz channels used for  frequency hop-
ping  to avoid interference from other signals. Below and above these channels are 

guard bands of 2 MHz and 2.5 MHz, respectively. An observant reader may have 

immediately noticed the possible interference problem when devices of IEEE 802.11 

and Bluetooth operate at close range. The coexistence problem of IEEE 802.11 and 

Bluetooth devices is a big issue, and we shall talk more about this at the end of this 

subsection. Bluetooth is categorized in the domain of wireless  personal  area network 

(wireless PAN) for its short distance. 

  Master and Slaves in Piconet and Scatternet 

  Figure 3.34  illustrates the basic Bluetooth topologies. Like BSS in the IEEE 802.11, 

multiple devices sharing the same  channel  form a  piconet . Unlike an IBSS, in which all 

stations are treated equally, a piconet consists of exactly one master and multiple slaves. 

The master has the authority to control channel access in the piconet, say, deciding the 

 hopping sequence . The slaves can be either  active  or  parked , and a master controls up 

to  seven  active slaves at the same time. Parked slaves do not communicate, but they still 

keep  synchronized  with the master and can become active as the master demands. If a 

master desires to communicate with more than seven slaves, it tells one or more active 

slaves to enter the park mode, and then invites the desired parked slaves to be active. 

For more devices to communicate simultaneously, multiple piconets can  overlap  with 

one another to form a larger  scatternet .  Figure 3.34  also illustrates two piconets form-

ing a scatternet with a  bridge  node, which can be a slave in both piconets or the master 

in one piconet. The bridge node participates in both piconets in a  time-division  manner 

such that sometimes it belongs to one piconet and sometimes it belongs to another. 

   Inquiry and Paging Procedures 

 Bluetooth devices must be aware of each other to communicate. An  inquiry  proce-

dure is designed for the devices in the neighborhood to  discover  each other, followed 

   FIGURE 3.34 The Bluetooth topologies: piconet and scatternet. 

Slave

Slave
Slave

Slave
Slave

Slave

Slave

Piconet Scatternet

Master (control channel access)
Master

lin76248_ch03_125-222.indd   183lin76248_ch03_125-222.indd   183 24/12/10   4:24 PM24/12/10   4:24 PM



184 Computer Networks: An Open Source Approach

by a  paging  procedure to build up a  connection . Initially, all Bluetooth devices are 

by default in standby mode. A device intending to communicate will try to  broadcast  
an inquiry within its coverage area. Other devices around the broadcasting one may 

respond to the inquiry with information about themselves, such as addresses, if they 

are willing to do so. Upon receiving these responses, the inquirer knows about its sur-

rounding devices and becomes the master in the piconet, whereas other devices be-

come the slaves in the piconet. After an inquiry, the master sends a  unicast  message 

to the destination device. The destination then responds with an acknowledgment, so 

a connection between the master and the destination device is established. A moment 

later, a slave can run the same paging procedure to take over the role of the master 

in the piconet. The details of this process are illustrated in  Figure 3.35 . It is worth 

noticing that multiple responses to an inquiry may result in a collision. Hence, the 

receiving devices should defer the responses for a random backoff time. 

   Frequency-Hopped Slots 

 A piconet channel is divided into time slots, each accommodating a different hopping 

frequency. The duration of a time slot is  625 ms , which is the reciprocal of the hop 

rate  1600 hops/s . The master/slave pair time-multiplexes the slots in the 79 1 MHz 

channels with the same hopping sequence, where the hopping sequence is derived 

from a pseudorandom sequence known to both. The other slaves are irrelevant to 

the communication process. At the data rate of 1 Mbps, each slot ideally can carry 

 625 bits  of data. However, since certain time intervals within a slot are reserved for 

the use of frequency hopping and stabilization, each time slot in reality can carry at 

most  366-bit  data information. Normally, each slot carries a Bluetooth  frame , which 

has fields of 72-bit access code, 54-bit header information, and the payload of a vari-

able length. Apparently, it is inefficient to transmit payload of only 366 − 72 − 54 = 

240 bits ( 30 bytes ) in a time slot that ideally could carry 625 bits. To improve the 

efficiency, a Bluetooth frame is allowed to occupy up to  five  consecutive time slots 

at the same frequency, so an overhead of only 625 − 366 = 259 bits for frequency-

hopping control is consumed in the five slots.  

   FIGURE 3.35 Inquiry and paging procedures. 

Master

Slave

Slave

Slave

1. Inquiry (broadcast)

2. Reply (after random backoff)

3. Paging

lin76248_ch03_125-222.indd   184lin76248_ch03_125-222.indd   184 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 185

  Interleaved Reserved and Allocated Slots 

 A Bluetooth connection has two options to use the time slots to communicate. The first 

is the  synchronous connection-oriented link  ( SCO link ), which reserves time slots reg-

ularly for time-constrained information such as voice data. For example, a telephone-

grade voice has a sampling rate of 8 KHz, each sample generating one byte; in other 

words, a byte is generated every 0.125 ms. Because a frame can carry 30 bytes in each 

time slot, one slot should be reserved to carry voice data every 3.75 ms (0.125 ms × 

30). Each time slot has a length of 625 μs, meaning one out of  six  (3.75 ms/625 μs) 

slots is reserved. The second is the  asynchronous connectionless link  ( ACL link ), by 

which time slots are allocated on demand rather than being reserved. The master is in 

charge of the slot allocation requested from one or multiple slaves to avoid collisions 

and to control the quality of service (QoS) of the link. The slave is allowed to send an 

ACL frame to the master when the master polls it. Similar to PCF and DCF in WLAN, 

SCO and ACL slots are interleaved; the major difference, however, is that ACL runs a 

 collision-free  polling and slot allocation.  Figure 3.36  illustrates the time slots of both 

the SCO link and the ACL link. The frames in the SCO link are quite regular, while 

those in the ACL link are on demand. 

  Figure 3.37  depicts the protocol stack in the Bluetooth specification. Each 

software module’s function is described on the right-hand side of the figure. The 

modules above the thick black line are implemented in software, and the others are 

implemented in hardware. The link manager protocol above the baseband and RF 

modules is responsible for link setup between Bluetooth units. This protocol can also 

deal with negotiation of packet sizes and encryption keys, and it performs the actual 

encryption and decryption. 

 The L2CAP (Logical Link Control and Adaptation Layer) module supports mul-

tiplexing, segmentation, and reassembly of packets for higher-layer protocols. It 

also supports QoS communication. The service discovery protocol can discover the 

services available on the other Bluetooth devices. The RFCOMM provides the basis 

for replacing serial communication via cables using Bluetooth. It can emulate the 

circuits of RS-232 serial ports over L2CAP. The HCI (host control interface) control 

provides the software interface for the host to control the Bluetooth hardware. 

   FIGURE 3.36 Time slots in the SCO link and the ACL link. 

Master

SCO SCO SCO SCO SCOACL ACL ACL

Slave 1

Slave 2

lin76248_ch03_125-222.indd   185lin76248_ch03_125-222.indd   185 24/12/10   4:24 PM24/12/10   4:24 PM



186 Computer Networks: An Open Source Approach

   3.4.3 WiMAX Technology 
 The WiMAX (Worldwide Interoperability for Microwave Access) technology specified 

in IEEE 802.16 can support wireless communications over a long distance, up to doz-

ens of miles. In contrast to wireless LAN in IEEE 802.11 and wireless PAN in IEEE 

802.15, WiMAX is also called wireless MAN, named after its long-distance com-

munication range. The deployment of WiMAX devices can be  fixed  or  mobile . IEEE 

802.16-2004 specifies the technology for fixed connections. The major applications of 

IEEE 802.16-2004 are broadband access for “ first mile ,” where wired connections 

such as ADSL or cable modems are costly. IEEE 802.16e-2005 specifies the technol-

ogy for mobile connections, and its applications are Internet access via  mobile devices .  

  MAC with Bandwidth Allocation and Scheduling 

 WiMAX differs from 802.11 Wireless LAN in many aspects. First, they target 

different applications. IEEE 802.11 is primarily developed for connections at a 

short range such as home or office usage, but WiMAX is developed for broadband 

connections over a distance of miles. Second, they use different medium access con-

trol mechanisms. IEEE 802.11 is contention-based, meaning a number of wireless 

devices must compete for available bandwidth. Therefore, it is less appropriate for 

time-sensitive applications such as VoIP unless QoS services offered by 802.11e are 

provided. In contrast, WiMAX uses a scheduling algorithm to allocate bandwidth 

among the devices. In WiMAX, a base station allocates a time slot to a device such 

that no other devices can use that slot. By doing so, the base station can serve a 

large number of subscriber stations and control the slot allocation for time-sensitive 

applications. In fact, its MAC resembles the cable modem standard DOCSIS since 

both have the uplink/downlink structure facilitating centralized bandwidth allocation 

and scheduling. For more details, an NS-2 module for simulation of WiMAX 

networks can be found at   http://www.lrc.ic.unicamp.br/wimax_ns2  .  

   FIGURE 3.37 The Bluetooth protocol stack, where baseband and link manager 
protocol play the role of a MAC sublayer. 

Service
discovery
protocol

Audio

Application

PPP

RFCOMM

L2 CAP

Link manager protocol Bluetooth chip

RF: radio characteristics

Baseband: device discovery, link establishment

LMP: baseband link configuration and management

HCl control: interface to control Bluetooth chip

Software modules

L2CAP: channel establishment for higher-layer protocols

SDP: service discovery and query for peer device

RFCOMM: RS-232 cable connection emulation

Baseband

RF

Data
HCl control

lin76248_ch03_125-222.indd   186lin76248_ch03_125-222.indd   186 24/12/10   4:24 PM24/12/10   4:24 PM

http://www.lrc.ic.unicamp.br/wimax_ns2


 Chapter 3 Link Layer 187

 Historical Evolution: Comparing Bluetooth and 
IEEE 802.11 

 Bluetooth and IEEE 802.11 are designed for different purposes. IEEE 802.11 in-

tends to be a wireless LAN standard, while Bluetooth is designed for the wireless 

personal area network (wireless PAN, or WPAN).  Table 3.8  summarizes a com-

parison between IEEE 802.11 and Bluetooth. The IEEE 802.15 WPAN Working 

Group and the Bluetooth SIG are cooperating to improve the Bluetooth standard. 

The IEEE 802.15 Task Group 2 focuses on addressing the coexistence problem due 

to possible interference, so coexistence of these two standards can be expected. 

TABLE 3.8 A Comparison of Bluetooth and IEEE 802.11

IEEE 802.11 Bluetooth

Frequency 2.4 GHz (802.11, 802.11b)

5 GHz (802.11a)

2.4 GHz

Data rate 1, 2 Mbps (802.11)

5.5, 11 Mbps (802.11b)

54 Mbps (802.11a)

1–3 Mbps (53–480 Mbps in 

proposal)

Range around 100 m Within 1–100 m, depending

on the class of power

Power consumption Higher (with 1 W, usually

30–100 mW)

Lower (1 mW–100 mW, usually 

about 1 mW)

PHY specification Infrared OFDM FHSS

DSSS

(Adaptive) FHSS

MAC DCF PCF Slot allocation

Price Higher Lower

Major application Wireless LAN Short-range connection

  From OFDM to OFDMA 

 In the physical layer, WiMAX uses a much wider licensed spectrum from 2 GHz to 

11 GHz and from 10 GHz to 66 GHz, unlike 802.11, which uses the license-free ISM 

band. The initial version of WiMAX operates from 10 GHz to 66 GHz. Operating at 

such a high frequency has the advantage of more available bandwidth, but the signal 

is also easily affected by  obstacles . Therefore WiMAX needs to deploy a large num-

ber of base stations at a high cost to circumvent obstacles. A later version of WiMAX 

supports frequencies from 2 GHz to 11 GHz, where some bands require a license 

while the others are license free. Deployment also becomes easier and less expensive 

due to the lower frequency. To avoid WiMAX devices interfering with devices run-

ning other technologies in the same frequency range, the standard provides schemes 

to  dynamically  select the frequency. Moreover, WiMAX supports a  mesh  mode to 

enable a subscriber station to get data from another. The mesh mode can simplify the 

lin76248_ch03_125-222.indd   187lin76248_ch03_125-222.indd   187 24/12/10   4:24 PM24/12/10   4:24 PM



188 Computer Networks: An Open Source Approach

deployment of WiMAX because a subscriber station can be deployed as a relay sta-

tion in a location where an obstacle to the communication between the base station 

and another subscriber station is located. WiMAX supports OFDM in its physical 

layer and a new scheme called OFDMA (orthogonal frequency division multiple 

access), which assigns  subcarriers  to multiple users for multiple accesses. With 

OFDMA, multiple users can access the channel on different subcarriers simultane-

ously, which is not the case for WLAN, which uses CSMA/CA for medium access. 

 Resources available in OFDMA in the  time  domain are managed in terms of 

 symbols,  while those in the  frequency  domain are in terms of  subcarriers  and further 

grouped into  sub-channels . Subcarriers are units of carriers in a finer granularity 

than sub-channels in the logical partition of the frequency domain. The minimum 

frequency-time resource unit is one time slot that contains  48  data subcarriers and 

a duration of  two  symbols for downloading or  three  symbols for uploading in the 

mandatory PUSC (partial usage of sub-channels) mode. The 802.16 PHY supports 

time division duplex (TDD), frequency division duplex (FDD), and half-duplex FDD 

modes—though independent of OFDMA in concept, they all can work with OFDMA. 

TDD is preferred in WiMAX since it needs only one channel to support time slots and 

adjust unbalanced downlink/uplink loads. In contrast, the FDD needs two channels for 

DL and UL, respectively. The transceiver design is also easier in TDD than in FDD. 

 Note that WiMAX also supports mobile operation in IEEE 802.16e-2005. The 

standard supports handoffs and roaming at speed up to 75 mph. This operation works 

at a lower frequency from 2.3 GHz to 2.5 GHz to allow a mobile device to move 

around, even if an obstacle exists between the device and the base station. OFDMA is 

required for a mobile device to finely utilize the sub-channels and reduce  interference . 

WiMAX for mobile applications is in competition with the popular 3G and its next 

generation 3GPP, but which one will win the game is still not clear to date. Although 

3G already has a wide coverage around the world so far, WiMAX has a higher data 

rate up to 75 Mbps, and its base station can cover an area within a radius of 30 miles. 

Most laptop computers at present are equipped with neither WiMAX nor 3G for wire-

less Internet access, so this would be the first potential market for WiMAX to prevail. 

 IEEE 802.16e supports both  soft  and  hard  handoffs. With hard handoff, a user 

is stuck to one station at a time, which means the old connection must be torn down 

before a new connection is established. Hard handoff is simple and sufficient for data 

applications. With soft handoff, a new connection can be set up  before  an old connec-

tion is disconnected, so the latency from the switch is shorter. Therefore, soft handoff 

is more suitable for time-critical applications. 

 Unlike 802.11, which is intended for short-range communications, WiMAX is 

mainly applied to metropolitan area networks and therefore must control all data 

transmission to/from devices to avoid  synchronization  problems. In the next section 

we describe the WiMAX frame structure under TDD mode, describe the five uplink 

scheduling service classes whose connections fill up the frame, and detail the packet 

flow in the MAC of a base station.  

  TDD Subframe 

  Figure 3.38  shows the frame structure under TDD, which includes (1) UL-MAP and 

DL-MAP for  control  messages, and (2) downlink and uplink  data  subframes. The 

lin76248_ch03_125-222.indd   188lin76248_ch03_125-222.indd   188 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 189

bandwidth allocation algorithm determines the scheduled time slots for the downlink 

and the uplink, and indicates the schedule in the UL-MAP and DL-MAP messages. 

All UL-MAP/DL-MAP and data subframes are composed of a number of  OFDMA 
slots , in which a slot is one sub-channel by  three  OFDMA symbols in uplink and 

one sub-channel by  two  OFDMA symbols in downlink. This mode is named  PUSC  

(partial usage of sub-channels), the mandatory mode in 802.16. 

   Uplink Scheduling Classes 

 The 802.16e-2005 currently supports five uplink scheduling classes, namely the Unso-

licited Grant Service (UGS), Real-Time Polling Service (rtPS), Non-Real-Time Polling 

Service (nrtPS), Best Effort (BE), and the lately proposed Extended Real-Time Polling 

Service (ertPS).  Table 3.9  summarizes the characteristics of these service classes, which 

are very similar to the ones in DOCSIS. Each service class defines a different data han-

dling mechanism to carry out service differentiation. The UGS has the highest priority 

   FIGURE 3.38 TDD subframe structure. 

Frame
control

Downlink
subframe

Uplink
subframe

DL_MAPn–1

UL_MAPn–1

Framen–1 Framen Framen+1

DL_MAPn

UL_MAPn

DL_MAPn+1

UL_MAPn+1

TABLE 3.9 Service Classes and the Corresponding QoS Parameters

Feature UGS ertPS rtPS nrtPS BE

Request Size Fixed Fixed but 

Changeable

Variable Variable Variable

Unicast Polling N N Y Y N

Contention N Y N Y Y

QoS Parameters

Min. rate N Y Y Y N

Max. rate Y Y Y Y Y

Latency Y Y Y N N

Priority N Y Y Y Y

Application VoIP without 

silence

suppression, 

T1/E1

Video, VoIP 

with silence

suppression

Video, VoIP 

with silence 

suppression

FTP, Web 

browsing

E-mail, 

message-

based 

services

lin76248_ch03_125-222.indd   189lin76248_ch03_125-222.indd   189 24/12/10   4:24 PM24/12/10   4:24 PM



190 Computer Networks: An Open Source Approach

and reserves a  fixed  number of slots at each interval for bandwidth guarantee. rtPS, 

nrtPS, and BE rely on  periodic polling  to gain transmission opportunities from the base 

station, while ertPS reserves a  fixed  number of slots as UGS does and in the  contention
period notifies the BS of possible reservation changes. nrtPS and BE both  contend  for 

transmission opportunities according to their preconfigured priority if they do not get 

enough bandwidth from  polling . An nrtPS service is always superior to that of BE.  

  Detailed Packet Flow in the MAC Layer 

 The complete packet flow in the uplink and downlink of a BS MAC is illustrated 

as follows. For the downlink processing flow, both IP and ATM packets in the net-

work layer are transformed from/to the MAC  convergence sublayer  (CS) by en-/

de-capsulating the MAC headers. According to the addresses and ports, packets are 

classified to the corresponding connection identifier of a  service flow , which further 

determines the QoS parameters. Fragmentation and packing are then performed to 

form a basic MAC  protocol data unit  (PDU), whose size frequently adapts to the 

channel quality, followed by the allocation of resulting PDUs into queues. Once the 

allocation starts, the  bandwidth management unit  arranges the data burst transmis-

sions to fill up the frame. The  MAP builder  then writes the arrangements, namely the 

allocation results, into the MAP messages to notify the PHY interface when sending/

receiving the scheduled data in the time frame. Encryption, header checksum, and 

frame CRC calculations are carried out to the PDUs before they are finally sent 

to the PHY. The uplink processing flow is similar to that of the downlink except 

that the base station also receives standalone or piggybacked bandwidth requests. 

Among the above operations, it is obvious that the bandwidth management, and thus 

 Historical Evolution: Comparing 3G, LTE, and 
WiMAX 

 IEEE 802.16e-2005, also known as mobile WiMAX, is designed to support mobile 

applications. As mentioned in the text, WiMAX has a high data rate (75 Mbps) and 

long distance (30 miles), while 3G has a data rate of only around 3 Mbps. However, 

3G can have its users from those who use cellular phones. 

 Will WiMAX eventually become a popular solution for mobile applications? 

It has been endorsed by several vendors. For example, Intel incorporates mobile 

WiMAX capabilities into its next-generation laptop Wi-Fi chips. The 3G technol-

ogy is also evolving—the next-generation LTE (Long Term Evolution), developed 

by the Third Generation Partnership Project ( www.3gpp.org ), can reach 300 Mbps 

downstream and 100 Mbps upstream, and it can be deployed quickly given the 

already large infrastructure of 3G technology. The IEEE also adopts the WiMAX 

2.0 in the IEEE 802.16m standard, which further boosts the data rate to 100 Mbps 

for mobile users and 1 Gbps for fixed applications. The competition is fierce. In 

the meantime, the deployment of mobile WiMAX is still not wide, due to delay in 

implementation and interoperability certification. Time-to-market here is a critical 

factor that will determine whether mobile WiMAX will succeed in the market. 

lin76248_ch03_125-222.indd   190lin76248_ch03_125-222.indd   190 24/12/10   4:24 PM24/12/10   4:24 PM

www.3gpp.org


 Chapter 3 Link Layer 191

the bandwidth allocation algorithm, are critical and need to be carefully designed to 

improve the system performance. 

      3.5 BRIDGING 

  Network administrators usually connect separate LANs into an interconnected net-

work to extend a LAN or to improve its administration. An interconnection device 

operating at the link layer is called a  MAC bridge , or simply  bridge . It is often called 

 a Layer-2 switch , Ethernet switch, or simply  switch , and we shall see why later. A 

bridge interconnects LANs as if they were in the same LAN. The IEEE 802.1D stan-

dard has stipulated its operation. We shall introduce the ins and outs below. 

 Almost all bridges are  transparent  bridges because all stations on the intercon-

nected LANs are unaware of their existence. The transmitting station simply encap-

sulates the destination MAC address into a frame and sends out the frame as if the 

destination were on the same LAN. The bridge automatically forwards this frame. 

Another category of bridges is source-routing bridges. In this category, the station 

should discover the route and encapsulate forwarding information in the frame to 

instruct the bridge how to forward. Since Ethernet dominates the LAN market, this 

category is seldom seen, so we introduce only the transparent bridge. 

 The bridge has ports to which LANs are connected. Each port operates in the 

 promiscuous mode , meaning it receives  every  frame on the LAN attached to it, no 

matter what the destination address is. If a frame has to be forwarded to another port, 

the bridge will do it accordingly. 

  3.5.1 Self-Learning 
 The mystery lies in how the bridge knows  whether  it should forward an incoming 

frame and to  which  port it should forward.  Figure 3.39  illustrates the bridge op-

eration. A bridge keeps an address table, also called forwarding table, to store the 

mapping of MAC addresses to port numbers. Initially, the address table is blank, 

and the bridge knows nothing about the location of stations. Suppose Station 1 with 

MAC address 00-32-12-12-6d-aa transmits a frame to Station 2 with MAC address 

00-1c-6f-12-dd-3e. Because Station 1 is connected to Port 3 of the bridge, the bridge 

will receive the frame from Port 3. By checking the  source  address field of the frame, 

the bridge  learns  the MAC address 00-32-12-12-6d-aa is located on the segment 

to which Port 3 is connected, and then keeps the learned fact in the address table. 

However, it still does not know where the destination address 00-1c-6f-12-dd-3e is 

located. To ensure that the destination can receive the frame, it simply broadcasts the 

frame to every port except the port where the frame originates. Suppose Station 2 

transmits a frame to somewhere a moment later. The bridge will learn that its address 

comes from Port 2 and will keep this fact in the address table as well. Subsequent 

frames destined for Station 2 will be forwarded to Port 2 only, without broadcast. 

This process is called  self-learning . 

  Self-learning  greatly saves the bandwidth of all other segments and reduces the 

collision probability, if any. Of course, if Station 2 always remains silent, the bridge 

lin76248_ch03_125-222.indd   191lin76248_ch03_125-222.indd   191 24/12/10   4:24 PM24/12/10   4:24 PM



192 Computer Networks: An Open Source Approach

   FIGURE 3.39 Bridge operation: self-learning. 

MAC address: 00-32-12-12-33-1c

MAC address: 00-1c-6f-12-dd-3e

Port 1

Forward to Port 2

Ethernet bridge

Destination MAC address: 00-1c-6f-12-dd-3e

MAC address: 00-32-12-12-6d-aa

Frame

Port 2

Station 2

Station 2 entry here!

Station 1
Port 3

Address table

MAC address

00-32-12-12-6d-aa

00-1c-6f-12-dd-3e

00-32-11-ab-54-21

02-12-12-56-3c-21

00-32-12-12-33-1c

3

2

1

1

1

Port

Repeater hub

MAC address: 02-12-12-56-3c-21 MAC address: 00-32-11-ab-54-21

will never know where it is, and every frame destined for Station 2 will be broadcast, 

but this situation rarely happens. A typical scenario is that Station 2 responds after 

receiving a frame destined for it, and the bridge can learn where Station 2 is from 

the response. 

 Sometimes a station may be relocated or removed, making its entry in the ad-

dress table stale. An  aging  mechanism is applied to solve this problem. If a station 

has not been heard from for a given period of time, its entry will expire. Subsequent 

frames destined for the station will be flooded until its existence is learned again. 

 If the destination address is a multicast or broadcast address, the bridge will 

forward the frame to all ports except the source. It is wasteful to flood the frame, 

however. To reduce the unnecessary flooding cost, the IEEE 802.1D standard speci-

fies a  GMRP , short for  GARP Multicast Registration Protocol .  GARP  is a subset of 

 Generic Attribute Registration Protocol  ( GARP ). When this protocol is enabled, 

the bridge can register the requirement from the intended receivers of multicast ad-

dresses. The registration information will propagate among bridges to identify all 

intended receivers. If no multicast demand is found on a given path, a  multicast prun-
ing  is performed to cut off this path. Through this mechanism, multicast frames are 

forwarded only to those paths where there are intended receivers. 

 Note that in  Figure 3.39 , there is a device called a  repeater hub , or often simply 

 hub . The device is a Layer 1 device, meaning it simply restores signal amplitude and 

timing, and propagates signal to all ports other than the port the frame comes from, 

lin76248_ch03_125-222.indd   192lin76248_ch03_125-222.indd   192 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 193

 Historical Evolution: Cut-Through vs. 
Store-and-Forward 

 Recall that the destination address (DA) field is the first in the frame except the 

preamble and SFD fields. Looking up the DA in the address table, the bridge 

can determine where to forward the frame. The bridge can start to forward the 

frame out of the destination port  before  the frame is received completely. This 

operation is called  cut-through . On the other hand, if the bridge forwards only 

 after  the frame is received completely, its operation is called  store-and-forward . 

 The distinction between these two approaches has its historic reason. Be-

fore 1991, a switch was called a bridge, both in the IEEE standard and in the 

market. Early bridges operated in a store-and-forward manner. In 1991, Kalpana 

Corporation marketed the first cut-through bridge under the name “switch” to 

differentiate its product from store-and-forward bridges and to declare lower 

latency due to the cut-through operation. Arguments then were raised among 

proponents of store-and-forward and cut-through approaches.  Table 3.10  sum-

marizes the comparisons of these two mechanisms.  

8  If the LAN of the outgoing port or the output queue is occupied by other frames, a frame still cannot be 

forwarded even in a cut-through switch. 

TABLE 3.10 Comparisons of Store-and-Forward and Cut-Through

Store-and-Forward Cut-Through

Transmitting time Transmit a frame after 

receiving completely

May transmit a frame before 

receiving completely8

Latency Slightly larger latency May have slightly smaller 
latency

Broadcast/Multicast No problem with 

broadcast or multicast 

frames

Generally not possible for 

broadcast or multicast frames

Error checking Can check FCS in time May be too late to check FCS

Popularity Mostly found in the 

market

Less popular in the market

but knows nothing about the frame. After all, frames are nothing more than a series 

of encoded bits to the physical layer. 

  Bridge vs. Switch 

 Following Kalpana’s name convention, bridges are marketed under the name “switch,” 

no matter whether their operation is store-and-forward or cut-through. The IEEE 

standard still uses the name “bridge” and explicitly underlines that the two terms 

are synonyms. Most switches provide only store-and-forward nowadays because the 

lin76248_ch03_125-222.indd   193lin76248_ch03_125-222.indd   193 24/12/10   4:24 PM24/12/10   4:24 PM



194 Computer Networks: An Open Source Approach

 Open Source Implementation 3.7: 
Self-Learning Bridging 

  Overview 
 A switch maintains a forwarding database to determine to which port a frame 

should be forwarded. The learning process of the database is automatic to mini-

mize the efforts of management. That is why we call it self-learning. The key of 

self-learning is quite simple: If an incoming frame with the source MAC address 

 A  comes from port  n , it means the host with MAC address  A  is reachable from 

port  n , and a frame destined for  A  will be forwarded to port  n  by the switch. 

We will introduce the source code of the self-learning mechanism in the Linux 

kernel, as a Linux host can also serve as a switch (or bridge).  

  Block Diagram 
  Figure 3.40  illustrates the learning process, where the forwarding database is 

implemented as a hash table. If there is a hash collision, entries of the same 

bucket are stored in a linked list. 

 When a frame with source MAC address  A  enters a switch, the switch com-

putes the hash value of  A  to locate the entry in the forwarding database, and tries 

to find  A  in that bucket (perhaps traversing through the linked list). If  A  has been 

in the database, the original entry will be deleted, meaning the corresponding 

port of  A  is to be updated. Finally,  A  and the port to which the frame comes will 

be recorded in the forwarding table. 

   Data Structures 
 The most important data structure is the forwarding database, which is defined 

in the  net_bridge  structure (see  br_private.h ). The hash field in the 

structure is the hash table, defined as follows: 

  struct hlist _ head hash[BR _ HASH _ SIZE];  

 The entry in the list contains the association of the MAC address with the port, 

defined as follows. Here  mac  is the MAC address, and  dst  is the corresponding 

 FIGURE 3.40 The self-learning process of a forwarding database. 

A n

srcMAC = A

hash[br_mac_hash(A)]

Forwarding database

lin76248_ch03_125-222.indd   194lin76248_ch03_125-222.indd   194 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 195

port. Since it is possible that a host is connected to a different port, if the  age-
ing_timer  expires, the entry should be deleted or it will become outdated. 

 struct net_bridge_fdb_entry 
 { 
  struct hlist_node hlist; 
 struct net_bridge_port *dst; 
 struct rcu_head rcu; 
 atomic_t use_count; 
 unsigned long ageing_timer; 
 mac_addr addr; 
 unsigned char is_local; 
 unsigned char is_static; 
 }; 

    Algorithm Implementations 
 Linux implements the lookup table in  net/bridge/br_fdb.c , where  fdb
denotes the forwarding database. The lookup process takes a MAC address to 

identify an entry in the database, and computes the hash function of  br_mac_
hash()  to identify the right hash table bucket. The following code segment in 

br_fdb.c  illustrates how the table is looked up. 

 struct net_bridge_fdb_entry *_br_fdb_get(struct 
net_bridge *br, const unsigned char *addr) 
 { 
  struct hlist_node *h; 
  struct net_bridge_fdb_entry *fdb; 
  hlist_for_each_entry_rcu(fdb,h,
 &br->hash[br_mac_hash(addr)],hlist) { 
  if (!compare_ether_addr(fdb->addr.addr,
  addr)) { 
  if (unlikely(has_expired(br, fdb))) 
  break; 
  return fdb; 
  } 
  } 
  return NULL; 
 } 

  The macro  hlist_for_each_entry_rcu()  searches through the linked 

list pointed by  &br->hash[br_mac_hash(addr)]  to find the right entry 

in  net_bridge_fdb_entry , which contains the port to be forwarded. Here 

rcu (Read-Copy-Update) is a synchronization mechanism added into the Linux 

kernel during the development of version 2.5 to provide mutual exclusion be-

tween threads. The lookup comes with an aging mechanism to void the search. 

Continued

lin76248_ch03_125-222.indd   195lin76248_ch03_125-222.indd   195 24/12/10   4:24 PM24/12/10   4:24 PM



196 Computer Networks: An Open Source Approach

If an entry has expired, the search is just ignored. This mechanism keeps the 

database up to date if the network topology is changed. 

 A new entry is inserted into the forwarding database when a frame is re-

ceived. This is called the self-learning mechanism in the bridge operation. The 

code segment is also in  br_fdb.c , as illustrated below. 

 static int fdb_insert(struct net_bridge *br, struct 
net_bridge_port *source, const unsigned char *addr) 
 { 
  struct hlist_head *head = &br->hash[br_mac_
  hash(addr)];   struct net_bridge_fdb_entry *fdb; 
  if (!is_valid_ether_addr(addr)) 
  return -EINVAL; 
  fdb = fdb_find(head, addr); 
  if (fdb) { 
  if (fdb->is_local) 
  return 0; 
  fdb_delete(fdb); 
  } 
  if (!fdb_create(head, source, addr, 1)) 
  return -ENOMEM; 
  return 0; 

 }  
 The insertion begins with looking up the incoming MAC address in the 

forwarding database. If an entry is found, it is replaced with the new entry; oth-

erwise, the new entry is inserted into the database.  

  Exercises 
    1. Trace the source code and find out how the aging timer works.  

   2. Find out how many entries are there in the  fdb  hash table of your Linux 

kernel source.    

cut-through design has no significant benefit, as shown in  Table 3.10 . The term “switch” 

is also common on devices that make forwarding decisions based on the information 

from upper layers. That is why we see L3 switch, L4 switch, and L7 switch today. 

    3.5.2 Spanning Tree Protocol 
 As the topology of a bridged network becomes larger and more complex, network ad-

ministrators may inadvertently create a  loop  in the topology. This situation is undesirable 

because frames can circulate around the loop and the address table may become un-

stable. For example, consider the following disaster in which two 2-port switches form a 

loop and a station broadcasts a frame onto the loop. Each switch will forward the broad-

cast frame to the other upon receiving it, making it circulate around the loop indefinitely. 

lin76248_ch03_125-222.indd   196lin76248_ch03_125-222.indd   196 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 197

 To address the loop problem, IEEE 802.1D stipulates a  spanning tree protocol  
( STP ) to eliminate loops in a bridged network. Almost all switches support this pro-

tocol for its simplicity in implementation.  Figure 3.41  is a trivial example imposed 

with a spanning tree, and its procedural steps are listed below. 

    1. Initially, each switch and port is assigned an identifier composed of a manage-

able  priority  value and switch address (or port number for port identifier). For 

simplicity, we use 1 to 6 as the identifiers in this illustration.  

   2. Each link is specified a cost that can be inversely proportional to the link speed. 

We assume all link costs are 1 here.  

   3. The switch with the  least  identifier serves as the  root . The root is elected through 

the exchange of frames of configuration information among switches.  

   4. Each LAN is connected to a port of some switch in an  active  topology. The port 

through which the LAN transmits frames originating from the root is called the 

 designated port  (DP), and the switch is called the  designated bridge . The port 

through which the switch receives frames from the root is called the  root port  
(RP).  

   5. Periodically, configuration information propagates downward from the root on 

the  bridge protocol data unit  (BPDU) whose destination address is a  reserved  

multicast address for switches, 01-80-C2-00-00-00. The BPDU frame contains 

information such as the root identifier, the transmitting switch identifier, the 

transmitting port identifier, and the cost of the path from the root.  

  6.  Each switch may configure itself based on the information carried in the 

received BPDUs. The configuration rules are:

   � If the switch finds it can provide a  lower  path cost by comparing with the 

path cost  advertised  in BPDUs, it will attempt to be a designated bridge by 

transmitting BPDUs with its lower path cost.  

  � In case of ambiguity, e.g., multiple choices of equal path cost, the switch or 

port with the least identifier is selected as the designated bridge (port).  

   FIGURE 3.41 A bridged network with loops. 

switch id=1

root

switch id=5

switch id=2 switch id=4

Smaller port id

switch id=6

switch id=3

DP

RP

DP

DP DP

RP

DP

DP

DP DP

DP

RP

RPRP

lin76248_ch03_125-222.indd   197lin76248_ch03_125-222.indd   197 24/12/10   4:24 PM24/12/10   4:24 PM



198 Computer Networks: An Open Source Approach

� If the switch finds it has a  lower  identifier than that of the current root, it will 

attempt to become the new root by transmitting BPDUs with its identifier as 

the root identifier.  
� Note that a switch does not forward any incoming BPDUs, but may create 

new BPDUs to carry its new states to others.     

   7. All ports other than DPs and RPs are  blocked . A blocked port is not allowed to 

forward or receive data frames, but it still keeps  listening  to BPDUs to see if it 

can be active again.   

  Figure 3.41  also presents the resulting spanning tree. The readers are encouraged to 

trace the procedure. The protocol is so effective that it dynamically updates the span-

ning tree according to possible topological changes. 

 Open Source Implementation 3.8: 
Spanning Tree 

  Overview 
 Spanning tree configuration is updated from information in the ingress BPDUs, 

as described in the text. When a bridge receives a BPDU, it first builds a struc-

ture that contains BPDU information by parsing the frame, and then updates the 

bridge configuration according to the BPDU information. After that, the new 

root is selected and the designated port is determined. The states of ports are 

then updated according to the new configuration.  

  Block Diagram 
  Figure 3.42  illustrates the call flow of handling BPDU frames. The flow basi-

cally follows the sequence introduced above. We will describe the details of each 

function call below. 

   FIGURE 3.42 Call flows of handling BPDU frames. 

br_stp_rcv

br_received_config_bpdu

br_record_config_information br_configuration_update br_port_state_selection

br_root_selection br_designated_port_selection

lin76248_ch03_125-222.indd   198lin76248_ch03_125-222.indd   198 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 199

   Data Structures 
 The  br_config_bpdu  is the most important structure (defined in  net/
bridge/br_private_stp.h ), which derives the BPDU information from the 

BPDU frame after parsing the frame. It contains the following fields in the structure, 

and these fields can be directly mapped from the protocol fields in a BPDU frame. 

struct br_config_bpdu 
 { 
  unsigned topology_change:1; 
  unsigned topology_change_ack:1; 
  bridge_id root; 
  int root_path_cost; 
  bridge_id bridge_id; 
  port_id port_id; 
  int message_age; 
  int max_age; 
  int hello_time; 
  int forward_delay; 
 }; 

  The received BPDU frame is used to update the global bridge configuration in the 

net_bridge  structure (defined in  net/bridge/br_private.h ).  This 

structure is not only for the spanning tree protocol but also for other protocols. 

It also contains the whole data structures needed by a bridge, say the forwarding 

database. Hence we do not discuss it in this section.  

  Algorithm Implementations 
 The  br_stp_rcv()  function in  br_stp_bpdu.c  (under the net/bridge 

directory) handles updates on spanning tree configuration. The function parses 

the BPDU and builds a  br_config_bpdu  structure of BPDU informa-

tion. The structure and the port information are then passed to the function 

 br_received_config_bpdu()  in  br_stp.c . This function first calls 

 br_record_config_information()  to register the BPDU information 

at the port, and then calls  br_configuration_update()  to update the 

bridge configuration. The code segment is as follows: 

  void br_received_config_bpdu(struct net_bridge_port 
*p, struct br_config_bpdu *bpdu) 
 { 
  // Skip some statements here 
  if (br_supersedes_ port_info(p, bpdu)) { 
  br_record_config_information(p, bpdu); 
  br_configuration_update(br); 
  br_port_state_selection(br); 
  // Skip some statements here 
 } 

Continued

lin76248_ch03_125-222.indd   199lin76248_ch03_125-222.indd   199 24/12/10   4:24 PM24/12/10   4:24 PM



200 Computer Networks: An Open Source Approach

  After the configuration is updated, the port state is also updated in  br_
port_state_selection()  according to the port’s assigned role. For 

example, a port may be blocked to avoid a loop. Note that  br_configura-
tion_update()  may be called from more than one place. For example, the 

system administrator may execute a command to disable a port or change a path 

cost. This case will also trigger the update of bridge configuration. 

 The  br_configuration_update()  function simply calls two func-

tions  br_root_selection()  and  br_designated_port_selec-
tion()  to select a new root and determine the designated port, respectively. 

The path cost may also be updated if the root or the designated port is changed.  

  Exercises 
    1. Briefly describe how the BPDU frame is propagated along the topology of 

spanning trees.  

   2. Study the  br_root_selection()  function to see how a new root is 

selected.    

   3.5.3 Virtual LAN 
 Once a device is connected to a LAN, it belongs to that LAN. That is, the deployment 

of LANs is completely determined by  physical  connectivity. In some applications, we 

need to build  logical  connectivity on top of physical deployment. For example, we may 

want some ports in a switch to belong to one LAN, and others to belong to another. 

Further, we may want to assign ports across  multiple  switches to the same LAN and all 

other ports to another LAN. Generally, we need flexibility in the network deployment. 

  Virtual LAN  (VLAN) can provide for the logical configuration of LANs. Ad-

ministrators can simply work with management tools without changing the physical 

connectivity of the underlying network topology. Additionally, with VLAN separa-

tion, ports of a switch can be assigned to different VLANs, each functioning as a 

physically separated switch. By doing so, we can enhance network  security  and save 

bandwidth because traffic, particularly multicast and broadcast traffic, can be con-

fined within a specifically defined VLAN to which the traffic belongs. For example, 

a broadcast frame or a frame with an  unknown  unicast destination address will appear 

on  all  ports of a switch without VLAN such that not only does this frame consume 

bandwidth on  unintended  ports, but malicious users can monitor it as well. By divid-

ing the ports of a switch into several VLANs, the frame will be confined within a 

VLAN composed of the ports the frame is intended for. 

  Figure 3.43  illustrates a practical example to show the usefulness of VLAN. 

Consider we have two IP subnets: 140.113.88.0 and 140.113.241.0, each consisting 

of several stations. If we want to connect these two IP subnets with a router, we may 

deploy the network in the manner depicted in  Figure 3.43 . 

 If we configure the switch with two VLANs instead, only  one  switch is needed. 

The router is connected to a port that belongs to  two  VLANs, and configured with 

lin76248_ch03_125-222.indd   200lin76248_ch03_125-222.indd   200 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 201

   FIGURE 3.43 Two-switch deployment without VLAN. 

RouterSwitch

Computer

subnet: 140.113.88.0 subnet: 140.113.241.0

Computer

Computer

Switch

Computer

Computer

Computer

 Principle in Action: VLAN vs. Subnet 

 VLAN is a Layer-2 concept, which allows network administrators to configure 

the connectivity at Layer 2 without physically rewiring. For example, port 1 

and port 2 of a switch can be configured to belong to a VLAN, while port 3 and 

port 4 belong to another. Although they are all in the same switch, the connec-

tivity could be logically dissected. Hosts in the same VLAN can communicate 

without higher layer devices, particularly routers, and VLAN confines the range 

that a broadcast frame can reach (only within a VLAN). 

 Subnet is a Layer-3 concept. Hosts in a subnet can send packets to each 

other directly without the help of routers, including broadcast packets. Both 

terms look similar in the context of restricting the broadcast domain. What are 

their differences? 

 A subnet is configured by setting the IP addresses of the hosts with identi-

cal prefixes where the subnet mask determines the prefix length. In comparison, 

VLAN is configured on a switch, a Layer-2 device. The former is  logical , while 

the latter is a  physical  separation. Therefore, it is possible to configure mul-

tiple subnets in the same VLAN (e.g., connecting to the same switch without 

separate VLANs), but logically these subnets are separated. Despite the logical 

separation, a Layer-2 broadcast frame (with the destination MAC address of 

all 1’s) can still reach the entire VLAN. In this situation, it would be better to 

configure multiple VLANs on the switch to physically separate the broadcast 

domain. 

lin76248_ch03_125-222.indd   201lin76248_ch03_125-222.indd   201 24/12/10   4:24 PM24/12/10   4:24 PM



202 Computer Networks: An Open Source Approach

 two  IP addresses, one for each subnet. The router in this case is called the  one-armed  

router, as illustrated in  Figure 3.44 . Nowadays, many switches, i.e., Layer-3 switches, 

have the ability to serve as normal routers that can forward frames based on Layer-3 

information. With VLAN, administrators can arbitrarily group ports into several IP 

subnets, which is very convenient for network administration. 

 The IEEE 802.1Q standard specifies a set of protocols and algorithms to support 

the VLAN operation. This standard describes the architectural framework for VLAN 

in the aspects of configuration, distribution of configuration information, and relay. 

The first is self-explanatory. The second is concerned with methods that allow the 

distribution of VLAN membership among VLAN-aware switches. The third deals 

with how to classify and forward incoming frames, and the procedure to modify the 

frames by adding, changing, or removing  tags . We discuss the concept of tag next. 

 The IEEE 802.1Q standard does not specify how stations should be associated 

with VLANs. The VLAN membership can be based on ports, MAC addresses, IP 

subnets, protocols, and applications. Each frame can be associated with a tag that 

bears a VLAN identifier so that the switch can quickly identify its VLAN association 

without complicated field classification. The tag slightly changes the frame format, 

however. The format of a tagged frame is depicted in  Figure 3.45 .  9   A VLAN identifier 

has  12 bits , allowing a maximum number of  4094  (i.e., 2 12  – 2) VLANs, given that one 

identifier is reserved unused and another is used to indicate a priority tag (see below).  

  Priority 

 If the load in a LAN is high, the users will perceive long latency. Some voice or video 

applications are time-sensitive, and their quality will be deteriorated with the long 

latency. Traditionally, LAN technology solves the problem with  over-provisioning  

  9  Note that the use of VLAN is not confined to Ethernet. The VLAN standard also applies to other LAN 

standards, say Token Ring. However, since Ethernet is the most popular, we discuss Ethernet frame here. 

   FIGURE 3.44 One-switch deployment with VLAN and one-armed router. 

Computer

subnet: 140.113.88.0 subnet: 140.113.241.0

Computer

Computer

Switch

Computer

Computer

Computer

Router

lin76248_ch03_125-222.indd   202lin76248_ch03_125-222.indd   202 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 203

that provides more bandwidth than needed. This solution is feasible because high 

bandwidth is inexpensive in wired LAN. But in the case of short-term congestion, 

the traffic may temporarily exceed the available bandwidth, so higher priority can be 

assigned to frames of critical applications to guarantee they receive better service. 

 Ethernet inherently does not have the priority mechanism. As of IEEE 802.1p, 

which was later integrated into IEEE 802.1D, a priority value can be optionally as-

signed to an Ethernet frame. This value is also carried in a tagged frame, as illustrated 

in  Figure 3.45 . A tagged frame has  four  more bytes added into it. They are a 2-byte 

type field that indicates a VLAN protocol type (the value = 0x8100) and a 2-byte 

tag control information field. The latter is further divided into three fields: priority, 

canonical format indicator (CFI), and VLAN identifier. A tagged frame does not nec-

essarily carry VLAN information. The tag can contain only the priority of the frame. 

The VLAN identifier helps the switch to identify the VLAN to which the frame be-

longs. The CFI field looks mysterious. It is a one-bit field that indicates whether the 

possible MAC addresses carried in the MAC data are in canonical format. We do not 

go into the details of canonical form here. Interested readers are referred to clause 

9.3.2 in the IEEE 802.1Q document. 

 Because three bits are in the priority field, the priority mechanism allows eight 

priority classes.  Table 3.11  lists the suggested mapping of priority values to traffic 

   FIGURE 3.45 Format of a tagged frame. 

Preamble SFD DA SA
VLAN

protocol
ID

Tag
control

T/L Data FCS

bytes 7 1 6 6 2 2 2 42–1500 4

Priority CFI
VLAN

identifier

bits 3 1 12

TABLE 3.11 Suggested Mapping of Priority Values and Traffic Types

Priority Traffic Type

1 Background

2 Spare

   0 (default) Best effort

3 Excellent effort

4 Controlled load

5 < 100 ms latency and jitter

6 < 10 ms latency and jitter

7 Network control

lin76248_ch03_125-222.indd   203lin76248_ch03_125-222.indd   203 24/12/10   4:24 PM24/12/10   4:24 PM



204 Computer Networks: An Open Source Approach

types in the standard. A switch can classify the incoming traffic and arrange appro-

priate queue services to meet the user’s demand based on the tag value. 

   Link Aggregation 

 The final issue we would like to introduce is  link aggregation . Multiple links can be 

aggregated as if they were a pipe of larger capacity. For example, users can aggregate 

two gigabit links into a single two-gigabit link if a larger link capacity is desired. 

They do not have to buy 10-gigabit Ethernet products, since link aggregation already 

brings flexibility in network deployment. 

 Link aggregation was originally a technique of Cisco, dubbed  EtherChannel , 
often referred to as port trunking, and was later standardized in the IEEE 802.3ad 

in 2000. The operation is not confined to links between switches; links between a 

switch and a station and between two stations can also be aggregated. The principle 

of link aggregation is simple: The transmitter  distributes  frames among aggregated 

links, and the receiver  collects  these frames from the aggregated links. However, 

some difficulties complicate the design. For example, consider the case in which 

several short frames follow a long frame. If the long frame is distributed to one 

link and the short frames are distributed to another, the receiver might receive these 

frames  out of order . Although an upper layer protocol such as TCP can deal with 

out-of-order frames, it is inefficient to do so. The ordering of frames in a flow must 

be maintained in the link layer. A flow may need to be moved from one link to an-

other for load-balancing or because of link failure. To meet these requirements, a  link 
aggregation control protocol  (LACP) is designed. We refer readers to clause 43 in the 

IEEE 802.3 standard for details.     

  3.6 DEVICE DRIVERS OF A NETWORK INTERFACE 

   3.6.1 Concepts of Device Drivers 
 One of the main functions of an operating system is to control I/O devices. 

The I/O part in the operating system can be structured in four layers, as presented in 

 Figure 3.46 . The interrupt handler can also be thought as part of the driver. 

   FIGURE 3.46 Structure of I/O software. 

User processes

Device-independent OS software

Device driver

Interrupt handlers

Device 

I/O reply I/O request 

Naming, protection, allocation 

I/O functions 

I/O calls, spooling 

Set up device registers, check status 

Wake up driver when I/O completed 

Perform I/O operations 

lin76248_ch03_125-222.indd   204lin76248_ch03_125-222.indd   204 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 205

 All of the device-dependent codes are embedded in the device drivers. The 

device drivers issue  commands  to the device  registers  and check whether they are 

carried out properly. Thus, the network device driver is the only part of the operating 

system that knows how many registers the network adaptor has and what they are 

used for. 

 The job of a device driver is to accept abstract requests from the device-

independent software above it, and to handle these requests by issuing commands to 

device registers. After commands have been issued, either the device driver  blocks  

itself until the interrupt comes in to unblock it, or the operation finishes immediately 

so the driver does not need to block.  

  3.6.2 Communicating with Hardware in a Linux Device Driver 
 Before a device driver can communicate with a device, it must initialize the environ-

ment. The initialization includes  probing I/O ports  for communicating with  device 
registers , and  probing IRQs  for correctly installing the  interrupt handler . We will 

also discuss  direct memory access  for transferring a large batch of data. 

  Probing I/O Ports 

 A hardware device typically has several registers, and they are mapped to a region of 

consecutive addresses for reading and writing. Reading and writing these addresses 

(actually, the registers) therefore can control the device. Not all I/O ports are bound 

to device registers. A user can dump the content in /proc/ioports to view the mapping 

of the addresses to the devices. 

 The programmer of a device can request a region in the I/O ports for a device. 

The request must first check whether the region has been allocated to other devices. 

Note that the checking must be performed with allocation in an  atomic  operation, or 

other devices may acquire the region after the checking and produce in an error. After 

acquiring a region in the I/O ports, the device driver can probe the device registers 

by reading or writing the ports in units of 8 bits, 16 bits, or 32 bits, depending on the 

register widths. These operations are performed with special functions, to be intro-

duced later. After the operations, the driver can return the region to the system if the 

region is not used anymore.  

  Interrupt Handling 

 Besides constantly probing the device registers, the driver can use an  interrupt  to 

relinquish the CPU to other tasks during probing. An interrupt is an asynchronous 

event generated from the hardware to get the CPU’s attention. A device driver can 

register a piece of code, namely the handler, to an interrupt, so that the handler is 

executed if the interrupt occurs. The interrupts on a system are numbered, and the 

mapping from the numbers to the device can be viewed from the file /proc/interrupts. 

 The registry of interrupt lines is similar to the acquisition of I/O ports. The driver 

can request for an interrupt line, use it, and release it after finishing its work. A ques-

tion is which interrupt line is to be used by a device. Although the user can manually 

specify an interrupt line, this practice requires extra effort to figure out which inter-

rupt line is available. A better solution is autodetection. For example, the PCI standard 

lin76248_ch03_125-222.indd   205lin76248_ch03_125-222.indd   205 24/12/10   4:24 PM24/12/10   4:24 PM



206 Computer Networks: An Open Source Approach

requires devices to declare the interrupt lines to be used in a register, so the driver 

can learn the interrupt line of the device by retrieving the number from the I/O ports. 

Not every device supports such autodetection, so an alternative is to ask the device 

to generate an interrupt and watch which line is active if the support is unavailable. 

 A problem with interrupt handling is how to perform long tasks within an inter-

rupt handler. There is often much work to do in response to a device interrupt, but in-

terrupt handlers need to finish quickly and not keep blocking other interrupts for too 

long. Linux resolves this problem by splitting the interrupt handler into two halves. 

The  top half  is the routine that responds to the interrupt, and it is also the handler 

registered with the interrupt line. The  bottom half  handles the time-consuming part, 

and the top half schedules its execution at a safe time, meaning the requirement of 

execution time is not so critical. Therefore, after the top-half handler has finished, the 

CPU can be released to handle other tasks. The Linux kernel has two mechanisms 

to implement bottom-half processing:  BH  (also called bottom half) and  tasklets . The 

former is old. New Linux kernel implements tasklets since version 2.4, so we focus 

on the latter when introducing the bottom-half processing.  

  Direct Memory Access (DMA) 

 Direct memory access (DMA) is a hardware mechanism to efficiently transfer a 

large batch of data to and from main memory without the CPU’s involvement. This 

mechanism can significantly increase the throughput of a device and relieve the pro-

cessor’s burden. 

 DMA data transfer can be triggered in two ways: (1) software asks for data from 

the system calls such as  read , and (2) hardware writes data asynchronously. The 

former is used when a program explicitly demands data from the system call, and the 

latter is used when a data-acquisition device can asynchronously write the acquired 

data into the memory even when no process has required it yet. 

 The steps in the former are summarized as follows:

    1. The driver allocates a DMA buffer when a process needs to read the data. The 

process is put to sleep for the DMA buffer to read data from the hardware.  

   2. The hardware writes data into the DMA buffer, and raises an interrupt after the 

writing ends.  

   3. The interrupt handler gets the data and awakens the process. Now, the process 

has the data.    

 The steps in the latter are summarized as follows:

    1. The hardware raises an interrupt to announce the data arrival.  

   2. The interrupt handler allocates the DMA buffer and notifies the hardware to 

transfer.  

   3. The hardware writes data from the device to the buffer, and raises another inter-

rupt when it is done.  

   4. The handler dispatches the new data and awakens relevant processes to handle 

the data.    

 We shall take a close look at the related functions in the following open source 

implementation. 

lin76248_ch03_125-222.indd   206lin76248_ch03_125-222.indd   206 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 207

 Open Source Implementation 3.9: Probing I/O 
Ports, Interrupt Handling, and DMA 

  Overview 
 The Linux device drivers interact with the hardware through I/O port 

probing, interrupt handling, and DMA. I/O ports are mapped to the registers 

on a hardware device, so that a device driver can access the I/O ports to read or 

write the registers. For example, a driver can write a command into the registers, 

or read the status of the device. Ordinarily, when the driver assigns a task to the 

device for execution, it may constantly poll the status registers to know whether 

the task has been finished, but doing so is likely to waste CPU cycles if the task 

is not finished immediately. The driver can turn to the interrupt mechanism, 

which notifies the CPU, after which the associated interrupt handler is invoked 

to handle the interrupt. Therefore, the CPU does not need to be busy waiting. 

If there is bulk data to be transferred, the DMA can handle the transfer on behalf 

of the CPU. The function calls associated with these mechanisms are described 

next.  

  Function Calls 
  I/O Ports 
 Since Linux kernel version 2.4, the I/O ports have been integrated into the ge-

neric resource management. We can use the following functions in the device 

driver to acquire the I/O ports of a device: 

  struct resource *request_region (unsigned long start, 
unsigned long n, char* name); 
 void release_region (unsigned long start , unsigned 
long len); 

  We use  request_region()  to reserve the I/O ports, where  start  

is the starting address of the I/O-port region,  n  is the number of I/O ports to 

be acquired, and  name  is the device name. If a nonzero value is returned, the 

request succeeds. The driver then should call  release_region()  to release 

the ports when it finishes. 

 After acquiring the region of I/O ports, the device driver can access the 

ports to control the registers on a device, which could be command or status 

register. Most hardware differentiates between 8-bit, 16-bit, and 32-bit ports, 

so a C program must call different functions to access ports of different sizes. 

The Linux kernel defines the following functions to access I/O ports: 

  unsigned inb (unsigned port); 
 void outb (unsigned char byte, unsigned port); 

  The  inb()  reads byte (8-bit) port, while the  outb()  writes byte port. 

Continued

lin76248_ch03_125-222.indd   207lin76248_ch03_125-222.indd   207 24/12/10   4:24 PM24/12/10   4:24 PM



208 Computer Networks: An Open Source Approach

 unsigned inw (unsigned port); 
 void outw (unsigned char byte, unsigned port); 

  The  inw()  reads 16-bit port, while the  outw()  writes 16-bit port. 

 unsigned inl (unsigned port); 
 void outl (unsigned char byte, unsigned port); 

  The  inl()  reads 32-bit port, while the  outl()  writes 32-bit port. 

 Besides the single-shot in and out operations, Linux supports the following 

string operations, which may actually be performed by a single CPU instruction 

or a tight loop if the CPU has no instruction for string I/O. 

 void insb (unsigned port, void *addr, unsigned long 
count); 
 void outsb (unsigned port, void *addr, unsigned long 
count); 

  The  insb()  reads  count  bytes from byte port, and stores these bytes to mem-

ory starting at the address  addr . The  outsb()  writes  count  bytes located at 

memory address  addr  to byte port. 

  void insw (unsigned port, void *addr, unsigned long 
count); 
 void outsw (unsigned port, void *addr, unsigned long 
count); 

  Their operations are similar, except the port is a 16-bit port. 

  void insl (unsigned port, void *addr, unsigned long 
count); 
 void outsl (unsigned port, void *addr, unsigned long 
count); 

  Their operations are similar, except the port is a 32-bit port.  

  Interrupt Handling 
 Like the approach to acquire I/O ports, the driver uses the following functions to 

register (install) and release (uninstall) an interrupt handler to an interrupt line. 

  #include <linux/sched.h>; 
 int request_irq(unsigned int irq, irqreturn_t 
(*handler) (int, void *, struct pt_regs *), unsigned 
long flags, const char *dev_name ,void *dev_id); 
 void free_irq (unsigned int irq, void *dev_id); 

  In the former,  irq  is the interrupt line to be requested, and  handler  is the as-

sociated interrupt handler. The other parameters are:  flags  are the interrupt’s 

attributes,  dev_name  the device name, and  dev_id  the pointer to the device’s 

lin76248_ch03_125-222.indd   208lin76248_ch03_125-222.indd   208 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 209

data structure. The meaning of the parameters for  free_irq()  is the same as 

those for  request_irq() . 

 When an interrupt occurs, the interrupt handling in the Linux kernel pushes 

the interrupt number onto the stack, and calls  do_IRQ()  to acknowledge the 

interrupt. The function  do_IRQ()  will then look up the interrupt handler asso-

ciated with the interrupt, and will call it through the  handle_IRQ_event()
function if there is one; otherwise, the function will return, and the CPU can 

continue processing any pending software interrupts. The interrupt handler is 

usually fast, so the other interrupts will not be blocked too long. The interrupt 

handler can release the CPU quickly and schedule its bottom half at a safe time. 

 New versions of Linux use  tasklet  for the bottom-half function. For example, 

if you write a function  func()  to be used as a bottom-half routine, the first step 

is to declare the tasklet by the macro  DECLARE_TASKLET(task,func,0) , 

where  task  is the tasklet name. After the tasklet is scheduled by  tasklet_
schedule(&task) , the tasklet routine and task will be executed shortly at 

the system’s convenience. 

 The following functions are useful for using tasklets: 

 DECLARE_TASKLET(name, function, data); 

  The macro declares the tasklet, where  name  is the tasklet name,  function  is 

the actual tasklet function to be executed, and  data  is the argument to be passed 

to the tasklet function. 

  tasklet_schedule(struct tasklet_struct *t); 

  The function schedules the tasklet to be executed at the system’s convenience, 

where  t  points to the tasklet structure.  

  Direct Memory Access 
 The DMA buffer allocation is a little bit complicated due to the coherency 

issue with the CPU cache. The CPU should invalidate its cache mapping 

to the DMA buffer if the content of the buffer is changed. Therefore, the 

driver should be careful to make sure the CPU is aware of the DMA transfer. 

To relieve the programmers’ efforts in this problem, Linux provides some 

functions for the allocation. Here we introduce a common approach to buffer 

allocation. 

 After the driver allocates the buffer (with  kmalloc() , for example), it 

indicates the buffer mapping to that on the device with the following function. 

  dma_addr_t dma_map_single(struct device *dev, 
void *buffer, size_t size, enum dma_data_direction 
direction); 

  The  dev  argument indicates the device,  buffer  is the starting address of the 

buffer,  size  is the buffer size, and  direction  is the direction that the data is 

Continued

lin76248_ch03_125-222.indd   209lin76248_ch03_125-222.indd   209 24/12/10   4:24 PM24/12/10   4:24 PM



210 Computer Networks: An Open Source Approach

moving (e.g., from the device, to the device, or bidirectional). After the transfer, 

the mapping is deleted with the function 

 dma_addr_t dma_unmap_single(struct device *dev, 
void *buffer, size_t size, enum dma_data_direction 
direction); 

  Like I/O ports and interrupts, the DMA channel should be registered before its 

use. The two functions for the registry and the release are 

 int request_dma(unsigned int channel, const char 
*name); 

 void free_dma(unsigned int channel);  
 The  channel  argument is a number between 0 and  MAX_DMA_CHANNELS
(usually 8 on a PC), defined by kernel configuration. The  name  argument identi-

fies the device. 

 After the registration, the driver should configure the DMA controller for 

proper operation. The following functions can perform the configurations: 

  void set_dma_mode(unsigned int channel, char mode); 

  The first argument is the DMA channel, and the  mode  argument could be  DMA_
MODE_READ  for reading from the device,  DMA_MODE_WRITE  for writing to 

the device, and  DMA_MODE_CASCADE  for connecting two DMA controllers. 

  void set_dma_addr(unsigned int channel, unsigned int 
addr); 

  The first argument is the DMA channel, and the  addr  argument is the address 

of the DMA buffer. 

  void set_dma_count(unsigned int channel, unsigned int 

count);  
 The first argument is the DMA channel, and the  count  argument is the number 

of bytes to transfer.   

  Exercises 
    1. Explain how a tasklet is scheduled by studying the  tasklet_schedule()  

function call.  

   2. Enumerate a case in which polling is preferable to interrupting.    

 A typical Linux system has a number of device drivers for its various hardware 

components. Among these drivers, that for network devices is the most closely 

related to computer networks. The Linux kernel supports a number of network 

interface drivers (see the drivers/net directory). We chose the driver for the ne2000 

Ethernet interface as an example to introduce the design of network interface drivers.     

lin76248_ch03_125-222.indd   210lin76248_ch03_125-222.indd   210 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 211

 Open Source Implementation 3.10: 
The Network Device Driver in Linux 

  Overview 
 This section uses a practical example to explain how the device driver is imple-

mented to interact with a network interface. The interaction primarily includes 

device initialization, transmission process, and reception process. In device ini-

tialization, the driver allocates the space and initializes the important data struc-

tures of the network interface, such as the IRQ numbers and the MAC address. 

In the transmission and reception processes, the device driver uses interrupts for 

notification of process completion.  

  Block Diagram 
 The most important flows in the device driver are frame transmission and recep-

tion. We illustrate the flows in  Figure 3.47  and  Figure 3.48  in the “Algorithm 

Implementations” section below.  

  Data Structures 
 The  net_device  data structure is associated with the information about a net-

work device. When a network interface is initialized, the space of this structure 

for that interface is allocated and registered. This structure is quite large, contain-

ing the fields related to configuration, statistics, device status, list management, 

and so on. We list several fields in the configuration associated with initialization. 

    char name[IFNAMSIZ] : the name of the device, such as  eth0 .  

   unsigned int irq : the interrupt number used by the device.  

Continued

   FIGURE 3.47 The sequence of executed functions during frame transmission. 

Kernel Device
(IH)

ei_interrupt

Interrupt occurs

dev->hard_start_xmit (TX)
ei_start_xmit

(RX)
ei_receive

1
2

3

4

5

ei_tx_intr

ne2k_pci_block_output

NS8390_trigger_send

6

7

netif_wake_queue

8

NS8390_trigger_send

lin76248_ch03_125-222.indd   211lin76248_ch03_125-222.indd   211 24/12/10   4:24 PM24/12/10   4:24 PM



212 Computer Networks: An Open Source Approach

unsigned short type : the number to indicate the device type, such 

as Ethernet.  

unsigned char dev_addr[MAX_ADDR_LEN] : the link layer 

address of the device.  

unsigned char addr_len : the length of the link layer address, say 

six bytes in Ethernet.  

int promiscuity : running in the promiscuous mode or not.    

  Algorithm Implementations 
  Device Initialization 
 The Linux kernel represents a network device with the  net_device  data 

structure, which involves the fields associated with the attributes of the de-

vice. Before the network interface can be usable, its  net_device  structure 

must be initialized, and the device must be registered. The initialization is 

performed with the  alloc_netdev()  function in  net/core/dev.c  

and returns a pointer to the newly allocated structure if the initialization suc-

ceeds. Three parameters are passed to  alloc_netdev : the structure size, 

the device name, and the setup routine. The  alloc_netdev()  function is 

generic, and can be invoked from the initialization functions of various device 

types. For example,  alloc_etherdev()  in net/ethernet/eth.c calls the 

 alloc_netdev()  function with the device name “ eth%d ”, so the kernel 

can assign the first unassigned number of that device type to complete the 

name with the  dev_alloc_name()  function. That is why we see the names 

such as “ eth0 ” in the user space. The initialization sets up the fields in the 

   FIGURE 3.48 The sequence of executed functions during frame reception. 

(IH)
ei_interrupt

(TX)
ei_start_xmit

(RX)
ei_receive

Kernel Device

netif_rx

1

2
3

45

ei_tx_intr
ne2k_pci_block_input

lin76248_ch03_125-222.indd   212lin76248_ch03_125-222.indd   212 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 213

net_device  data structure for IRQ, I/O memory, I/O port, MAC address, 

queueing discipline, and so on. 

 After allocating and initializing the  net_device  structure with  alloc_
netdev() , the  netdev_boot_setup_check()  function may check the 

optional boot-up configuration parameters for the network device, such as the 

IRQ number. After the procedure, the device is registered in the device data-

base with the  register_netdevice()  function. Similarly, the function 

 unregister_netdevice()  is called when the device driver is unloaded 

from the kernel, and the resources occupied by the device, such as the IRQ, 

should also be released.  

  Transmission Process 
  Figure 3.47  presents the transmission process in the example of ne2000 Ether-

net interface. When the kernel has a frame to transmit, it first calls the generic 

 hard_start_xmit()  function, which then calls the specific  ei_start_
xmit()  function on the device. The  ei_start_xmit()  function invokes 

 ne2k_pci_block_output()  to move the frame to the network interface. 

When the frame has been transmitted out, the ne2000 interface will notify the 

kernel with an interrupt, and the kernel will call the corresponding interrupt 

handler,  ei_interrupt() . The  ei_interrupt()  function will first de-

termine which type the interrupt is. When it finds out that the interrupt stands 

for frame transmission, it calls the  ei_tx_intr()  function, which in turn 

calls  NS8390_trigger_send()  to transmit the next frame on the interface 

(if any), and then calls  netif_wake_queue()  to let the kernel proceed to 

the next task. 

   Reception Process 
  Figure 3.48  presents the reception process of the previous example. When the 

network interface receives the frame, it will notify the kernel with an inter-

rupt. The kernel then calls the corresponding handler,  ei_interrupt() . 

The  ei_interrupt()  function determines which type the interrupt is, and 

calls the  ei_receive()  function because the interrupt stands for frame 

reception. The   ei_receive()  function will call  ne2k_pci_block_
input()  to move the frame from the network interface to the system 

memory and fill the frame into the  sk_buff  structure. The  netif_rx()  

function will pass the frame to the upper layer, and the kernel then proceeds 

to the next task. 

    Exercises 
   1.  Explain how the frame on the network device is moved into the  sk_buff  

structure (see  ne2k_pci_block_input() ).  

   2. Find out the data structure in which a device is registered.    

lin76248_ch03_125-222.indd   213lin76248_ch03_125-222.indd   213 24/12/10   4:24 PM24/12/10   4:24 PM



214 Computer Networks: An Open Source Approach

 Performance Matters: Interrupt and DMA 
Handling Within a Driver 

  Table 3.12  shows the interrupt handling time and DMA eclipse time spent in 

processing ICMP frames by the Realtek 8169 Ethernet adaptor on a PC with a 

2.33 GHz CPU. The DMA eclipse time is  not  the consumed CPU time since the 

data transfer is offloaded to DMA. The results indicate that the processing time 

of interrupt handlers does  not  vary with frame size. The reason is that the major 

tasks of interrupt handlers, such as interaction with the underlying hardware 

by issuing commands to device registers, are independent of frames. On the 

other hand, the DMA time depends on the size of transferred frames. Another 

observation is that the RX time of the interrupt handler is  slightly  higher than 

the TX time, while the RX time of DMA is  much  higher than the TX time. The 

RX-interrupt handler needs to allocate and map the DMA buffer for transfer-

ring; thus it takes a bit more time than the TX-interrupt handler. Our measured 

RX DMA time includes the DMA transferring time as well as extra hardware 

processing time by the DMA controller, but the TX DMA time contains only 

DMA transferring, which results in the RX DMA time being much higher than 

the TX DMA time. 

 Finally, it is worth noting that the interrupt handling time depends on 

the CPU speed, and the DMA eclipse time mainly depends on the underlying 

 adaptor . As we have shown in Subsection 1.5.3, the DMA time of the Intel 

Pro/100 Ethernet adaptor and a 1.1 GHz CPU is about 1 μs, and the process-

ing time of the 64-byte packet in the link layer is about 8 μs (TX) and 11 μs 

(RX), which are different from the values here. The row for the packet of 100 

bytes in  Table 3.12  shows that the interrupt time is lower while the DMA 

time is higher. Although the values change, the observations made here are 

hardware-independent. 

TABLE 3.12 Packet Processing Time by Interrupt and DMA

Interrupt Handler DMA

Payload size of ICMP packet TX RX TX RX

1 2.43 2.43  7.92  9.27

100 2.24 2.71  9.44 12.49

1000 2.27 2.51 18.58 83.95

 Time unit: μs 

lin76248_ch03_125-222.indd   214lin76248_ch03_125-222.indd   214 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 215

 Historical Evolution: Standard Interfaces 
for Drivers 

 In the early x86-DOS years, operating systems did not provide any networking 

modules, so a driver was bound with applications directly and had to handle all net-

working functions itself. FTP Software, in 1986, developed the PC/TCP product, 

which is a TCP/IP library for DOS, and defined the Packet Driver interface, which 

regulates a programming interface between PC/TCP and the device drivers. With 

the help of the common interface, the driver developers would not need to modify 

too much in developing a driver for new hardware. Commercial operating systems 

standardized their interfaces, for example, the ODI (Open Data-link Interface) by 

Novell and Apple and the NDIS (Network Driver Interface Specification) by Mi-

crosoft and 3Com. Linux did not specify any name for its interface until kernel ver-

sion 2.4. It used the interrupt-driven approach to handle the received frames. Since 

kernel version 2.5, a new interface, called NAPI (New API), is designed to sup-

port high-speed networking, but it is still an optional feature in kernel version 2.6 

when implementing a driver. The idea behind the NAPI design is that too-frequent 

interrupts degrade the system performance. NAPI uses the interrupt handler in-

terchangeably to keep latency short, and it uses round-robin polling to process 

 multiple  frames at one time instead of triggering the interrupt handler every time. 

 There is another interface that a device driver must support: the hardware 

specification. A specification, often called a  data sheet , documents the interface 

between the driver and hardware. It provides detailed programming informa-

tion, including the functions and widths of  I/O registers  and properties of  DMA 
controllers . Device developers follow the specification to initialize the hard-

ware, acquire the status, request DMA transfer, and transmit and receive frames. 

Novell NE2000 LAN cards were sold so successfully that its device driver be-

came a de facto standard. Many manufacturers claimed their network chipsets 

be NE2000-compatible to simplify the driver development. To be compatible 

with NE2000, the functions of I/O registers and DMA controllers have to mimic 

the NE2000 data sheet completely. Due to its limited functionality, NE2000 is 

no longer popular. Following the data sheet of a hardware controller to program 

the controller has become a standard practice for driver developers. 

  We started from the key concepts of the link layer, 

including framing, addressing, error control, flow 

control, and medium access control. These higher-

level concepts provide the mechanisms above physi-

cal signal transmission for two or more nodes to 

communicate with each other. We then learned popu-

lar link technologies for both wired and wireless 

connections in terms of these concepts. Among the 

wired and wireless technologies, we paid special at-

tention to Ethernet and IEEE 802.11 WLAN, as they 

have been the dominant technologies in their species. 

Generally, Ethernet is  faster  and more  reliable , but 

802.11 WLAN has  mobility  and its deployment is 

easier. We also introduced the bridging technology 

3.7 SUMMARY 

lin76248_ch03_125-222.indd   215lin76248_ch03_125-222.indd   215 24/12/10   4:24 PM24/12/10   4:24 PM



216 Computer Networks: An Open Source Approach

to interconnect multiple LANs. The main issues of 

bridging include frame forwarding, spanning-tree 

protocol to avoid a forwarding loop, and virtual 

LAN for easy LAN configuration. After all those 

technologies, we explained the implementation of 

device drivers for a network interface. You should 

know how the network interface operates in detail 

from these implementations. 

 Although the speed of both Ethernet and IEEE 

802.11 WLAN have increased greatly over the years, 

the increase is mostly due to advances in  signal 
processing  technology in the physical layer. The link 

parts, such as framing, are left almost unchanged 

for backward compatibility. However, the link tech-

nology also has its own advances, such as better 

configurability, better medium access control (e.g., 

full-duplex operation), and better security. Mecha-

nisms such as  link aggregation  also contribute the 

aggregate throughput between the nodes. Ongoing 

evolution includes higher speed,  link-level QoS , and 

 power-saving  mechanisms. Speed is always a tar-

get to pursue. Currently, 40 Gbps and 100 Gbps 

Ethernet are emerging. The raw data rate is boosted 

to 600  Mbps in 802.11n. Link-level QoS is pro-

vided in wireless technologies such as WiMAX, and 

power-saving technology is always of great concern 

for mobile devices. 

 The link-layer protocols primarily deal with  con-
nectivity  between two nodes that are  directly linked , 
via either wired or wireless links. However, the con-

nectivity between two arbitrary nodes in the Internet 

is more difficult because the packets from one node 

to the other may pass through multiple links in the 

huge Internet, which includes billions of hosts. First, 

there must be a  scalable addressing  mechanism to 

address so many hosts in the Internet, so that the 

nodes between the source and the destination hosts 

do not have to keep the route to each possible desti-

nation in the entire address space. Second, the route 

must be  updated regularly  to reflect the up-to-date 

connectivity status from the source to the destina-

tion. For example, if a link is broken in a route, there 

must be some way to be aware of this problem, and 

to pick a new route from the source to the destina-

tion. Those are issues to be addressed in the network 

layer in  Chapter 4 . Because the Internet Protocol is 

the dominant protocol in the network layer, the chap-

ter shall cover how the Internet Protocol solves the 

issues of scalable addressing, packet forwarding, and 

scalable exchange of routing information.   

  10  Boggs’ paper counts overheads in header, trailer, and IFG in utilization. Hence, 100% utilization is assumed if there is no collision 

despite those overheads in his paper. 

  COMMON PITFALLS 

   Ethernet Performance (Utilization in 
Half-Duplex and Full-Duplex Mode) 
 Researchers were once interested in the maximum chan-

nel utilization of Ethernet under extremely heavy load, 

despite the fact that the situation is unlikely to happen. 

Computer simulation, mathematical analysis, and real-

world measurement are possible approaches to obtain the 

value. Unlike simple mechanisms such as ALOHA and 

slotted ALOHA, mathematically analyzing a full set of 

CSMA/CD mechanisms is difficult. When the experimen-

tal Ethernet was invented at the Xerox lab, Bob Metcalfe 

and David Boggs published a paper in 1976 that reported 

a maximum of about 37% channel utilization that Ethernet 

could reach with their simplified model. Unfortunately, 

this value has continued to be cited over years, even 

though the Ethernet technology has been utterly different 

from the experimental model since the DIX standard. Dif-

ferent FCS, different preamble, different address format, 

different PHY and so on—except that the spirit of CSMA/

CD was preserved. Moreover, 256 stations are assumed in 

the same collision domain, which is unlikely to happen in 

the real world. 

 A later paper published by David Boggs et al. in 1988 

tried to clarify the pitfalls. They performed real-world 

testing on a 10 Mbps Ethernet system with 24 stations by 

flooding frames constantly. It showed the utilization is 

more than 95% with the maximum frame and about 90% 

with the minimum frame under stress testing.  10   It showed 

Ethernet performance is rather satisfactory.  

lin76248_ch03_125-222.indd   216lin76248_ch03_125-222.indd   216 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 217

 As switches become more popular, multisegment net-

works are divided into many individual collision domains. 

The situation of many stations in the same collision do-

main is further reduced. Since the advent of full-duplex 

operation, no restriction is imposed by CSMA/CD at all, 

so both ends of a link can transmit as fast as it can. For 

a switch that affords the maximum frame rate and data 

capacity, it is called a  wire-speed  or  nonblocking  switch. 

 Another problem that might be of concern is that the 

data field in the Ethernet frame is not “long” enough. Unlike 

other technologies, say Token Ring, which has data fields of 

4528 bytes at 4 Mbps and 18,173 bytes at 16 or 100 Mbps, 

the data field is only 1500 bytes out of 1518 bytes of a maxi-

mum untagged frame. One may suspect that the percentage 

of non-data overheads, including header information, trailer, 

and IFG, is larger than that in other technologies. 

 There is a historical reason why the Ethernet frame 

is not so long. Ethernet was invented more than 30 years 

ago, and memory was expensive at that time. The buffer 

memory for frames was quite limited in size in those days. 

It made sense to design a frame that was not too long, ei-

ther was the data field. For large data transfer such as FTP 

traffic, which tends to transfer with long frames, the data 

field can occupy as high as 1500/(1518 + 8 + 12) = 97.5% 

of the channel bandwidth. The overheads are quite low! 

Significantly increasing the maximum frame size helps 

little to reduce the overheads.  

  Collision Domain, Broadcast Domain, 
and VLAN 
 The first two terms often seem confusing to students who 

first learn Ethernet. A collision domain is the range of 

network in which more than one transmission at the same 

time results in a collision. For example, a repeater hub 

and the stations attached to it form a collision domain. In 

contrast, a switch explicitly separates collision domains 

from one port to another. In other words, a transmission 

from a shared LAN attached to one port of the switch will 

not result in a collision with another transmission from the 

same LAN but through another port. 

 However, when a frame has a broadcast address as 

the destination, a switch will still forward to all ports but 

the source. The range of network that the broadcast traffic 

can reach is a broadcast domain, so we may confine the 

broadcast traffic’s range for security reasons or to save 

bandwidth within a LAN. 

 A VLAN approach also separates broadcast do-

mains from one another, but it is a logical separation 

from physical connectivity. In other words, no physical 

connection needs to be changed. It is the configuration 

of devices that performs the separation as if it were a 

physical change. A device providing high-layer connec-

tivity, such as a router, is needed to connect two or more 

separate VLANs.  

  5-4-3 Rule and Multisegment Networks 
 It is said that Ethernet follows the 5-4-3 rule. It sounds 

easy to remember, but the rule is not as simple as it sounds. 

The rule is actually one of the conservative rules that 

validate the correctness of 10 Mbps multisegment Ethernet 

networks. It is not a law that every Ethernet deployment 

should follow. 

 As we mentioned, the round-trip propagation time in 

a collision domain should not be too long for proper op-

eration. Different transmission media and the number of 

repeater hubs incur different delays, however. As a quick 

guide for network administrators, the IEEE 802.3 stan-

dard offers two  transmission system models . Transmis-

sion system model 1 is a set of configurations that meet 

the above requirements. In other words, if you follow 

these configurations, your network will work properly. 

Occasionally, you may need to deploy your network in a 

way other than the configurations in transmission system 

model 1. You have to calculate yourself whether your 

network is qualified for the requirements. Transmission 

system model 2 offers a set of calculation aids to you. 

For example, it tells you the delay value of a segment of 

a certain medium type. 

 Clause 13, “System considerations for multi-segment 

10 Mbps baseband networks,” cites the following rule for 

transmission system model 1:  “When a transmission path 
consists of   four   repeater sets and   five   segments, up to  

 three   of the segments may be mixing and the remainder 
must be link segments.”  

 This is the well-known 5-4-3 rule. A mixing segment 

is a medium with more than two physical interfaces on it. 

A link segment is a full-duplex-capable medium between 

exactly two physical interfaces. One often refers to a link 

segment as a segment without PCs, but it is not a precise 

description. The rule means if you configure your network 

this way, it can work. As more and more segments operate 

in full-duplex mode, this rule has become outdated.  

  Big-Endian and Little-Endian 
 Those who are familiar with network programming may 

be confused by big-endian and little-endian. They know 

lin76248_ch03_125-222.indd   217lin76248_ch03_125-222.indd   217 24/12/10   4:24 PM24/12/10   4:24 PM



218 Computer Networks: An Open Source Approach

 network byte order . For example,  Internet Protocol  ( IP ) 

uses big-endian for byte ordering. However, we mention 

that Ethernet transmits data in little-endian order. Is there 

a contradiction? 

 Consider a four-byte word, each byte denoted by 

b 3 b 2 b 1 b 0  in decreasing order of significance. Here are two 

options for storing it in memory: 

    1. Store b 3  in the lowest byte address, b 2  in the second-

lowest byte address, and so on.  

   2. Store b 3  in the highest byte address, b 2  in the second-

highest byte address, and so on.   

 The former is known as the big-endian byte order, and the 

latter is known as the little-endian byte order. The order-

ing varies with the CPU and OS on a host. This results in 

inconsistency when transmitting some multi-byte data, say 

integers, over the network. A network byte ordering is en-

forced to maintain consistency. The most popular network 

layer protocol, Internet Protocol, uses big-endian ordering. 

Whatever the host’s byte ordering is, the data should be 

converted into network byte ordering before transmission 

and then be converted back into the host’s byte ordering 

upon reception, if there is an inconsistency. 

 That is the business of Internet Protocol. The link 

protocol receives data from the upper-layer protocols byte 

by byte. The byte ordering on the upper-layer protocols is 

of no consequence to the link protocol. The link protocol 

is concerned with  bit ordering  in transmission, not byte 

ordering. 

 Ethernet uses little-endian bit ordering. It transmits 

the least significant bit first and the most significant bit 

last in byte transmission. Conversely, Token Ring or FDDI 

transmits the most significant bit first and the least signifi-

cant bit last in byte transmission. They are known to use 

big-endian bit ordering. They should not be confused with 

byte ordering.    

  FURTHER READINGS 

   PPP 
 PPP, PPPoE, and IPCP are defined in RFC 1661, RFC 

2516, and RFC 1332, respectively. Sun’s hands-on book 

introduces practical PPP operation on Unix. 

 �    W. Simpson, “The Point-to-Point Protocol (PPP),” 

RFC 1661, July 1994.  

 �   L. Mamakos, K. Lidl, J. Evarts, D. Carrel, D. Simone, 

and R. Wheeler, “A Method for Transmitting PPP 

over Ethernet,” RFC 2516, Feb. 1999.  

 �   G. McGregor, “The PPP Internet Protocol Control 

Protocol (IPCP),” RFC 1332, May 1992.  

 �   A. Sun,  Using and Managing PPP,  O’Reilly, 1999.    

  Ethernet 
 Seifert is a coauthor of the IEEE 802.1 and 802.3 standard. 

His  Gigabit Ethernet  book characterizes technical accu-

racy and market insight, and it is a must if you hope to get 

into technical details of Gigabit Ethernet without being fed 

up with the detailed but boring wording in the standard. 

He also has a book with a full discussion on switches. You 

will find in his book great details on STP, VLAN, link ag-

gregation, and other concepts. Spurgeon is an experienced 

network architect; his book introduces the Ethernet from 

an administrative point of view. 

 �    Rich Seifert,  Gigabit Ethernet,  Addison Wesley, 1998.  

 �   Rich Seifert,  The Switch Book,  Wiley, 2000.  

 �   Charles E. Spurgeon,  Ethernet: The Definitive Guide,  
O’Reilly, 2000.   

 Here is a list of standards documents. All of the IEEE 802 

standards have been freely available on  http://standards.

ieee.org/getieee802/ . A white paper is published by 10 

Gigabit Alliance, a technical consortium promoting the 

next-generation 10-Gigabit Ethernet. 

 �    ISO/IEC Standard 8802-3, “Carrier Sense Multiple 

Access with Collision Detection (CSMA/CD) Ac-

cess Method and Physical Layer Specifications,” 

2000.  

 �   10 Gigabit Ethernet Alliance, “10 Gigabit Ether-

net Technology Overview: White paper,”  http://

www.10gea.org , Sept. 2001.   

 Following are the MAC Bridge Standard and the VLAN 

Bridge Standard, also available on the Web site mentioned 

above. 

 �    ISO/IEC Standard 15802-3, “Media Access Control 

(MAC) Bridges,” 1998 Edition.  

 �   IEEE 802.1Q, “Virtual Bridged Local Area Net-

works,” 1998 Edition.   

lin76248_ch03_125-222.indd   218lin76248_ch03_125-222.indd   218 24/12/10   4:24 PM24/12/10   4:24 PM

http://www.10gea.org
http://www.10gea.org
http://standards.ieee.org/getieee802/
http://standards.ieee.org/getieee802/


 Chapter 3 Link Layer 219

 Following are several well-cited papers about research on 

Ethernet. The first two are early performance analysis on 

Ethernet. 

 �    R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed 

Packet Switching for Local Computer Networks,”  Com-
munications of the ACM , Vol. 19, Issue 7, July 1976.  

 �   D. R. Boggs, J. C. Mogul, and C. A. Kent, “Measured 

Capacity of an Ethernet: Myths and Reality,”  ACM 
SIGCOMM Computer Communication Review , Vol. 

18, Issue 4, Aug. 1988.  

 �   W. Willinger, M. S. Taqqu, R. Sherman, and D. V. 

Wilson, “Self-Similarity Through High Variability: 

Statistical Analysis of Ethernet LAN Traffic at the 

Source Level,”  IEEE/ACM Trans. Networking , Vol. 5, 

Issue 1, pp. 71–86, Feb. 1997.  

 �   G. Kramer, B. Mukherjee, S. Dixit, Y. Ye, and 

R.  Hirth, “Supporting Differentiated Classes of 

Service in Ethernet Passive Optical Networks,” 

Journal of Optical Networking, Vol. 1, Issue 9, pp. 

280–298, Aug. 2002.  

 �   J. Zheng and H. T. Mouftah, “Media Access Control 

for Ethernet Passive Optical Networks: An Overview,” 

 IEEE Communications Magazine , Vol. 43, No. 2, pp. 

145–150, Feb. 2005.    

  Wireless Protocols 
 Here we list the wireless LAN standards, also available 

on the Web site mentioned above. There is also a good 

book on IEEE 802.11, and three well-cited papers on QoS 

enhancements and network performance for IEEE 802.11 

wireless LAN. 

 �    ANSI/IEEE Standard 802.11, “Wireless LAN Me-

dium Access Control (MAC) and Physical Layer 

(PHY) Specification,” 1999 Edition.  

 �   M. Gast,  802.11 Wireless Networks: The Definitive 
Guide,  2 nd  Edition, O’Reilly, 2005.  

 �   Q. Ni, L. Romdhani, and T. Turletti, “A Survey 

of QoS Enhancements for IEEE 802.11 Wireless 

LAN,”  Journal of Wireless Communications and 
Mobile Computing , Vol. 4, Issue 5, pp. 547–577, 

Aug. 2004.  

 �   A. Balachandran, G. M. Voelker, P. Bahl, and P. V. 

Rangan, “Characterizing User Behavior and Network 

Performance in a Public Wireless LAN,”  ACM SIG-
METRICS Performance Evaluation Review , Vol. 30, 

Issue 1, June 2002.  

 �   D. Pilosof, R. Ramjee, D. Raz, Y. Shavitt, and 

P. Sinha,  Understanding TCP Fairness over Wireless 
LAN,  INFOCOM, 2003.   

 Following are the standards document, a good tutorial, and 

a well-cited paper on Bluetooth, followed by a well-cited 

paper and book on WiMAX. 

 �    Bluetooth Specification Documents, http://www.

bluetooth.com/English/Technology/Building/Pages/

Specification.aspx.  

 �   P. Bhagwat, “Bluetooth: Technology for Short-Range 

Wireless Apps,”  IEEE Internet Computing , Vol. 5, 

Issue 3, pp. 96–103, May/June 2001.  

 �   A. Capone, M. Gerla, and R. Kapoor, “Efficient Polling 

Schemes for Bluetooth Picocells,” IEEE International 

Conference on Communications, June 2001.  

 �   Z. Abichar, Y. Peng, and J. M. Chang, “WiMAX: The 

Emergence of Wireless Broadband,”  IT Professional,  
Vol. 8, Issue 4, July 2006.  

 �   Loutfi Nuaymi,  WiMAX: Technology for Broadband 
Wireless Access,  Wiley, 2007.    

  Device Drivers 
 This is an excellent book that teaches you how to write 

Linux device drivers. 

 �    J. Corbet, A. Rubini, and G. Kroah-Hartman,  Linux 
Device Drivers,  3 rd  Edition, O’Reilly, 2005.      

     1. What are the byte and bit orders in IP over Ethernet? 

   Answer: 

   Byte order: big-endian, i.e., high-order byte transmit-

ted fi rst. 

   Bit order: little-endian, i.e., low-order bit transmitted 

fi rst.  

   2. Why FCS at the tail? IP checksum in the header? 

   Answer: 

   FCS: computed by hardware, appended and examined 

on the fl y. 

   IP checksum: computed by software usually, stored 

and processed.  

  FREQUENTLY ASKED QUESTIONS 

lin76248_ch03_125-222.indd   219lin76248_ch03_125-222.indd   219 24/12/10   4:24 PM24/12/10   4:24 PM

http://www.bluetooth.com/English/Technology/Building/Pages/Specification.aspx
http://www.bluetooth.com/English/Technology/Building/Pages/Specification.aspx
http://www.bluetooth.com/English/Technology/Building/Pages/Specification.aspx


220 Computer Networks: An Open Source Approach

   3. Why is big bandwidth delay product (BDP) bad for 

CSMA/CD? 

   Answer: 

   Big BDP means small frames, compared with long 

links. It implies low link effi ciency when other sta-

tions keep idle, as a small frame propagates through a 

long link.  

 4.   What is the problem in half-duplex Gigabit Ethernet? 

   Answer: 

   Time to transmit a minimum frame might be smaller 

than the round-trip propagation time. Then collision 

detection would fail to abort a collided transmission 

in time, i.e., the transmission ends before the sending 

station senses the collision.  

 5.   What is the minimum frame length, in meters, when 

transmitted in Gigabit Ethernet? 

   Answer: 64 × 8 / 109 × 2 × 108 = 25.6 meters.  

 6.   Why not CSMA/CD for wireless LAN? 

   Answer: 

   The collision at the receiver, if due to a terminal 

hidden from the sender, would not be sensed by the 

sender. So, CD won’t work here. In addition, the 

sender could not sense while transmitting.  

 7.   What problem does the RTS/CTS mechanism solve 

for CSMA/CA in wireless LAN? 

   Answer: 

   It solves the hidden terminal problem by having the 

terminals around the receiver keep silent (after receiv-

ing the CTS) when the data frame is being received 

by the receiver.  

 8.   What are the differences between collision domain, 

broadcast domain, and VLAN? (Describe what they 

are, their scopes and whether they can overlap.) 

   Answer: 

   Collision domain: No two stations in this domain can 

transmit successfully at the same time; also a broad-

cast domain in a hub but reduced to a port in a switch. 

   Broadcast domain: A broadcast frame will be re-

ceived by all stations in this domain; also a collision 

domain in a hub but a set of ports in a switch. 

   VLAN: a broadcast domain artifi cially partitioned 

from a switch or a set of switches.  

 9.   Layer-2 bridging vs. Layer-3 routing? (Compare their 

forward mechanisms, management, and scalability.) 

   Answer: 

   Bridging: by fl ooding or tables of self learning; plug-

and-play; limited to thousands. 

   Routing: by tables of global or local information; 

confi guration required; scalable.  

 10.   Layer-2 bridging on a large campus network? Why not? 

   Answer: 

   Each bridging switch on the campus needs to learn 

and memorize all hosts on the campus, which requires 

a large table. Meanwhile, frequent fl ooding would 

happen when not all hosts are learned.  

 11.   Why do we say bridges are transparent to hosts while 

routers are not? 

   Answer: 

   In bridging, hosts transmit frames regardless of whether 

the destinations are on the same LAN or not. In rout-

ing, hosts explicitly send packets to the default routers 

if the destinations are not on the same subnet. Thus, 

hosts are aware of routers but unaware of bridges.  

 12.   Why do we need a spanning tree in transparent 

bridging? 

   Answer: 

   To eliminate loops in the topology, which confuse 

bridges and result in frame looping.  

 13.   How do we design a MAC in an IC? (Describe 

the general design fl ow and the variables used in 

programming.) 

   Answer: 

   Design fl ow: block diagram with input and output sig-

nals → state machine of each block/module → Verilog 

or VDHL parallel hardware programming → synthe-

sized and simulated circuits → layout and tape-out. 

   Variables: program output variables/signals as par-

allel functions of input variables/signals and local 

variables/signals.  

 14.   How does a driver work to send and receive frames? 

(Describe the handling of outgoing and incoming 

packets, with hardware and interrupt handling.) 

   Answer: 

   Outgoing packet handling: invoke remote DMA to 

move frames to the interface card, write commands 

to the command register, register an interrupt handler 

that reads the status register, and send subsequent 

frames. 

   Incoming packet handling: register an interrupt han-

dler that reads the status register, and invoke remote 

DMA to move frames into main memory.  

 15.   What does a network adaptor driver want when it 

probes the hardware? For what? What interrupts may 

lead a system to execute a network adaptor driver? 

   Answer: 

  1. IRQ number: to bind an interrupt handler to a 

hardware number. 

lin76248_ch03_125-222.indd   220lin76248_ch03_125-222.indd   220 24/12/10   4:24 PM24/12/10   4:24 PM



 Chapter 3 Link Layer 221

  2. I/O port numbers: to map hardware registers to a 

region of I/O port numbers used to read status and 

write commands. 

  3. Hardware interrupts due to frame arrivals, trans-

mission completion, or abnormal transmissions.     

  EXERCISES 

   Hands-On Exercises 
  1.   Read the following two documents and see how the 

IEEE standards come out. Write a summary of the 

standardization process. 

  1. 10 Gigabit Ethernet Alliance,“10 Gigabit Ether-

net Technology Overview: White paper,”  http://

www.10gea.org , September 2001. 

  2.  http://www.ieee802.org/3/efm/public/sep01/

agenda_1_0901.pdf   

   2. You may download IEEE 802 standards at  http://

standards.ieee.org/getieee802/  

   Write down the development goals of the follow-

ing projects: 802.1w, 802.3ac, 802.15, 802.16, and 

802.17.  

   3. Find the MAC address of your network interface card. 

Check  http://standards.ieee.org/regauth/oui/oui.txt  to 

compare its OUI with what has been registered.  

   4. Use Sniffer or similar software to fi nd out how many 

kinds of “protocol types” in the “Type” fi eld of the 

Ethernet frames you capture. What transport/applica-

tion layer protocols, if any, do they belong to?  

   5. Find out whether your network interface card is oper-

ating in half-duplex or full-duplex mode.  

   6. Trace the source code of the following protocols: 

 1. HDLC  2. PPPoE 

 3. Wireless LAN 4. Bluetooth 

   Explain the purpose of each major function in the 

protocol implementation and draw a fl owchart with 

the function names to show the execution fl ow.  

   7. After making the kernel and choosing some drivers 

to be modularized, how do we compile the driver, 

install the driver, and run these modules? Please also 

compose one small module to validate your answer. 

Show what commands are needed to compile and 

install your module. How do you verify whether your 

module has been installed successfully? (Hint: Read 

insmod(8), rmmod(8), and lsmod(8).)  

   8. A packet’s life: Test how much time a packet spends 

on the driver, DMA, and CSMA/CD adaptor. (You 

can use “rdtscll” defi ned in <asm/msr.h> to get the 

past CPU clock cycle.)    

  Written Exercises 
    1. We know 32-bit IPv4 addresses may not be long 

enough. Are 48-bit MAC addresses long enough? 

Write down a short discussion to justify your answer.  

  2.  Read RFC 1071 and RFC 1624 to see how IP check-

sum is computed. Then practice with the following 

trivial blocks of words by hand: 

    0x36f7 0xf670 0x2148 0x8912 0x2345

 0x7863 0x0076 

   What if the fi rst word above is changed to 0x36f6? 

RFCs are available at http://www.ietf.org/rfc.html.  

   3. Compute the CRC code, given the message 1101010011 

and the pattern 10011. Verify that the code is correct.  

   4. Why is the destination address fi eld usually located in 

the head of a frame, and the FCS fi eld located in the 

tail of a frame?  

   5. What are the advantages and disadvantages if we 

make the minimum Ethernet frame larger?  

   6. Suppose data payload in a frame is prepended with 

40  bytes of IP and TCP headers. How many bits of 

data payload per second can be carried in the 100 Mbps 

Ethernet if each frame is a maximum untagged frame?  

   7. Should a switch recompute a new FCS of an incoming 

frame before it is forwarded?  

   8. There is an optional priority tag in the Ethernet frame, 

but it is not often employed. Why?  

 9.   Why does not Ethernet implement a complicated fl ow 

control mechanism such as sliding-window?  

 10.   What happens if your network interface card runs in 

full-duplex mode in a shared network?  

 11.   Should each port in a switch have its own MAC ad-

dress? Discuss it.  

 12.   Suppose each entry in the address table of a switch 

needs to record the MAC address, 8-bit port number, 

and 2-bit aging information. What is the minimum 

memory size if the table can record 4096 entries?  

 13.   Suppose bit stuffi ng with 0 is used after 5 consecutive 

1’s. Assuming the probabilities of 0’s and 1’s in the bit 

stream are equal and the occurrences are at random, 

what is the transmission overhead of the bit stuffi ng 

lin76248_ch03_125-222.indd   221lin76248_ch03_125-222.indd   221 24/12/10   4:24 PM24/12/10   4:24 PM

http://www.10gea.org
http://www.10gea.org
http://www.ieee802.org/3/efm/public/sep01/agenda_1_0901.pdf
http://www.ieee802.org/3/efm/public/sep01/agenda_1_0901.pdf
http://standards.ieee.org/getieee802/
http://standards.ieee.org/getieee802/
http://standards.ieee.org/regauth/oui/oui.txt
http://www.ietf.org/rfc.html


222 Computer Networks: An Open Source Approach

scheme? (Hint: Formulate a recursive formula  f ( n ) to 

fi nd the expected number of overhead bits in an  n -bit 

string fi rst.)  

 14.   Write a simulation program to verify that the numeri-

cal answer to Problem 13 is correct.  

 15.   In 1000BASE-X, a frame of 64 bytes is fi rst block coded 

with 8B/10B before transmitting. Suppose the propa-

gation speed is 2 × 10 8 . What is the frame “length” in 

“meters”? (Suppose the cable is 500 m long.)  

 16.   What is the probability of two stations taking fi ve 

more trials to resolve collisions after they have 

the fi rst collision? (Suppose only two stations are in 

the collision domain.)  

 17.   What is the maximum number of frames a switch of 

16 Fast Ethernet (100 Mbps) ports may deal with if 

each port operates in full-duplex mode?  

 18.   A CPU executes instructions at 800 MIPS. 

Data can be copied 64 bits at a time, with each 

64-bit word copied costing six instructions. If an 

incoming frame has to be copied twice, how much 

bit rate, at most, of a line can the system han-

dle? (Assume that all instructions run at the full 

800-MIPS rate.)  

 19.   A frame of 1500 bytes travel through fi ve switches 

along the path. Each link has a bandwidth of 

100 Mbps, a length of 100 m, and a propagation speed 

of 2 × 10 8  m/sec. Assuming a queuing and processing 

delay of 5 ms at each switch, what is the approximate 

end-to-end delay for this packet?  

 20.   What is the probability that one out of 100 frames of 

1000 bytes suffers from an error on average if the bit 

error rate is 10 −8 ?                                                                                           

lin76248_ch03_125-222.indd   222lin76248_ch03_125-222.indd   222 24/12/10   4:24 PM24/12/10   4:24 PM



4

 223

C h aa p t e rr

 Internet Protocol Layer 

The Internet Protocol (IP) layer, also referred to as layer 3 or the network layer in 

the OSI model, provides a  host-to-host  transmission service. It is the  most  criti-

cal layer of the Internet Protocol stack and much more complicated than the link 

layer because it provides end-to-end connectivity between any two hosts, which may 

be separated by thousands of miles. The key challenge to the IP layer is how to provide 

scalable connectivity between any two hosts efficiently; specifically, it faces connec-

tivity, scalability, and efficient resource sharing problems. First, the essential problem 

is how to connect any two hosts at arbitrary locations in the global network. Second, 

to connect billions of hosts spread all over the world requires very scalable  address-
ing ,    routing ,   and packet  forwarding  mechanisms. Finally, the limited resources, such 

as processing power and bandwidth, of intermediary devices, such as routers, must be 

shared efficiently in order to provide satisfactory services to end users. 

 Both control-plane mechanisms and data-plane mechanisms are required to 

provide the host-to-host transmission service. The control plane deals with control 

protocols to determine how packets should be processed. For example,  routing,     as 

one of the most important functions of the IP layer, is mainly to find a routing path 

between any two hosts and  store  the routing information in a router’s specially 

designed data structure, called the routing or forwarding table. On the other hand, the 

data plane deals with how to process data packets. For example,  forwarding ,   another 

important function of the IP layer, transfers a packet from an incoming network inter-

face to an outgoing network interface in a router based on the routing table. There are 

also other mechanisms required to support the connectivity function, such as  address 
configuration ,    address translation ,   and  error reporting . This chapter describes all the 

major mechanisms of the control plane and data plane used in the Internet to provide 

the host-to-host connection service. 

 The chapter is organized as follows: Design issues of the Internet Protocol layer 

are discussed in Section 4.1. Mechanisms of the data plane and control plane, along 

with their open source implementations, are described in the subsequent sections. 

For data-plane mechanisms, we present the Internet Protocol version 4 ( IPv4 ) and 

show how it provides host-to-host service in a scalable and efficient way. At the end 

of Section 4.2, we illustrate the network address translation ( NAT ) mechanism, which 

was assumed to be a  transient  solution to the problem of IPv4 address shortage. In 

Section 4.3, the Internet Protocol version 6 ( IPv6 ), proposed to solve several prob-

lems encountered by IPv4, is described. 

lin76248_ch04_223-338.indd   223lin76248_ch04_223-338.indd   223 24/12/10   4:14 PM24/12/10   4:14 PM



224 Computer Networks: An Open Source Approach

 The next four sections discuss mechanisms of the control plane. We examine 

mechanisms for  address management ,   including address resolution protocol ( ARP ) 
and dynamic host IP configuration protocol ( DHCP ), in Section 4.4. The protocol for 

handling Internet  errors ,   the Internet error control protocol ( ICMP ), is presented in 

Section 4.5. The most important control mechanism of the IP layer is  routing ,   which 

finds a path between two hosts. These Internet routing protocols are detailed in Sec-

tion 4.6 to show how routing is done in a scalable manner. Finally, in Section 4.7, 

we review the  multicast  routing protocols, an  extension  of point-to-point routing to 

multipoint-to-multipoint routing.  

   4.1 GENERAL ISSUES 

  The goal of the network layer, or the IP layer in the TCP/IP reference model, is 

to transport packets from a sending host to a receiving host. Unlike the services 

provided by the link layer where communication is achieved between two  adjacent  
hosts, services provided by the network layer allow communication between  any  two 

hosts, no matter how far away they are. This connectivity requirement introduces 

three general issues, namely how to connect networks via link-layer technologies, 

how to identify a host globally, and how to find a path between two hosts and forward 

packets along the path. Solutions to these issues must be very scalable to accommo-

date the connections among billions of hosts. Finally, it also needs to address how to 

share limited resources, such as bandwidth, efficiently. 

  4.1.1 Connectivity Issues 
  Internetworking 

 Connectivity is certainly the essential requirement for transporting packets from one 

host to another. Many issues need to be resolved for such host-level connectivity. 

First, how are hosts connected? Hosts may connect to the network via different link-

layer technologies such as Ethernet or wireless LAN. As we have seen in  Chapter 3 ,   a 

basic limitation on these link-layer technologies is  distance . That is, the  coverage  of 

a LAN cannot exceed a certain distance. There is also a limit on the  number  of nodes 

that can share the bandwidth of a LAN. Therefore, it takes a large number of LANs 

and their  internetworking  devices to organize hosts scattered around the world. A set 

of connected networks is referred to as an  internetwork,  or  internet  for short. The 

global internetwork that is widely used today is called the “ Internet .” The internet-

working devices that connect networks into an internetwork are usually called rout-

ers. Connectivity between any two hosts can be achieved by using routers to connect 

local area networks into a global internetwork.  Figure 4.1  shows an example of an 

internetwork with routers and heterogeneous kinds of LANs.       

  Addressing 

 The second issue of connectivity at the network layer is how to  identify  a host in a global 

internetwork, which is the issue of  addressing . Unlike addressing in the link layer, the 

address of a host at the network layer requires  global  identification of the network it 

lin76248_ch04_223-338.indd   224lin76248_ch04_223-338.indd   224 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 225

resides in. In other words, the address of a host needs to identify the network the host 

belongs to and the host itself. This kind of address is called a hierarchical address. As-

signing a host a network layer address also creates a new issue: A host will have a net-

work address (or more) for each network interface card, in addition to its link addresses. 

Therefore,  address resolution  between these two layers becomes a new issue. Related to 

the addressing issue is how to assign a network layer address to a host. In reality, it can be 

done manually or automatically. If it is done automatically, the address can be assigned 

statically or dynamically .  In most cases, a host would like to have its address configured 

automatically and dynamically, so a dynamic host configuration protocol is needed.  

  Routing and Forwarding 

 Given that a host can be identified, the next issue is how to find a path to transport 

packets from one host to another. A path consists of a  concatenation  of adjacent rout-

ers. The issues of finding a path and transporting packets along the path are called 

 routing  and  forwarding ,   respectively. Routing protocols running at the control plane 

are responsible for  finding  a path between two hosts (or networks). Routing tables 

are built to record the results of routing. When a packet arrives at a router, it will be 

forwarded to the next hop on the routing path according to the routing table entry that 

matches the packet’s destination address. Here we make the distinction between rout-

ing and forwarding clear: Routing is performed by routing protocols, which require 

exchange of routing messages and calculation of the shortest path, whereas forward-

ing is performed by hosts or routers by looking up the routing table and finding the 

most appropriate network interface to forward the packet.    

  4.1.2 Scalability Issues 
 Scalability is important to internetworking when we consider the number of hosts 

and networks that are connected in the Internet. Scalability is especially important 

for routing and forwarding—it is very challenging to find a path to a host within a 

set of billions of hosts efficiently. We shall see in this chapter how network  hierarchy  

is used to solve the scalability problem. In the Internet, nodes are grouped into sub-

networks, usually referred to as  subnets . Each subnet represents a logical  broadcast  

Wireless LAN

R1 R2

R3

Ethernet Fast Ethernet

Gigabit Ethernet

H1
H2

H3

R: Router; H: Host

FIGURE 4.1 An example of internetworks.

lin76248_ch04_223-338.indd   225lin76248_ch04_223-338.indd   225 24/12/10   4:14 PM24/12/10   4:14 PM



226 Computer Networks: An Open Source Approach

 Principle in Action: Bridging vs. Routing 

 There are some similarities between bridging and routing. For example, both can 

be used for connecting two or more LANs, and both look up a table for forward-

ing packets. However, they are quite different in other respects. In this sidebar, 

 bridge  is a general term for all kinds of bridges, two-port or multiple-port. 

    Layering:  A bridge is a link-layer device, while a router is a network-

layer device. A bridge forwards a frame based on the link-layer header 

information, e.g., destination MAC address, while a router forwards a 

packet based on the network layer header information, e.g., destination 

IP address.  

   Table : A bridge usually builds a forwarding table through  transparent  
self-learning, while a router builds a routing table by running a routing 

protocol  explicitly . A bridge also needs to run a spanning tree protocol 

to avoid  looping  when more than one bridge is connected.  

   Collision domain vs. broadcast domain : A bridge is used to separate 

a  collision,  domain, while a router is used to separate a  broadcast  
domain. A collision domain refers to a network segment in which hosts 

share the same transmission medium and might have a collision if two 

or more packets are transmitted simultaneously. An  n -port bridge could 

separate one collision domain into  n  collision domains by dividing 

the collision domain among  n  ports. However, all these collision 

domains are still under the  same  broadcast domain unless VLANs are 

created. A broadcast domain refers to a network in which all nodes 

can communicate with each other by broadcast at the link layer. From 

the perspective of Internet Protocol, a broadcast domain corresponds 

to an IP subnet. An  n -port router could separate one broadcast domain 

into  n  broadcast domains. When VLANs are created on a backbone of 

bridges, the concept of broadcast domain becomes very important. All 

hosts within a VLAN, no matter how many bridges are among them, 

are in the  same  broadcast domain and shall be reached by broadcast at 

the link layer. On the other hand, two hosts in two different VLANs can 

only communicate through a router even if they are connected to the 

same bridge.  

   Scalability : Bridging is  less  scalable than routing due to the broadcast 

requirement. As was previously mentioned, hosts connected by one or 

more bridges are still within a broadcast domain and shall be reached 

by broadcast. Therefore, if millions of hosts are bridged together, it 

will be very difficult, if not impossible, to deliver a broadcast message 

to all hosts. Meanwhile, when a MAC address is  not  learned into the 

forwarding table,  flooding  will be used to forward a frame, which is 

extremely inefficient in a large internetwork.   

lin76248_ch04_223-338.indd   226lin76248_ch04_223-338.indd   226 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 227

domain, so hosts within a subnet can send packets to each other directly without 

assistance from routers. Several subnets are then grouped into  domains .  Intra-domain  

and  inter-domain  routing are done separately by different routing protocols, and the 

entries in a routing table may represent a subnet or a domain. 

 Several issues on routing need to be addressed, as discussed in  Chapter 1 . It 

should be clear now, by considering the scalability requirement, that the chosen 

solutions for Internet routing are  hop-by-hop ,    shortest path  routing done on  per-
destination-network  granularity. How to compute a path and how to gather routing 

information also depends on scalability. For intra-domain routing, scalability is less 

of a problem, and  optimality  is often more important. Therefore, one of the objec-

tives of routing within a domain is efficient resource sharing, which is achieved by 

finding the shortest path between each source-destination pair. Routing information 

can be gathered either by  exchanging  information between adjacent routers only 

or by  flooding  routing information to all routers within the same domain. Hence, 

intra-domain routing decisions (finding the shortest path) can be based on  partial  
routing information or  global  routing information. On the other hand, for inter-

domain routing, scalability is more important than optimality. Another issue that 

needs to be considered for inter-domain routing is administrative  policies  made by 

different domain administrators who may wish to prohibit some traffic traversing 

through certain domains. As a consequence, policy-based routing is more important 

than efficient resource sharing. For scalability and policy-based routing, inter-

domain routing usually  exchanges  only  summarized  information between adjacent 

routers and makes routing decisions based on  partial  routing information. We shall 

discuss the routing issues raised in Section 4.6 in more detail.  

  4.1.3 Resource Sharing Issues 
  Stateless and Unreliable 

 Finally, let us address several resource sharing issues. In the Internet, resources are 

shared freely without any control at the network layer. The Internet Protocol provides 

a  connectionless  service model to upper layers. Under the connectionless service 

model, packets need to carry enough information in their headers to enable interme-

diate routers to route and forward packets to their destinations correctly. As a conse-

quence,  no  setup mechanism is required before sending packets. This is the simplest 

way to share network resources. The connectionless service model also implies  best 
effort  service, although it need not be. When forwarding packets, routers just do their 

best to forward packets correctly to their destinations based on routing tables. If 

something goes wrong, such as a packet getting lost, failing to reach its destination, 

or being delivered out of order, the network does nothing to fix the problem. The 

network just makes its best effort to deliver packets. This also implies that the service 

provided by the network layer is  unreliable . 

 Because the service at the network layer is unreliable, an  error reporting  

mechanism is needed to inform the original source and/or the upper layer of the 

source host. Issues on error reporting include how to transmit error messages, how to 

identify the type of error, how to let the source know which packet caused the error, 

lin76248_ch04_223-338.indd   227lin76248_ch04_223-338.indd   227 24/12/10   4:14 PM24/12/10   4:14 PM



228 Computer Networks: An Open Source Approach

how to handle error messages at the source, and whether the bandwidth used by error 

messages should be limited. 

 The final issue in resource sharing is security. There are several aspects to the 

security issue.  Access control  deals with who has the rights to access network resources. 

 Data security  deals with encrypting packets to protect data against eavesdropping. 

Finally, there is the issue of  system security ,   which protects a host from illegal intrusion 

or virus attacks. We shall defer the discussion of them to  Chapter 8,  though some of 

them, say access control and data security, could be resolved in the IP layer.   

  4.1.4 Overview of IP-Layer Protocols and Packet Flows 
  Figure 4.2  gives a roadmap of the protocols that we discuss in this chapter. When a 

host powers on, the DHCP protocol can be used to  configure  its IP address, subnet 

mask, default router, etc. After the host is properly configured, a packet sent from the 

upper layer, such as TCP or UDP, is then processed by the IP layer to determine how 

to  forward  the packet. Whether the packet is to be sent directly to the receiver located 

within the same subnet or to the router for packet forwarding, the ARP protocol is 

used to  translate  the IP address of the receiver to its link layer (MAC) address. If 

there is an error in IP processing, the ICMP protocol is used to send error messages 

to the source that generates the original IP packet. If the packet is sent to a router, 

usually the default router, the packet will be forwarded by the router according to 

the packet’s destination address and the routing information in the routing table. The 

routing table is  maintained  by the routing protocol running at the router. When the 

packet arrives at the receiver, the packet is received and processed by the IP protocol, 

and if there are no errors, it is sent to the corresponding upper-layer protocol. If a 

private IP address is used for privacy or security reasons, the network address transla-

tion protocol (NAT) is used to  translate  the IP address and/or the transport layer iden-

tifier (TCP/UDP  port number ) of IP packets to achieve global Internet connectivity.           

Data link

IP ARP

ICMP

TCP/UDP

IP address
Subnet
default
router 

DHCP server

Host Router

IP

Routing
protocols 

Routing
table 

IP NAT 

NAT Server

Data link Data link

FIGURE 4.2 Protocols in shaded box discussed in this chapter.

lin76248_ch04_223-338.indd   228lin76248_ch04_223-338.indd   228 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 229

 Open Source Implementation 4.1: IP-Layer 
Packet Flows in Call Graphs 

  Overview 
 The IP layer sits upon the link layer and under the transport layer in the Internet 

Protocol stack. With the layering approach, interfaces shall be provided between 

two adjacent layers. Therefore, the interfaces of the IP layer include that with 

the link layer and that with the transport layer. As in  Chapter 3 ,   we examine 

these two interfaces through the packet reception path and the packet transmis-

sion path. In the reception path, a packet is received from the link layer and then 

passed to transport-layer protocols, including TCP, UDP, and raw IP socket in-

terface. In the transmission path, a packet is received from one of the transport-

layer protocols and then passed to the link layer.  

  The Reception Path 
 A frame received by the network interface card will trigger an interrupt, and the 

interrupt handler calls  net_rx_action()  to process the incoming frame. As 

described in  Chapter 3 , the actual function that invokes the network-layer protocol 

handler is  netif_receive_skb() . Then the function registered to  back-
log_dev.poll()  is invoked to process the following reception operations. As 

shown in  Figure 4.3 , when the network-layer protocol type registered in  sk_buff  

is the IP protocol,  ip_rcv()  will be called as the protocol handler. The packet is 

then passed through several IP layer functions which will be discussed later in this 

chapter. If the packet is for the local host,  ip_local_deliver()  is called, 

and then it calls  ip_local_deliver_finish()  to deliver the packet to 

the transport-layer protocol handler. The handler is either  raw_v4_input() , 

 udp_v4_rcv() , or  tcp_v4_rcv() , depending on whether the upper-layer 

protocol is raw IP socket interface, UDP, or TCP, respectively.       

  The Transmission Path 
 The transmission path is also shown in  Figure 4.3 . An upper-layer protocol 

pushes the packets to the IP layer into its queue.  ip_append_data() , 

 ip_append_page() , or  ip_queue_xmit()  is called to deliver a packet 

to the IP layer, depending on which transport layer protocol is used. To avoid 

sending too many small packets, the former two functions store data on a 

temporary buffer first, and later  ip_push_pending_frames()  is called 

on the temporary buffer to actually pack data into packets of an appropriate 

size. All these functions will call  dst_output()  ,  which subsequently calls 

the virtual function  skb->dst->output()  registered in the  sk_buff  

to invoke the network layer handler  ip_output()  if the network layer 

protocol is IP. If no fragmentation is required,  ip_finish_output2()  will 

deliver the packet to the link layer via  net_tx_action() , as described in 

 Chapter 3 .  

Continued

lin76248_ch04_223-338.indd   229lin76248_ch04_223-338.indd   229 24/12/10   4:14 PM24/12/10   4:14 PM



230 Computer Networks: An Open Source Approach

  Exercises 
 Trace the source code along the reception path and the transmission path to ob-

serve the details of function calls on these two paths.  

UDP
udp_v4_rcv

TCP
tcp_v4_rcv

Raw IP
raw_v4_input

Medium Access Control (MAC)

net_tx_action
dev_queue_xmit

ip_output

ip_finish_output

ip_finish_output2

ip_push_pending_frames

ip_append_data ip_append_page

TCP UDPRaw IP

dst_output

skb->dst->output IP 
layer

Transport
layer 

ip_queue_xmit 

ip_local_deliver_finish

ip_route_output_flow
__ip_route_output_key
ip_route_output_slow 

ip_rcv

ip_route__input

ip_local_deliver

skb->dst->input
dst_input

ip_rcv_finish

ip_local_out

netif_receive_skb
net_rx_action 

Data link
layer 

FIGURE 4.3  Packet flows in call graphs.

 Performance Matters: Latency Within the 
IP Layer 

  Figure 4.4  shows the latency breakdown of important IP-layer functions to transmit 

64-byte ICMP packets. The total latency is about 4.42 μs, and the bottleneck func-

tion  ip_finish_output2()  occupies more than 50% of total processing time. 

As mentioned in Open Source Implementation 4.1,  ip_finish_output2()  

delivers packets to the link layer. Before calling  net_tx_action() , it needs 

to prepend the Ethernet headers to packets. The prepending task invokes memory 

copying and therefore consumes more time than other functions.      

  Figure 4.5  profiles the latency of packet-receiving functions in the IP layer. 

The top four time-consuming functions are  ip_route_input()  (26%), 

lin76248_ch04_223-338.indd   230lin76248_ch04_223-338.indd   230 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 231

ip_local_deliver_finish()  (24%),  ip_rcv()  (17%), and  ip_rcv_
finish()  (16%).  ip_route_input()  consumes time on querying the rout-

ing tables.  ip_local_deliver_finish()  removes the IP header, finds out 

the correct transport layer protocol handler of the packet by a hash table lookup, and 

then passes it to the handler.  ip_rcv()  validates the header checksum field in IP 

packets. Finally,  ip_rcv_finish()  updates the statistics of the routing table.      

0.00%

5.00%

10.00%

15.00%

20.00% 0.70μs

ip_
rcv

ip_
rcv

_f
ini

sh

ip_
ro

ute
_in

pu
t

ip_
loc

al_
de

liv
er

ip_
loc

al_
de

liv
er_

fin
ish

ds
t_i

np
ut

sk
b-

>ds
t->

inp
ut

0.65μs

1.07μs

0.21μs 0.26μs 0.24μs

0.97μs25.00%

30.00%

FIGURE 4.5 Latency in receiving ICMP packets in the IP layer.

0.00%

10.00%

20.00%

30.00%

40.00%

0.45μs
0.60μs

0.75μs

ip_
loc

al_
ou

t

ds
t_o

utp
ut

ip_
ou

tpu
t

ip_
fin

ish
_o

utp
ut

ip_
fin

ish
_o

utp
ut2

0.31μs

2.31μs
50.00%

60.00%

FIGURE 4.4 Latency in transmitting ICMP packets in the IP layer.

  4.2 DATA-PLANE PROTOCOLS: INTERNET PROTOCOL 

  In this section, we first examine the current version of Internet Protocol, IPv4. In IPv4, 

a special type of address, called a  private  IP address, is used for security and IP address 

depletion reasons. In the second subsection, we examine the network address translation 

(NAT) protocol, which enables hosts with private IP addresses to access the Internet. 

lin76248_ch04_223-338.indd   231lin76248_ch04_223-338.indd   231 24/12/10   4:14 PM24/12/10   4:14 PM



232 Computer Networks: An Open Source Approach

  4.2.1 Internet Protocol Version 4 
 The Internet Protocol, or more commonly the IP protocol, is the key mechanism used 

in the Internet to provide the host-to-host transmission service. There are two ver-

sions of the IP protocol: IP version 4, used in the current Internet, and IP version 6, 

to be used in the next-generation Internet. IPv4 protocol is defined in RFC 791, while 

IPv6 is defined in RFC 2460. We first introduce the IP addressing model, and we use 

this model to explain how the Internet provides connectivity. 

  IPv4 Addressing 

 The first thing required in building the host-to-host connectivity is to have a global 

and unique addressing scheme to identify a host. A host is connected to a network 

via an interface, such as an Ethernet network interface card. Some hosts and routers 

may be equipped with more than one network interface. For each network interface, 

an IP address is used to identify the interface for sending and receiving IP pack-

ets. To locate a network interface among billions of hosts, we need some kind of 

 hierarchical  structure to organize and locate an IP address  globally . The hierarchical 

structure of the IP address is very similar to that of the postal address. The postal 

address of our home consists of the number, the road, the city, and the country 

so that the post office can easily identify where to deliver our mail. Similarly, the 

IP addressing scheme has a hierarchical structure so that intermediate routers can 

easily identify to which  networks  an IP packet should be delivered. 

 Each  IP address  is 32 bits (4 bytes) long and consists of two parts: a  network  

address and a  host  id. Typically, an IP address is written in a dotted-decimal notation. 

For example, in  Figure 4.6 ,   the first eight bits of the IP address is 10001100, which 

is equivalent to 140 in decimals. The four decimal numbers of the IP address are then 

separated by dots.      

 IP uses a  classful  addressing scheme. Five classes of IP addresses are defined, 

as shown in  Figure 4.7 . All classes of addresses have a network address and a host 

id, but they differ in the lengths of these two parts. A class A address has an 8-bit 

network address and a 24-bit host id. With IPv4, the Internet can accommodate up 

to 2 7  class A networks, and each class A network can have up to 2 24  − 2 hosts (two 

special addresses are reserved; see below). Similarly, the Internet can accommodate 

up to 2 14  class B networks and 2 21  class C networks. A class B network and a class C 

network can have up to 2 16  − 2 hosts and 2 8  − 2 hosts, respectively. Class D addresses 

are  multicast  addresses, which allow multipoint-to-multipoint transmission. We shall 

discuss IP multicast in Section 4.7. The fifth class, starting with the address prefix 

11110, is reserved for future use.      

 Given the  starting bits  of the classful addresses as shown in  Figure 4.7 ,   the  range  

of each class of addresses is also fixed. The class A addresses cover the range from 

0.0.0.0 to 127.255.255.255. (Note that 0.0.0.0/8 is reserved for local identification 

140.123.1.1 = 10001100 01111011 00000001 00000001

140 123 11

FIGURE 4.6 Dotted-decimal notation of an IP address.

lin76248_ch04_223-338.indd   232lin76248_ch04_223-338.indd   232 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 233

and 127.0.0.0/8 is reserved for loopback test.) From 128.0.0.0 to 191.255.255.255 

and from 192.0.0.0 to 223.255.255.255 are ranges for the class B and the class C 

addresses, respectively. The class D address ranges from 224.0.0.0 to 239.0.0.0. 

Finally, the addresses from 240.0.0.0 to 255.255.255.255 are reserved for future use. 

(Note that 255.255.255.255 is a  broadcast  address in a subnet.) 

 Some IP addresses in each class are reserved for special use. If the host id is 

zero, it is used to represent an IP subnet. For example, 140.123.101.0 is a class B sub-

net address. On the other hand, if bits of the host id are all 1, it is used for broadcast in 

that IP subnet. Finally, the IP address, 255.255.255.255, is used to broadcast packets 

in an IP subnet when the source host does not know its own IP address yet, as when 

a host needs to contact a DHCP server to obtain its IP address. We shall discuss the 

DHCP protocol in Section 4.4.  

  IP Subnetting 

 The network address of an IP address is supposed to uniquely identify a physical 

network. However, a physical network is usually constructed using LAN technolo-

gies, as described in  Chapter 3 . For a class A or B network, the number of host ids 

is much larger than any LAN technology can support. Therefore, it is not practical 

to expect there to be only one physical network, or LAN, in a class A or B network. 

As a consequence, an organization that owns a class A, class B, or even class C 

network address often divides its own network into several sub-networks (subnets). 

Logically, two hosts in the same IP subnet must be able to send packets to each other 

 directly  using link-layer technologies, without passing the packets through a router. 

To maintain the hierarchical structure of the IP address, all hosts in the same IP sub-

net must have the same  prefix  (leftmost bits) in their IP addresses. Therefore, part of 

the host id is used to denote the  subnet address  within a class A, B, or C network, as 

shown in  Figure 4.8 . The number of bits used to denote the subnet address depends 

on the number of subnets and the number of hosts within a subnet that the adminis-

trator of the organization desires. For example, a class B address with an 8-bit subnet 

address and an 8-bit host id will result in up to 2 8  subnets and 2 8  − 2 hosts within 

each subnet. 

FIGURE 4.7 The classful IPv4 address formats.

bits 0 1 2 3 4 8 16 24 31

Class A

Class B

Class C

Class D

0 Network Host
0.0.0.0 to
127.255.255.255

128.0.0.0 to
191.255.255.255

192.0.0.0 to
223.255.255.255

224.0.0.0 to
239.255.255.255

240.0.0.0 to
255.255.255.255

Class E

Network 

Network Host

Host1 0

1 1 0

1 1 1 0

1 1 1 1

Multicast address

Reserved

lin76248_ch04_223-338.indd   233lin76248_ch04_223-338.indd   233 24/12/10   4:14 PM24/12/10   4:14 PM



234 Computer Networks: An Open Source Approach

 In order to determine whether two hosts are within the same IP subnet, the nota-

tion of  subnet mask  is applied to IP subnetting. The subnet mask indicates the length 

of the leftmost bits of an IP address, which are used as the subnet address. Continu-

ing with the preceding subnetting example of a class B address, the subnet address 

is the 24 leftmost bits of the 32-bit IP address. Two notations are used to denote the 

subnet mask. First, we can use a 32-bit string in which the subnet-address part and 

the host-id part are filled with 1’s and 0’s accordingly to denote the subnet mask, 

e.g., 255.255.255.0 in our example. Alternately, we can denote an IP address as 

140.123.101.0/24, where /24 indicates that the subnet mask is 24 bits long.      

 A typical network thus consists of several subnets, and hosts in the same subnet 

have the same subnet mask and subnet address. For example, in  Figure 4.9 ,   there are five 

hosts connecting to three subnets, namely 140.123.1.0, 140.123.2.0, 140.123.3.0. Hosts 

H1 and H2 are connected to the same subnet and thus have the same subnet address, 

namely 140.123.1.0. Subnets are connected with routers (R1~R3) to form an internet-

work. The network interface of a router connected to a subnet also has the same subnet 

mask and subnet address as those of hosts in the same subnet. Notably, each router is 

usually equipped with several network interface cards. Some of them connect routers 

to subnets of hosts; however, some of them are used to connect routers to form a traffic 

exchange or distribution backbone, such as the 140.123.250.0 subnet in  Figure 4.9 .       

bits 0 1 2 3 4 8 16 24 31

Class A

Class B

Class C

0 Network Subnet Host

Network Subnet

Network HostSubnet

Host1 0

1 1 0

FIGURE 4.8 IP subnet addressing.

R1

R2 R3

140.123.250.1

140.123.250.3 140.123.250.2 Subnet:
140.123.250.0

H3 H4

Subnet: 140.123.2.0

140.123.2.250

140.123.2.1 140.123.2.2

H5

Subnet: 140.123.3.0

140.123.3.1 

H1 H2
Subnet:

140.123.1.0

140.123.3.250 

140.123.1.250

140.123.1.2140.123.1.1

FIGURE 4.9 An example of IP subnetting.

lin76248_ch04_223-338.indd   234lin76248_ch04_223-338.indd   234 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 235

  CIDR Address 

 There are a couple of problems with the classful IP addressing. First, due to the fixed 

length of the network address, there is a dilemma when assigning IP addresses to a 

medium-sized organization, for instance, an organization that has up to 2000 hosts. 

A class C network address is too small for such an organization since it can support 

only up to 254 hosts, whereas a class B network address is too large as it would leave 

more than 63,000 addresses unused. A possible solution is to assign more than one 

class C network address to the organization, but with this solution,  scalability  for 

routing and forwarding now becomes a problem. With classful IP addressing,  each  

class C network address  occupies  an entry in the routing table of a backbone router. 

However, for an organization with several class C addresses, the routing entries as-

sociated with these class C addresses all should point to the same routing path to the 

organization. This results in the problem that the size of the routing table at backbone 

routers would be very large, as there are many class C network addresses, but many 

of the entries in the routing table would carry the same routing information. 

 Classless Inter-Domain Routing (CIDR) is thus proposed to solve the problems. 

With CIDR, the  network  part of an IP address can have an arbitrary length. A medium-

sized organization will be assigned a  block  of IP addresses, which are usually  consecu-
tive  class C network addresses. For example, an organization with 2000 hosts can be 

assigned a block of IP addresses ranging from 194.24.0.0 to 194.24.7.255 with the sub-

net mask 255.255.248.0 or 194.24.0.0/21. That is, the first 21 bits are used to specify 

the organization’s network address. A backbone router would need only  one  routing 

entry to record the network interface to the organization, as illustrated by  Figure 4.10 . 

IP subnetting within the organization can be done as mentioned before.       

  Packet Forwarding 

 Recall from Section 4.1 that forwarding is the process of receiving a packet from 

the upper layer or a network interface and sending it out on the appropriate network 

interface. Both hosts and routers need to forward packets. For a host, packets from 

the upper layer need to be sent on one of its outgoing network interfaces. For a router, 

packets from its network interfaces need to be forwarded on to other network inter-

faces. The key idea of the IP forwarding process is that if the destination of the packet 

Next hopDestination

194.24.0.0 19.1.1.250 

194.24.1.0 19.1.1.250

194.24.2.0 19.1.1.250

194.24.3.0 19.1.1.250
…… …… …… 

…… …… …… 
194.24.4.0 19.1.1.250

194.24.0.0 /21 19.1.1.250

194.24.5.0 19.1.1.250

194.24.6.0 19.1.1.250

194.24.7.0 19.1.1.250

Destination Prefix length Next hop

FIGURE 4.10 Comparison of a 
routing table with and without 
CIDR.

lin76248_ch04_223-338.indd   235lin76248_ch04_223-338.indd   235 24/12/10   4:14 PM24/12/10   4:14 PM



236 Computer Networks: An Open Source Approach

to be forwarded is located in the  same  subnet as the forwarding node, the packet is 

sent  directly  to the destination. Otherwise, the forwarding node needs to look up the 

routing table to find the appropriate  next hop  router to forward the packet, and then 

sends the packet directly to the next hop router. A routing table entry consists of a 

 (Destination/SubnetMask, NextHop) pair ,   but it may also contain additional informa-

tion, depending on the type of routing protocols running underneath. The destination 

is usually expressed in the form of a network address, e.g., 194.24.0.0/21. NextHop 

is either a  router IP address  or a network  interface . The next-hop router must be in 

the same subnet as one of its network interfaces such that it can be communicated 

with directly. Normally, there is an entry recording a  default router  with the destina-

tion address ‘0.0.0.0/0’. If the destination of a packet does not match any entries of 

the routing table, it will be forwarded to the default router. 

 We can describe the packet-forwarding algorithm from two aspects. First, for a 

host, we consider the case where there is a packet from the upper layer, say TCP, to 

be sent to the destination. In particular, we consider the most common case where 

the host has only one network interface card and one default router. In this case, the 

IP forwarding algorithm operates as follows:  

 If the packet is to be delivered to the same host 
      Deliver the packet to an upper-layer protocol 
 Else If (NetworkAddress of the destination == My subnet 
address) 
      Transmit the packet directly to the destination 
 Else 
      Look up the routing table 
      Deliver the packet to the default router 
 End if 

 If the packet is to be delivered to the upper layer 
      Deliver the packet to an upper-layer protocol 
 Else Look up the routing table 
      If the packet is to be delivered to a directly 
connected subnet 
        Deliver the packet directly to the destination 
      Else 
        Deliver the packet to a next hop router 
      End if 
 End if 

 Now, let us consider the case where a router or a host with forwarding capabil-

ity receives a packet from one of its network interfaces. In this case, the packet may 

be forwarded to the destination on the appropriate network interface, or delivered 

locally to an upper-layer protocol if the destination address is the host itself. The 

forwarding algorithm works as follows:  

lin76248_ch04_223-338.indd   236lin76248_ch04_223-338.indd   236 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 237

 Three operations in the previous two algorithms deserve further discussion. 

First, how does the forwarding host obtain the network address of the destination 

and determine whether the node itself and the destination are  directly  connected? 

This Boolean judgment can be easily implemented by using the following operation:   

 If ((HostIP ^ DestinationIP) & SubnetMask)==0)   

 where ^ is the  bitwise-exclusive-or  operation and & is the  bitwise-and  operation. 

 Second, delivering a packet to the destination within a subnet requires forming a 

Layer-2 frame with the MAC address of the destination. This involves the operation 

of  address resolution ,   which we shall describe in Section 4.4. Finally, the procedure 

of  looking up the routing table  is described next.  

  Routing Table Lookup 

 As we have seen, routing table lookup is an essential operation to the IP forwarding 

algorithm. Due to the CIDR addressing, looking up the routing table is now known 

as the  longest prefix matching  problem. That is, the routing entry that matches the 

 longest  prefix of the destination address of the packet should be chosen for forward-

ing. Consider the case where there are two organizations: A and B. Organization 

A owns the IP addresses from 194.24.0.0 to 194.24.6.255. Since packets destined 

to any IP addresses in this range should be routed to the same network interface, 

it needs only  one  routing entry in the routing table to route packets to organization 

A. As a result of route summarization, the network address of the routing entry for 

organization A is denoted by 194.24.0.0/21. Organization B only owns a class C 

network address, from 194.24.7.0 to 194.24.7.255. Therefore, the routing entry for 

organization B records the network address 194.24.7.0/24. Now, suppose we want to 

look up the routing entry for the destination IP address 194.24.7.10. Clearly, the des-

tination IP address matches  both  routing entries, that is, ((194.24.7.10^194.24.0.0) 

& 255.255.248.0) == 0 and ((194.24.7.10^194.24.7.0) & 255.255.255.0) == 0. We 

know 194.24.7.10 belongs to organization B, so the routing entry with the  longer  

network address, 194.24.7.0/24, should be chosen. Examining both cases carefully, 

we find that 194.24.7.10 matches the first 24 bits of 194.24.7.0/24 but only 21 bits of 

194.24.0.0/21. Now it should be clear why longest prefix matching is adopted. 

 Recently, fast algorithms for longest prefix matching have been proposed. In the 

literature, forwarding tables with cache, hash, and hardware-based implementation 

(parallel algorithm, CAM-based or DRAM-based) are some well-known solutions. 

In Linux, the lookup algorithm is mainly based on  two-level hashing . The traditional 

BSD implementation uses the  trie  data structure. A trie, also called a prefix tree, is 

an ordered tree data structure. Since the IP address is a string of bits, the trie used 

for longest prefix matching is a binary trie, as shown in  Figure 4.11 . A router first 

builds a dictionary, which consists of all routing prefixes. A trie can then be built by 

adding prefixes one by one from the dictionary into the trie structure. A node, marked 

with * in  Figure 4.11 ,   on the trie carries next-hop information if it corresponds to a 

prefix in the dictionary. In a search of the longest prefix matching for a destination 

address, each edge on the trie represents a binary bit string which directs the search 

until it cannot proceed any further. The node where the search ends stores the next-

hop information as the result of longest prefix matching. For example, using the trie 

lin76248_ch04_223-338.indd   237lin76248_ch04_223-338.indd   237 24/12/10   4:14 PM24/12/10   4:14 PM



238 Computer Networks: An Open Source Approach

in  Figure 4.10  to search the longest prefix matching for address 00001111, we start 

from the root, move along the left branch twice and end up at the node 00* since the 

third and fourth bits of the address are 00, which do not match any child of node 00*. 

Therefore, the longest prefix matching is the prefix 00*.         

FIGURE 4.11 An example of trie with 
prefixes {00*,010*, 11*, 0001*, 001*, 
10100*, 111*}.

*

0 1

0 1

0

01 1

1

10 1

0100
00* 010* 11*

0001* 001*

10100* 111*

 Open Source Implementation 4.2: IPv4 Packet 
Forwarding 

  Overview 
 Now let us examine how packet forwarding is done in Linux 2.6 kernel. A packet 

is forwarded based on the routing table entry selected by the longest prefix match-

ing algorithm. The chosen entry contains the next-hop information for packet 

forwarding. The first step of packet forwarding is to look up the routing table for 

the entry corresponding to the result of longest prefix matching. Looking up the 

routing table is time consuming, especially when doing longest prefix matching. 

Therefore, good data structures have been proposed to speed up the search in the 

routing table, for example, use of trie, or binary search based on prefix length. On 

the other hand, since the same destination is likely to be visited frequently, storing 

the search result of the first visit in a  routing cache  and then searching the rout-

ing cache for subsequent visits could save a lot of time on routing-table lookups. 

Therefore, in Linux 2.6 implementation, a routing cache is used to accelerate the 

destination address lookup process. With the assistance of the routing cache, a 

full search in the routing table is performed only in case of a cache miss.  

  Block Diagram 
 The call graph of Linux 2.6’s IPv4 packet forwarding process is given in 

 Figure 4.12 . For packets that come from the upper layer, if the routing path 

is not known yet, the main function that determines the output device (inter-

face) is  __ip_route_output_key()  (in  src/net/ipv4/route.c ). 

The  __ip_route_output_key()  tries to find the routing path (output 

lin76248_ch04_223-338.indd   238lin76248_ch04_223-338.indd   238 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 239

device) in the  routing cache  using the  hash  function,  rt_hash()  ,  which 

eventually calls Bob Jenkins’s hash function  jhash()  in  include/linux/
jhash.h  (see also  http://burtleburtle.net/bob/hash/ ). If the 

routing path is not in the routing cache,  ip_route_output_slow()  is then 

called to look up the destination in the  routing table  by calling  fib_lookup() . 

  Algorithm Implementations 
 Upon receiving a packet from a network interface, the packet is first copied 

into kernel’s  sk_buff . Typically  skb->dst  is NULL, i.e., no virtual cache 

path for this packet, and  ip_rcv_finish()  calls  ip_route_input()
to determine how to forward the packet. As in the previous case,  ip_route_
input()  tries to find the routing path in the routing cache first. If not found, 

ip_route_input_slow()  is called, which in turn calls  fib_lookup()
to look up the routing table.  

  Data Structures 
 The routing cache is maintained with the  rt_hash_table  data structure, 

which is an array of  rt_hash_bucket . Each entry of the  rt_hash_table  

points to a list of  rtable ’s, as shown in  Figure 4.13 . The  rt_hash()  hashes 

on three parameters derived from the packet: source address, destination ad-

dress, and type of service. When the hash entry is obtained by  rt_hash() , 

linear search is performed on the list of  rtable ’s to which the entry points.      

 If the destination address cannot be found in the routing cache, the Forward-

ing Information dataBase (FIB) will be searched. The FIB data structure is rather 

complicated, as shown in  Figure 4.14 . Linux 2.6 kernel allows multiple IP rout-

ing tables, each described by an independent  fib_table  data structure. The 

last field of this data structure,  tb_data , points to an  fn_hash  data structure, 

which consists of a hash table,  fn_zones , and a hash list,  fn_zone_list . 

The  fn_zones  is an array of 33  fn_zone ’s, where  fn_zones[z]  points 

to a hash table for prefix length of  z , 0 <=  z  <= 32. All non-empty entries of 

 fn_zones  are then linked by the  fn_zone_list , headed with the entry with 

the longest prefix. The  fib_lookup()  calls each table’s  tb_lookup()  

function to search the routing table. The default  tb_lookup()  function is 

ip_queue_xmit()

__ip_route_output_key()

ip_route_output_slow()in cache?
yes no

return 

FIGURE 4.12 IP forwarding implementation:  __ ip _ route _ output _ key .

Continued

lin76248_ch04_223-338.indd   239lin76248_ch04_223-338.indd   239 24/12/10   4:14 PM24/12/10   4:14 PM



240 Computer Networks: An Open Source Approach

fn_hash_lookup()  (in  src/net/ipv4/fib_hash.c ), which sequen-

tially searches the hash table of each prefix length by traversing through the  fn_
zone_list . This  sequential  search ends when a match is found. By searching 

from the  head  of  fn_zone_list , longest prefix matching is guaranteed. That 

is, the  first  match is the  longest  match.      
 In the middle of  Figure 4.14 , each entry of  fn_zones  points to an 

 fn_zone  data structure. The  fn_zone  consists of one pointer to the  

fn_zone_list , and a hash table,  fz_hash , which is an array of pointers 

to  fib_node ’s. A  fib_node  corresponds to a unique subnet. The hash key, 

 fn_key , is the prefix of the subnet, e.g., if the subnet is 200.1.1.0/24, then the 

 fn_key  is 200.1.1. The hash function,  fn_hash() , is defined as an inline 

function in  src/net/ipv4/fib_hash.c . The  fn_alias  entry in each 

 fib_node  points to a  fib_alias  structure, which contains some basic infor-

mation of the subnet such as  fa_tos ,  fa_type , and  fa_scope , and a pointer 

rt_hash_table
chain 

chain 

chain 

rtable
u.rt_next

rtable

FIGURE 4.13 Routing cache.

FIGURE 4.14 FIB data structure.

fib_table

tb_data

fn_hash

fn_zones[32]

fn_zone_list

fn_zones[0]

fn_zones[1]

fn_zones[2]

fz_next

fz_hash[..]

fn_zone

fz_next

fz_hash[..]

fn_zone

fz_next

fz_hash[..]

fn_zone

fib_node

fn_hash

fn_key

fib_node

fn_hash

fib_alias

fa_list

fib_nh

nh_gw

nh_dev

fn_alias

fn_key

fn_alias

fa_info 

fa_tos 
fa_type

fib_info

fib_hash

fib_nh[..]

fib_lhash
fn_zones[24]

fn_zones[16]

lin76248_ch04_223-338.indd   240lin76248_ch04_223-338.indd   240 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 241

to a  fib_info  data structure. Finally, the  fib_info  contains the detailed in-

formation of a routing entry, including the  output device  and the  next-hop router . 

 The default size of the hash table (the number of entries of  fz_hash ) 

is 16 for any nonzero prefix length. If the number of nodes stored in the hash 

table exceeds twice the table size, the table size is increased to 256 for the first 

occurrence, then to 1024 for the second occurrence, and after that the table size 

is doubled whenever the condition occurs.  

  Exercises 
    1. Use an example to trace  __ip_route_output_key()  and write down 

how the routing cache is searched.  

   2. Trace  fib_lookup()  to explore how FIB is searched.    

 Performance Matters: Lookup Time at Routing 
Cache and Table 

 For the  first  packet arrival in a packet flow, the routing mechanism is likely to 

incur two route lookup operations, one on the routing cache, which leads to a 

lookup miss, and then the other on the FIB routing table producing a hit. For 

each of the  subsequent  packet arrivals in the flow, the routing mechanism can 

find in the routing cache the lookup result for the first packet arrival, which 

means one lookup on the cache only. One interesting question is how fast we 

can perform route lookup in these two data structures. We need to measure the 

time spent on executing  ip_route_output_key()  and  ip_route_out-
put_slow() . On a lightly loaded Linux router handling 64-byte packets, our 

measurement yields 0.6 μs and 25 μs for  ip_route_output_key()  and 

 ip_route_output_slow() , respectively, which indicates that these two 

differ by a factor of 42. Though both are hash tables, the FIB table is an  array  

of hash tables, which would require  sequential  hashing from the table with the 

longest prefixes. 

  Packet Format 

 Next we look at IP packet format. An IP packet consists of a header field followed by a 

data field, and its length must be a multiple of 4-byte words. The format of the IP header 

is shown in  Figure 4.15 . We describe the semantics of each field in the following: 

� Version Number:  The version number specifies the version of the IP protocol. The 

current version of the IP protocol is 4 and the version for next generation IP is 6.  
� Header Length:  The IPv4 header has a variable length. This field specifies the 

length of the IP header in units of 4-byte words. Without the option field, the 

typical header length is five words, i.e., 20 bytes.  

lin76248_ch04_223-338.indd   241lin76248_ch04_223-338.indd   241 24/12/10   4:14 PM24/12/10   4:14 PM



242 Computer Networks: An Open Source Approach

   � Type of Service (TOS):  TOS specifies the desired service of the IP packet. 

Ideally, routers will handle the packet according to the TOS of the packet. 

However, not all routers have implemented this capability. According to RFC 

791 and 1349 (see  Figure 4.16 ), the first three bits in TOS are used to define the 

precedence of the packet. The following four bits define the performance met-

rics to optimize when handling this packet. The performance metrics are delay, 

throughput, reliability, and cost. More recently, RFC 2474 defines the first six 

bits as the Differentiated Services (DS) field, which carries the DS codepoint of 

the packet.  

   � Packet Length:  This field specifies the total IP packet length, including the header and 

data, in number of bytes. Since it is 16 bits long, the maximum length of an IP packet 

is 65,536 bytes, which is referred to as the  maximum transmission unit  (MTU).  

   � Identifier:  The identifier uniquely identifies an IP packet. It is also called the 

 sequence number ,   particularly useful in  IP fragmentation . We shall discuss the 

topic of IP fragmentation in detail later.  

0 8 16 24 31

Version

4

Header
length

Type of
service

Packet length (bytes)

Data

Identifier Flags 13-bit fragmentation offset

Time-to-live 
Upper layer

protocol
Header checksum 

Source IP address

Destination IP address

Options

   FIGURE 4.15 IPv4 packet format. 

   FIGURE 4.16 Definition of TOS. 
Precedence R

Precedence defined
In RFC 791:
111: network control
110: Internetwork control
101: CRITIC/ECP
100: Flash override
011: Flash
010: Intermediate
001: Priority
000: Routine

TOS defined in RFC 1349:
1000: minimize delay
0100: maximize throughput
0010: maximize reliability
0001: minimize cost
0000: normal service
1111: maximize security

R: Reserved 

Type of Service

lin76248_ch04_223-338.indd   242lin76248_ch04_223-338.indd   242 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 243

   � Flags:  The low-order two bits of the flags field are used for fragmentation con-

trol. The first control bit is called the  do not fragment  bit. The IP packet should 

not be fragmented if this bit is set. The last bit is called the  more fragments  bit. 

If set to 1, it indicates that the current packet is in the middle of a large packet.  

   � Fragmentation Offset:  This field indicates the position of the fragment in the orig-

inal packet if the current packet is a fragment. The offset is measured in units of 

 8 bytes  because this field has only 13 bits after yielding 3 bits to the flags field.  

   � Time-to-Live (TTL):  TTL specifies the maximum number of routers the packet 

is allowed to traverse through. It is called  hop limit  in the new version of the IP 

protocol. Each router  decreases  TTL by  one  before forwarding it to the next hop 

router. If TTL reaches zero, the packet is discarded and an error message, i.e., an 

ICMP message, is sent to the source.  

   � Upper Layer Protocol:  This field indicates the upper-layer protocol to which 

this packet should be passed. For example, a value of 1, 6, 17 indicates that the 

upper-layer protocol is ICMP, TCP, and UDP, respectively. RFC 1700 defines 

possible numbers used for this field.  

   � Header Checksum:  The checksum is used to detect bit errors in a received IP 

packet. Unlike CRC, this 16-bit checksum is computed and filled by treat-

ing the whole IP header as a sequence of  16-bit  words,  summing  these words 

using 1’s complement arithmetic, and then  complementing  the result. We have 

described a similar process in  Chapter 3 . Though the protection of this 16-bit 

checksum is not as strong as CRC-16, it is faster to compute and can be eas-

ily done in software. At the destination, an error is detected if summing up all 

16-bit words of the IP header does not yield a  zero . An erroneous packet is 

usually discarded.  

  � Source and Destination IP Address: These two fields specify the IP address of 

the source and the destination. As discussed above, the  destination  address is the 

key to forwarding the packet to the final destination.  

   � Options:  The options field is not required in every packet. It has a variable 

length, depending on the option type. Usually, the option field is used for testing 

or debugging. Therefore, it involves the cooperation of routers. For example, 

 source routing  is a commonly used option which specifies the routing path, 

i.e., a list of routers from the source to the final destination. The options field is 

rarely used and thus not included in the fixed part of the IP header.  

   � Data:  The data field contains the protocol data unit (PDU) from the upper layer, 

which is to be delivered to the destination.       

  Packet Fragmentation and Reassembly 

 As the IP protocol has its MTU limit, each link-layer protocol also has an often 

 tighter  limit on the maximum frame size that can be transferred at a time. For 

example, recall that the Ethernet has an MTU limit of 1518 bytes, which include 

18 bytes of protocol overhead and 1500 bytes of payload (upper-layer data). In other 

words, when transmitting an IP packet over an Ethernet interface, the maximum 

length of the IP packet is 1500 bytes. However, the packet from the upper layer could 

be larger than 1500 bytes, the hard limit of the Ethernet protocol, as we can see that 

lin76248_ch04_223-338.indd   243lin76248_ch04_223-338.indd   243 24/12/10   4:14 PM24/12/10   4:14 PM



244 Computer Networks: An Open Source Approach

the MTU of the IP protocol is 65,536 bytes. Fragmentation allows us to divide a large 

IP packet into two or more smaller IP packets that are small enough to pass through 

the link layer, as illustrated in  Figure 4.17 . These smaller IP packets are called IP 

fragments . Since the MTU varies depending on which link-layer protocol is being 

used underneath, fragmentation may be performed at the source node as well as at 

the intermediate routers. Reassembly is the work to rebuild the  original  IP packet 

using these IP fragments. In the IP protocol, reassembly is done at the  final destina-
tion  only to avoid prolonged buffering at routers.  

 Open Source Implementation 4.3: IPv4 
Checksum in Assembly 

  Overview 
 The checksum of an IP header is calculated by treating the whole IP header as a 

sequence of  16-bit  words, summing these words using 1’s complement arithmetic, 

and then complementing the result.  

  Algorithm Implementations 
 The IP header checksum is computed using the  ip_fast_csum()  function 

(in  src/include/asm_i386/checksum.h ). Since the checksum will be 

computed for each IP packet, it requires a fast algorithm. Linux kernel optimizes 

the checksum computation by writing this function in machine-dependent as-

sembly languages. For 80x86 machines, the  ip_fast_csum()  function does 

the summation in  32-bit  instead of 16-bit words. The code in C would look like: 

  for (sum=0;length>0;length--) 
  sum += *buf++;  
 In  ip_fast_csum() , the code is translated to: 
 “1: adcl 16(%1), %0 ;\n” /* the sum is put in %0; summation 
is in 32-bit */ 
 “lea 4(%1), %1 ;\n” /* advance the buf pointer by 4 (in 
bytes) */ 
 “decl %2 ;\n” /* decrease the length by 2 (in 16 bits) */ 
 “jne 1b ;\n” /* continue the loop until length==0 */ 

 The result is then  copied  to another register. These two registers are shifted 

to have 16 bits in their  low-order  bits and then added up. Taking the complement 

of the result gives the checksum.  

  Exercises 
 Write a program to compute IP checksum and verify the correctness of the 

program by comparing to a real IP packet captured by the Wireshark software.  

lin76248_ch04_223-338.indd   244lin76248_ch04_223-338.indd   244 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 245

 How we reassemble an IP packet affects the design of the fragmentation proce-

dure, so let us consider the IP reassembly process first. To reassemble an IP packet, 

we need to collect all the fragments of the same packet. Therefore, we need to have 

an identifier to differentiate these fragments from those of other packets, and we 

need to know whether we have collected  all  of the fragments yet. To do this, the IP 

fragmentation procedure gives all fragments from the same packet the same number 

in the  identifier  field (or the  sequence number  field) of the header. It uses the  more 
fragments  bit in the flags field to indicate whether this fragment is the last fragment. 

Given all of the fragments of an IP packet, a reassembler needs to determine the posi-

tion of each fragment in the original packet. This is done by recording the offset in 

the  fragmentation offset  field of the IP header. Therefore, each fragment is actually a 

normal IP packet that carries fragmentation information in the header and a portion 

of the data of the original packet. Just like a normal IP packet, an IP fragment can be 

further fragmented at intermediate routers. The destination uses the  identifier ,    flags ,   
and  fragmentation offset  fields in the header to reassemble the original packet. 

  Figure 4.18  shows an example of fragmenting a 3200-byte packet into three 

fragments to pass an Ethernet interface. (Recall that the MTU of the Ethernet is 

1518 bytes, with 18 bytes of the header and the trailer.) Note that the fragmentation 

   FIGURE 4.17 IP fragmentation. 

IP
packet

Help, cannot
get through.

Yes, can get
through now.

IP fragments

Link layer Link layer 

Header
id = x, more = 0, offset = 0

3200 bytes of data

1480 bytes of data

Header
id = x, more = 1, offset = 0

1480 bytes of data

Header
id = x, more = 1, offset = 185

240 bytes of data

Header
id = x, more = 0, offset = 370

(a) Original packet (b) Fragments

   FIGURE 4.18 An example of IP 
fragmentation. 

lin76248_ch04_223-338.indd   245lin76248_ch04_223-338.indd   245 24/12/10   4:14 PM24/12/10   4:14 PM



246 Computer Networks: An Open Source Approach

offset is in units of 8 bytes because it uses only 13 bits instead of 16 bits to record the 

fragment’s offset position in the original 16-bit long IP packet. Therefore, the packet 

length of each fragment, except the last fragment, must be a multiple of 8 bytes. In 

of  Figure 4.18 ,   excluding the 20-byte IP header, the maximum number of bytes that 

can be put into a fragment is 1500 – 20, i.e., 1480. The header of each fragment is 

the same as that of the original packet except in two fields:  flags  and  fragmentation 
offset . The  more  bit of the  flags  should be set to 1 for all fragments except the last 

one. The destination can distinguish fragments of the same packet by the  identifier
field, to identify the last fragment by the  more  bit, and reassemble the fragments into 

their right position using the  fragmentation offset .     

 Open Source Implementation 4.4: IPv4 
Fragmentation 

  Overview 
 Fragmentation is required when transmitting an IP packet with a size larger than 

the link layer’s MTU. Therefore, size check is necessary before transmitting an 

IP packet. All fragments of an IP packet should have the same identifier. In addi-

tion, the  more  flag needs to be set for all fragments except the last one. The offset 

field also needs to be set properly such that the fragmentation offset is in units 

of 8 bytes, and all fragments except the last one should have a fragment size in 

 multiples  of 8 bytes. To successfully reassemble an IP packet from its fragments, 

the reassembly function relies on information from the  identifier ,   more  flag, and 

 offset  field in the header of these fragments. Besides, the implementation of reas-

sembling fragments should be carefully designed to avoid buffer overflow attacks.  

  Data Structures 
 The data structure for the IP header is  iphdr , defined in  src/include/
linux/ip.h . 

  struct iphdr { 
      #if defined(_LITTLE_ENDIAN_BITFIELD) 
         __u8 ihl:4,  
             version:4; 
 #elif defined (__BIG_ENDIAN_BITFIELD) 
         __u8 version:4,  
             ihl:4; 
 #else 
 #error “Please fix <asm/byteorder.h>” 
 #endif 
         __u8 tos; 
         __be16 tot_len; 
         __be16 id; 

lin76248_ch04_223-338.indd   246lin76248_ch04_223-338.indd   246 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 247

         __be16 frag_off; 
         __u8 ttl; 
         __u8 protocol; 
         __sum16 check; 
         __be32 saddr; 
         __be32 daddr; 
         /*The options start here. */ 
 };   

  Algorithm Implementations 
 In the following, we focus on fragmentation and reassembly functions. Fragmen-

tation could be done when an IP packet is to be delivered to a network interface. 

The upper-layer protocol calls  ip_queue_xmit()  to send the upper-layer 

data through the IP layer. After routing is determined in  ip_queue_xmit() , 

ip_queue_xmit2()  will be called to check whether the packet length is larger 

than the MTU of the next link. If yes,  ip_fragment()  is called to perform the 

fragmentation. A while loop in  ip_fragment()  is responsible for fragmenting 

the original packet. The size of a fragment, except the last one, is set to the largest 

multiplicative number of 8 bytes that is less than the MTU. Each fragment is then 

sent sequentially to the network interface after its header and data are set properly. 

(These functions are located in  src/net/ipv4/ip_output.c .) 

  Figure 4.19  shows the call graph of the reassembly procedure. (Most of 

the functions are located in  src/net/ipv4/ip_fragment.c .) When 

an IP packet is received from the link layer, the  ip_rcv()  function is 

called to process this packet. It calls  ip_route_input()  to determine 

whether to forward the packet or to deliver it to upper layers. In the latter case, 

ip_local_deliver()  is called, which calls  ip_defrag()  if the  more
bit or the  fragmentation offset  in the header is not zero. IP fragments are main-

tained in a hash table called  ipq_hash  ,  which is an array of the  ipq  structure. 

The hash function,  ipqhashfn() , is called to hash IP fragments into the 

 ipq_hash  hash table, based on four fields: identifier, source IP address, des-

tination IP address, and upper-layer protocol id. The  ip_defrag()  function 

first calls  ip_find(),  which in turn calls  ipqhashfn()  to find the queue 

of the  ipq  structures that store the fragments of the same packet. If no such 

queue is found, it will call  ipq_frag_create()  to create a queue, which 

then calls  ipq_frag_intern()  to place the queue into the hash table. The 

 ip_defrag()  function then calls  ip_frag_queue()  to put the fragment 

into the queue. If all fragments have been received,  ip_frag_reasm()  is 

called to reassemble the packet.   

  Exercises 
 Use Wireshark to capture some IP fragments and observe the identifier, the more 

flag, and the offset field in their headers.  

Continued

lin76248_ch04_223-338.indd   247lin76248_ch04_223-338.indd   247 24/12/10   4:14 PM24/12/10   4:14 PM



248 Computer Networks: An Open Source Approach

   FIGURE 4.19 IP fragmentation and reassembly in Linux. 

net_bh() ip_rcv() ip_route_input()

ip_local_deliver_finish()

In ip_local_deliver():

more or offset is set?
yes

ip_defrag()

In ip_defrag():

ip_find() ip_frag_reasm()all fragments in?ip_frag_queue()

In ip_find():

ip_frag_create()

found in hash table?ipqhashfn()

no

yes

yes

return queue

no

ip_local_deliver()

  4.2.2 Network Address Translation (NAT) 
 For privacy and security reasons, there are some IP addresses that are reserved for 

sole private, intra-enterprise communications. These addresses, known as  private IP 
addresses ,   are defined in RFC 1918. Three blocks of the IP address space reserved 

for private internets are: 

   10.0.0.0 – 10.255.255.255 (10.0.0.0/8),        

  172.16.0.0 – 172.31.255.255 (172.16.0.0/12),        

  192.168.0.0 – 192.168.255.255 (192.168.0.0/16).   

 As we can see, the first block is a  single  class A network number, the second 

block is a set of  16 contiguous  class B network numbers, and the third block is a set 

of  256 contiguous  class C network numbers. 

 Beside privacy and security concerns, there are some other reasons for using 

private addresses; for example, to avoid changing IP addresses as external network 

topology changes (such as change of ISP). Recently, a quite common reason is due 

to the IP address  depletion  problem. While we may solve this problem naturally by 

adopting the next-generation Internet Protocol, private IP addresses and  network ad-
dress translation  (NAT) are used as a short-term solution. 

  Basic NAT and NAPT 

 NAT is a method used to map IP addresses from one group to another. More 

commonly, NAT is used to provide connectivity between the public Internet and 

lin76248_ch04_223-338.indd   248lin76248_ch04_223-338.indd   248 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 249

private internets in a way that is transparent   to end users. There are two variations 

of NAT,  basic  NAT and Network Address  Port  Translation (NAPT). To allow a host 

with a private IP address to access the public Internet, basic NAT assigns a glob-

ally unique  public  IP address to each host in the private network, dynamically or 

statically. The source addresses of packets originated from the private network are 

replaced by their source’s assigned global IP address. The same applies to the desti-

nation addresses of incoming packets destined for internal hosts in private internets. 

 Basic NAT requires one public IP address for each internal host that wants 

to access the public Internet. However, for small companies (Small Office, Home 

Office [SOHO]), many internal hosts need to share a small number of IP addresses. 

Therefore, an alternative approach, NAPT, extends the translation to include IP 

address and transport layer identifier. By NAPT, two internal hosts that share the 

same global IP address are differentiated by their transport layer identifier, such as 

TCP/UDP  port number  or ICMP  message identifier .  Figure 4.20  shows the basic 

NAT and NAPT translation. An NAT  translation table  is created and maintained for 

IP address and/or transport layer identifier translation. For basic NAT, each entry in 

the translation table contains a pair of addresses: (private address, global or public IP 

address). For example, in the NAT table of  Figure 4.20 ,   the private address 10.2.2.2 

is mapped to 140.123.101.30. Therefore, all packets with source IP address 10.2.2.2 

will be intercepted and their source IP address will be changed to 140.123.101.30 by 

the NAT server. On the other hand, each entry of an NAPT table contains IP address 

and transport layer identifier: (private address, private transport id, global IP address, 

global transport id). For example, in the NAPT table of  Figure 4.20 ,   all packets with 

source IP address 10.2.2.3 and port number 1175 will be intercepted and their source 

IP address and port number will be changed to 140.123.101.31 and 6175 accordingly 

by the NAT server.   

  Static or Dynamic Mapping 

 The NAT translation table can be configured and updated statically or dynamically. 

An organization that has plenty of global IP addresses and uses NAT for privacy 

   FIGURE 4.20 Examples of basic NAT and NAPT. 

NAT/NAPT Table

10.2.2.2 ==> 140.123.101.30

10.2.2.3:1175 ==> 140.123.101.31:6175

Router
with
NAT

Src: 10.2.2.2: 1064

Dst: 140.113.250.5: 80

Src: 140.123.101.30: 1064 

Dst: 140.113.250.5: 80 

Src: 10.2.2.3: 1175

Dst: 140.113.54.100: 21

Src: 140.123.101.31: 6175 

Dst: 140.113.54.100: 21 

lin76248_ch04_223-338.indd   249lin76248_ch04_223-338.indd   249 24/12/10   4:14 PM24/12/10   4:14 PM



250 Computer Networks: An Open Source Approach

and security reasons can manually set up a one-to-one mapping between global and 

private IP addresses. In this case, each internal host owns a unique global IP address 

that is transparent to the user, and not only can internal hosts access the public Inter-

net, but also access from the opposite direction is possible. However, in most cases, 

the NAT table is updated on demand. NAT maintains a  pool  of global IP addresses. 

When an outgoing packet arrives, NAT looks up the table for the  source  address of 

the packet. If an entry is found, NAT translates the private address to the correspond-

ing global IP address. (In NAPT, the transport layer identifier is also translated.) 

Otherwise, an  unassigned  entry is selected from the IP address pool and assigned 

to the internal host that owns the source address. (Similarly, a new transport layer 

identifier is selected in the case of NAPT.) A  timer  is associated with each entry so 

that inactive entries can be released. 

 Although in most cases, NAT is used for unidirectional access to the public 

Internet, creating a new NAT mapping at the arrival of an incoming packet is still 

possible. For example, when NAT receives a domain name lookup for an internal 

host with no corresponding entry in the NAT table yet, a new entry can be created 

and the newly assigned IP address can be used in the  reply  to the domain name 

lookup. A more complicated scenario, called  twice NAT ,   is also possible where 

two end hosts in communication are both internal hosts in private networks (see 

RFC 2663).   

 Principle in Action: Different Types of NAT 

 Depending on how an external host can send a packet through a mapped public 

address and port, implementations of NAT can be classified into four types:  full  
 cone ,   restricted cone ,   port restricted cone ,  and  symmetric . Among them,  full cone  

is the most common implementation in the market, while  symmetric  provides the 

best security in the sense that it is most difficult to traverse. The operation details 

of these implementations are depicted in  Figure 4.21  and briefly described here. 

 Full cone: Once an internal address (iAddr: iport) has been mapped to an 

external address (eAddr: eport), all packets from (iAddr: iport) will be sent 

through (eAddr: eport), and any external host can send packets to (iAddr: iport) 

FIGURE 4.21(a) Full cone NAT.

Client

NAT

Server 1

Server 2

iAddr:

port1 port2eAddr:

port3

any

OK any

OK

lin76248_ch04_223-338.indd   250lin76248_ch04_223-338.indd   250 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 251

FIGURE 4.21(b) Restricted cone NAT.

Client

NAT

Server 1

Server 2

iAddr:

port1 port2eAddr:

port3

any

OK any

FIGURE 4.21(c) Port restricted cone NAT.

Client

NAT

Server 1

Server 2

iAddr:

port1 port2eAddr:

port3

any

any

through (eAddr: eport). That is, the NAT server will not check the  source  IP ad-

dress and port number of  incoming  packets.      

 Restricted cone: Same as above, except that only external hosts that have 

received packets from (iAddr: iport) can send packets to (iAddr: iport) through 

(eAddr: eport). That is, the NAT server will memorize the  destination  IP address 

of  outgoing  packets and check the  source  IP address of  incoming  packets against 

the memorized destination IP addresses.      

 Port restricted cone: Same as above, except that external hosts must use 

the same port that has received packets from (iAddr: iport) to send packets to 

(iAddr: iport) through (eAddr: eport). That is, the NAT server will check both 

the source IP address and the port number of incoming packets.      

 Symmetric: Same as port restricted cone’s operation for  incoming  packets. 

However, the mapping of (iAddr: iport) to (eAddr: eport) is  unique  for each 

external  source IP address and port. That is,  outgoing  packets from the same 

(iAddr: iport) will be mapped to  different  (eAddr: eport) if the outgoing packets 

have different  destination  IP addresses  or  port numbers.      

 When two hosts communicate, if the initiator, often a client, is behind NAT 

while the responder, often a server, is not, one of the above address resolution 

processes will be invoked. The alternative would require basic NAT or port 

Continued

lin76248_ch04_223-338.indd   251lin76248_ch04_223-338.indd   251 24/12/10   4:14 PM24/12/10   4:14 PM



252 Computer Networks: An Open Source Approach

redirection configured at the NAT server. What if both are behind NAT servers? 

The STUN (Simple Traversal of UDP through NATs) has been proposed in RFC 

3489 to provide UDP communications between two hosts that are  both  behind 

NAT servers. The basic idea is to traverse the NAT server by sending requests to 

a  STUN server . Later on, the STUNT (Simple Traversal of UDP through NATs 

and TCP too) protocol extends STUN to include TCP functionality. 

  Port Redirection and Transparent Proxy 

 Besides providing Internet access, NAT can also be applied to more secured or 

efficient applications such as  port redirection  and  transparent proxy . For exam-

ple, a network administrator may want to redirect all WWW requests to a specific 

IP address and a private port number. The administrator can create a record in 

the database of the domain name server (DNS), such as a record that maps  www.

cs.ccu.edu.tw  to 140.123.101.38. Then, an entry is created in the NAT table to 

redirect the mapping to the desired private address and port number—for ex-

ample, mapping 140.123.101.38:80 to 10.2.2.2:8080 where “:80” and “:8080” 

represent port numbers (these shall be introduced formally in  Chapter 5 ). There-

fore, hosts in the public Internet know only that the WWW server is  www.cs.ccu.

edu.tw  with IP address 140.123.101.38; with its private address unrevealed, the 

actual server could be more secure against intrusion attacks. Furthermore, it 

becomes easier to replace the WWW server with another machine which has a 

different private IP address. The above process is called port redirect. Another 

example of using NAT, called transparent proxy, is to redirect all outgoing 

WWW requests to a transparent proxy such that a  proxy cache  could help to 

accelerate request processing or that a  proxy server  could inspect the requests 

or responses. For example, an entry in the NAT table can be created to map the 

WWW service (140.123.101.38:80) to an internal WWW proxy (10.1.1.1:3128). 

An outgoing WWW request is thus translated by NAT and redirected to the inter-

nal WWW proxy server first. In the case of a caching proxy, the internal proxy 

may then prepare the response from its local cache directly or forward the request 

to the real server.        

FIGURE 4.21(d) Symmetric NAT.

Client

NAT

Server 1

Server 2

iAddr:

port1

port2eAddr:
port3

any

port 5
port 4

lin76248_ch04_223-338.indd   252lin76248_ch04_223-338.indd   252 24/12/10   4:14 PM24/12/10   4:14 PM

www.cs.ccu.edu.tw
www.cs.ccu.edu.tw
www.cs.ccu.edu.tw
www.cs.ccu.edu.tw


 Chapter 4 Internet Protocol Layer 253

 Principle in Action: Messy ALG in NAT 

 Since translations by NAT and NAPT change addresses in the IP header and trans-

port layer header, checksums of these headers need to be  recomputed  after the 

translation. Furthermore, translations of IP addresses and/or transport identifiers 

may affect the functionality of some applications. In particular, any applications 

that encode source or destination IP addresses or ports in their protocol messages 

will be affected. Therefore, NAT is often accompanied by  application level gate-
ways  (ALGs). Let us consider the NAT modification needed for ICMP and FTP. 

 ICMP is an error-reporting protocol for TCP/UDP/IP. We will detail ICMP 

in Section 4.5. An error message of ICMP, such as destination unreachable error, 

embeds the packet in error within the payload of the ICMP packet. Therefore, not 

only the address of the  ICMP packet  but also the source or the destination address 

of the original  erroneous packet  needs to be translated by NAT. However, any 

change in these addresses requires recomputing the checksum of the  ICMP header  

as well as the checksum of the  embedded IP header . For NAPT translation, the 

TCP/UDP port number of the embedded IP header also needs to be modified. In 

case of ICMP echo request/reply messages, which use a  query identifier  to identify 

echo messages, this query identifier is equivalent to the transport layer identifier 

and thus needs to be translated as well. Therefore, the checksum of the ICMP 

header also needs to be recomputed if the query identifier is modified. 

 File transfer protocol (FTP) is a popular Internet application, to be introduced 

in  Chapter 6 . FTP also requires an ALG to keep functioning correctly under NAT 

translation. The problem comes from the FTP  PORT command  and  PASV re-
sponse  because these two commands contain an IP address/TCP port number pair 

 encoded in ASCII . Therefore, FTP ALG needs to make sure the IP address and port 

number in PORT and PASV commands are translated accordingly. The problem 

becomes further complicated as the  length  of the  ASCII-encoded  IP address and 

port number may change  after  the translation, say from  13  octets in 10.1.1.1:3128 

to  17  octets in 140.123.101.38:21. Thus, the packet length may be changed as 

well, which in turn may affect the sequence number of subsequent TCP packets. 

To make these changes transparent to the FTP application, the FTP ALG needs a 

special table to  correct  the TCP sequence and acknowledge numbers. The correc-

tion needs to be performed on all subsequent packets of the connection. 

 Open Source Implementation 4.5: NAT 

  Overview 
 Before Linux kernel version 2.2, NAT implementation was known as IP mas-

querade. Starting from Linux kernel version 2.4, NAT implementation has been 

integrated with  iptables , an implementation of the packet filtering function. 

The implementation of NAT can be classified into two types:  source  NAT, for 

Continued

lin76248_ch04_223-338.indd   253lin76248_ch04_223-338.indd   253 24/12/10   4:14 PM24/12/10   4:14 PM



254 Computer Networks: An Open Source Approach

outgoing  packets, and  destination  NAT, for  incoming  packets from the Internet 

or the upper layer. Source NAT changes the source IP address and transport layer 

identifier, while destination NAT changes the destination address and transport 

id. Source NAT is done after packet filtering and before packets are sent to 

the output interface. The  hook  name in  iptables  for source NAT is called 

NF_INET_POST_ROUTING  in Linux. Destination NAT is done  before  packet 

filtering is applied to packets from the network interface card or the upper-layer 

protocols. The hook for the former is called  NF_INET_PRE_REOUTING , and 

for the latter it is called  NF_INET_LOCAL_OUT .  

  Data Structures 
 Data structures for IP tables that set up source NAT and destination NAT hooks 

(see  /net/ipv4/netfilter/nf_nat_rule.c ): 

static struct xt_target ipt_snat_reg _read_mostly = { 
   .name = “SNAT”, 
   .target = ipt_snat_target,  
    .targetsize = sizeof(struct nf_nat_multi_range_

compat),  
   .table = “nat”, 
   .hooks = 1 << NF_INET_POST_ROUTING,  
   .checkentry = ipt_snat_checkentry,  
   .family      = AF_INET,  
  }; 
   static struct xt_target ipt_dnat_reg _read_mostly = 

{ 
   .name = “DNAT”, 
   .target = ipt_dnat_target,  
    .targetsize = sizeof(struct nf_nat_multi_range_

compat),  
   .table = “nat”, 
    .hooks = (1 << NF_INET_PRE_ROUTING) | 

(1 << NF_INET_LOCAL_OUT),  
   .checkentry = ipt_dnat_checkentry,  
   .family = AF_INET,  

 };  

 Data structures for NAT hook functions, such as  nf_nat_in ,  nf_nat_out , 

 nf_nat_local_fn , and  nf_nat_fn , which we will trace later (see  /net/
ipv4/netfilter/nf_nat_standalone.c ): 

    static struct nf_hook_ops nf_nat_ops[] _read_mostly 
= { 

   /* Before packet filtering, change destination */ 
 { 
   .hook = nf_nat_in,  
   .owner = THIS_MODULE,  

lin76248_ch04_223-338.indd   254lin76248_ch04_223-338.indd   254 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 255

   .pf = PF_INET,  
   .hooknum = NF_INET_PRE_ROUTING,  
   .priority = NF_IP_PRI_NAT _ DST,  
  }, 
 /* After packet filtering, change source */ 
 { 
   .hook = nf_nat_out,  
   .owner = THIS_MODULE,  
   .pf = PF_INET,  
   .hooknum = NF_INET_POST_ROUTING,  
   .priority = NF_IP_PRI_NAT_SRC,  
  }, 
 /* Before packet filtering, change destination */ 
 { 
   .hook = nf_nat_local_fn,  
   .owner = THIS_MODULE,  
   .pf = PF_INET,  
   .hooknum = NF_INET_LOCAL_OUT,  
   .priority = NF_IP_PRI_NAT_DST,  
  }, 
 /* After packet filtering, change source */ 
 { 
   .hook = nf_nat_fn,  
   .owner = THIS_MODULE,  
   .pf = PF_INET,  
   .hooknum = NF_INET_LOCAL_IN,  
   .priority = NF_IP_PRI_NAT_SRC,  
  }, 
 };  

 Finally, the data structure for tracking connections: 

 struct nf_conn { 
 … 
   struct nf_conntrack_tuple_hash tuplehash[IP_CT_DIR_

MAX]; 
 … 
 struct nf_conn *master; 
  /* Storage reserved for other modules: */ 
  union nf_conntrack_proto proto; 
  /* Extensions */ 
  struct nf_ct_ext *ext; 
 … 
 }; 
 struct nf_conn_nat 
 { 
  struct hlist_node bysource; 
  struct nf_nat_seq seq[IP_CT_DIR_MAX]; 
  struct nf_conn *ct; 

Continued

lin76248_ch04_223-338.indd   255lin76248_ch04_223-338.indd   255 24/12/10   4:14 PM24/12/10   4:14 PM



256 Computer Networks: An Open Source Approach

  union nf_conntrack_nat_help help; 
 #if defined(CONFIG_IP_NF_TARGET_MASQUERADE) || \ 
   defined(CONFIG_IP_NF_TARGET_MASQUERADE_MODULE) 
  int masq_index; 
 #endif 
 };  

  Figure 4.22  shows the relationship among these data structures.   

   FIGURE 4.22 Data structures for NAT implementation. 

nfct

sk_xxxbuff nf_conn nf_conntrack_tuple

nf_conntrack_
tuple_hash

tuplehash[ORIG] hnnode

struct
nf_conntrack_man

src;

Struct {nf_inet_addr
u3; u;

u_int8_t protonum;
u_in8_t dir;} dst;

tupletuplehash[REPLY]

  Algorithm Implementations 
 The NAT module is initialized by calling  nf_nat_standalone_init() , 

which calls  nf_nat_rule_init()  to register  iptables  and  nf_
register_hooks()  to set up NAT hook functions. After the initialization, 

 iptables  and hook functions are set as shown in  Figure 4.23 .  
 As shown in  Figure 4.23 ,  functions that perform NAT for the hooks 

of  NF_INET_PRE_ROUTING  ,   NF_INET_LOCAL_OUT  ,  and  NF_INET_
POST_ROUTING  are  nf_nat_in() ,  nf_nat_local_fn() , and 

 nf_nat_out() , respectively. All of these three functions eventually call 

 nf_nat_fn()  to perform the NAT operations. 

  Figure 4.24  depicts the call graph of  nf_nat_fn() . The  nf_nat_fn()  

function obtains connection tracking information ( nfct  and  nfctinfo ) from 

sk_buff . If  nfctinfo  is  IP_CT_NEW  and NAT has not been initialized, 

 alloc_null_binding()  will be called in case  LOCAL_IN  does not have 

a chain, that is, the NAT rule has not been set yet; otherwise,  nf_nat_rule_
find()  will be called. Both of these functions call  nf_nat_setup_info()
to perform network address translation of the packet. In  nf_nat_setup_
info()  ,  get_unique_tuple()  is called to obtain the translation result 

as a tuple. It calls  find_appropriate_src()  to search the  ipv4.nat_
bysource  hash table if it is a source NAT (SNAT). If not successful, it calls 

find_best_ips_proto()  to get a new tuple for this translation. 

lin76248_ch04_223-338.indd   256lin76248_ch04_223-338.indd   256 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 257

 After IP-level translation as stated above is done,  transport- layer NAT 

function is called. ALG functions are called  helper  functions. For example, the 

helper function of FTP ALG  is   nf_nat_ftp() .  Figure 4.25  shows the call 

graph of the FTP ALG implementation in Linux kernel version 2.6. Through the 

 mangle  array,  mangle_rfc959_packet()  is called if the packet contains 

the PORT or PASV command;  mangle_eprt_packet()  is called if the 

packet contains the EPRT command (PORT command for IPv6); and  man-
gle_epsv_packet()  is called if the packet contains the EPSV command. 

All of them call  nf_nat_mangle_tcp_packet()  to deal with the change 

required for TCP, such as sequence number and checksum recomputation. 

 Let us take the ICMP as an example of NAPT. The function  icmp_ma-
nip_pkt()  is used to change the checksum and query id of an ICMP message. 

A unique query id within the user-specified range is found by  icmp_unique_
tuple() , which searches the specified range linearly. The checksum of ICMP 

and IP is recomputed by  inet_proto_csum_replace4() , which in turn 

calls  csum_partial()  for the actual checksum adjustment.  csum_par-
tial()  is implemented in assembly language for faster execution.    

   FIGURE 4.23 NAT packet flows. 

From 
interface

PRE_ROUTING
(Destination NAT)
Hook=nf_nat_in

POST_ROUTING
(Source NAT)

Hook=nf_nat_out

Routing
decision

LOCAL_OUT
(Destination NAT)

Hook=nf_nat_local_fn

Upper layer (TCP/UDP)

To
interface

   FIGURE 4.24 Call graph for Linux implementation of NAT. 

nf_nat_packet()

nf_nat_ fn()

nf_nat_rule_ find()

alloc_null_binding()

ipt_do_table()

nf_nat_setup_info()

get_unique_tuple()

find_appropriate_src()find_best_ips_proto()

Continued

lin76248_ch04_223-338.indd   257lin76248_ch04_223-338.indd   257 24/12/10   4:14 PM24/12/10   4:14 PM



258 Computer Networks: An Open Source Approach

  Exercises 
 Trace  adjust_tcp_sequence()  and explain how to adjust the sequence 

number of TCP packets when packets are changed due to address translation.  

   FIGURE 4.25 Call graph for FTP ALG. 

nf_nat_ ftp_hook<-nf_nat_ ftp

nf_nat_mangle_tcp_packet()mangle_rfc959_packet()

mangle_eprt_packet()nf_nat_ ftp() mangle_contents()

mangle_epsv_packet()
adjust_tcp_sequence()

 Performance Matters: CPU Time of NAT 
Execution and Others 

 Though the NAT implementation in the Linux kernel also exercises hashing, its 

execution time is  higher  than that of the lookup functions for packet forwarding. 

There are two reasons for this. In  Figure 4.23 ,  a packet would go through desti-

nation NAT first and source NAT later, each invoking lookup into the hash table. 

Another reason is that extra ALG  helper  functions need to be called in addition to the 

translation of IP address and port number.  Figure 4.26  plots the latency of an ICMP 

packet with 64 bytes payload on a 2.33 GHz CPU for forwarding (by cache and FIB, 

labeled “Routing cache” and “Routing FIB,” respectively), NAT, firewall, and VPN 

   FIGURE 4.26 Latency for important network functions. 

0

1

2

3

4

3 DES HMAC-MD5 NAT Firewall Routing
cache

Routing FIB

D
el

ay
 (

ns
)

5

7

6

8

9

lin76248_ch04_223-338.indd   258lin76248_ch04_223-338.indd   258 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 259

  4.3 INTERNET PROTOCOL VERSION 6 

  The current version of Internet Protocol encounters several problems, and the most 

noticeable one is the shortage of the 32-bit IP address space. It is predicted that the 

world will run out of the IANA IPv4 unallocated addresses in 2011, considering cur-

rent Internet growth trends and the inefficient use of the IP address space. In 1991, 

the IETF called for proposals for the new version of IP, known as IP Next Genera-

tion (IPng). Several proposals were received, and the one chosen was called Simple 

Internet Protocol Plus (SIPP). The original address size proposed was 64 bits, which 

was doubled to 128 bits by IETF IPng Directorate later. Since version number 5 was 

assigned to an experimental protocol already, the official version number assigned to 

this new Internet Protocol is version 6, known as IPv6. Migration to IPv6 is consid-

ered the long-term solution to the IPv4 address depletion problem. 

 Several new features are considered and intended to be supported in IPv6. First, 

the address size is extended to  128 bits . Second, to speed up the packet processing 

at routers,  fixed -length header format is adopted. Support for quality of service is 

also considered by including a  flow label  in the header. A new address type, called 

anycast ,   is proposed for sending packets to anyone in a group of hosts. (Usually, this 

(by encryption and authentication, labeled “3DES” and “HMAC-MD5,” respec-

tively). The latter two shall be covered in  Chapter 8 . Though NAT consumes about 

the same amount of CPU time as firewall does and more than forwarding does, the 

NAT’s latency is simply much  smaller  than those incurred by authentication and en-

cryption. Apparently the rank by the urgency to call for hardware acceleration shall 

be: encryption, authentication, NAT, firewall, and then forwarding. For throughput 

below 100 Mbps, only encryption and authentication would definitely require hard-

ware solutions. The throughputs of software implementation in Linux kernel achieve 

about 73 Mbps and 85 Mbps for 3DES and HMAC-MD5, respectively. But for 

multi-gigabit throughput,  all  of them would resort to hardware accelerators.  

 Historical Evolution: NAT vs. IPv6 

 Both NAT and IPv6 try to tackle the address shortage problem of IPv4. Clearly, 

as of 2010, NAT is the adopted solution due to its compatibility with the current 

Internet. The history of the Internet tells us that  evolution  is preferred over  revolu-
tion . The change from IPv4 to IPv6 is like a revolution, which requires software 

change in all end-user devices and networking devices such as routers. On the 

other hand, the use of NAT is like evolution, which only requires deployment of 

NAT servers at some subnets that are short of IPv4 public addresses. However, 

as we approach the exhaustion of the IPv4 unallocated addresses, there seems no 

choice but to adopt the IPv6 revolution. To date, this is still a debatable pending 

issue. 

lin76248_ch04_223-338.indd   259lin76248_ch04_223-338.indd   259 24/12/10   4:14 PM24/12/10   4:14 PM



260 Computer Networks: An Open Source Approach

is used for sending to one of the reachable routers within a subnet.) IPv6 also supports 

 autoconfiguration ,   similar to the function of DHCP. Finally, IPv6 uses  extension 
headers  to support fragmentation, security, enhanced routing, and other features.  

  4.3.1 IPv6 Header Format 
 The format of the IPv6 header is shown in  Figure 4.27 . As its original name indi-

cated, the design principle of IPv6 is simple. Several header fields that are not used 

in most in IPv4 packets have been removed from IPv6 to speed up packet processing 

and forwarding at routers. As a result, the IPv6 header has a fixed length of  40 bytes  

with no option field. Additional functions are performed using  extension headers ,   
which we shall discuss later.  

    � Version Number:  As in IPv4, the header starts with a  version  field, which is set 

to 6 for IPv6 as discussed above.  

   � Traffic Class:  The  Traffic Class  field indicates the service desired by the packet, 

similar to TOS in IPv4. This field is used to differentiate service classes of dif-

ferent packets. For example, the first six bits are used as the DS codepoint in the 

Differentiated Services (DiffServ) framework [RFC 2472].  

   � Flow Label:  The  Flow Label  field is used intentionally to identify packets of 

the same flow in order to provide differentiated quality of service. For example, 

packets of an audio stream, which certainly needs low transmission delay and 

jitter, can be treated as a flow. However, the exact way of defining a flow is 

not clearly stated yet. Therefore, a flow can be a TCP connection or a source-

destination pair, but in common practice, a flow usually consists of packets with 

the same source IP address, destination IP address, source port number, destina-

tion port number, and transport layer protocol. Clearly, packets of the same TCP 

connection will form a flow according to this definition.  

   � Payload Length:  The 16-bit  Payload Length  field indicates the length of the 

packet in bytes,  excluding  the 40-byte header. Therefore, the maximum payload 

length is 65535 bytes.  

   � Next Header:  The  Next Header  field identifies the upper-layer protocol or the 

next extension header. It is used to replace the protocol field and the option 

field in IPv4. If there is no special option, the Next Header identifies the upper-

layer protocol running over IPv6, e.g., TCP or UDP. If special options such as 

fragmentation, security, and enhanced routing are needed, the IPv6 header is 

   FIGURE 4.27 IPv6 header format. 160 4 24 31

Version Traffic class

12

Flow label

Payload length Next header Hop limit

Source address (16 octects)

Destination address (16 octects)

lin76248_ch04_223-338.indd   260lin76248_ch04_223-338.indd   260 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 261

followed by one or more extension headers whose type is indicated by the Next 

Header field.  

   � Hop Limit:  The  Hop Limit  field, which is called Time-to-Live (TTL) in IPv4, has 

its name corrected and is used in the same manner as TTL in IPv4.  

   � Source and Destination Addresses:  Finally, the header ends with the source and the 

destination IP address, each of 128 bits. In IPv6, there are three types of addresses, 

namely, unicast, anycast, and multicast, which we will describe in detail later.   

 Careful readers may notice that several header fields in IPv4 have been removed 

from the IPv6 header. First, there is no  checksum  anymore. Two good reasons to 

remove checksum from the header are: First, reliability can be provided by a higher-

layer protocol such as TCP, and we avoid recomputing checksum at intermediate 

routers. Second,  fragmentation  flags and offset no longer exist, as fragmentation is 

not allowed at intermediate routers. Again, this is to alleviate the processing load on 

routers. Fragmentation and other options such as source routing are now handled by 

extension headers, a more efficient and flexible mechanism than to IPv4. Since there 

is no Options field in the IPv6 header, the length of the IPv6 header is fixed, and a 

fixed-length header also improves the processing speed at routers.  

  4.3.2 IPv6 Extension Header 
 IPv6 uses extension headers to support fragmentation and other options. The Next 

Header field of the IPv6 header indicates the type of the extension header following the 

IPv6 header. Each extension header also has a Next Header field to indicate the type 

of the extension header or the upper-layer protocol header following it.  Figure 4.28  

gives three examples of the use of extension headers. Case (a) is the most common case 

where the IPv6 header is followed by the  TCP header . In this case, the Next Header field 

of the the IPv6 header has value 6, which is the protocol id of TCP. If enhanced routing 

is desired, the  routing header  can be used as shown in  Figure 4.28  (b). In this case, the 

Next Header field of the IPv6 header has value 43, where value 43 indicates the routing 

header following the IPv6 header, and the Next Header field of the routing extension 

header contains value 6. Similarly, if routing option and fragmentation are required, the 

   FIGURE 4.28 IPv6 extension headers. 

IPv6 Header
Next Header = TCP TCP Header Data

Routing Header
Next Header = TCP TCP Header Data

IPv6 Header
Next Header = Routing

Fragment Header
Next Header = TCP TCP Header Data

IPv6 Header
Next Header = Routing

Routing Header
Next Header = Frag.

(a) No extension header

(b) IPv6 header followed by a routing header

(c) IPv6 header followed by a routing header and a fragment header

lin76248_ch04_223-338.indd   261lin76248_ch04_223-338.indd   261 24/12/10   4:14 PM24/12/10   4:14 PM



262 Computer Networks: An Open Source Approach

sequence of extension headers is shown in  Figure 4.28  (c). The Next Header field of the 

routing header has value 44 to indicate the next header is a  fragment header .  
 Several rules for processing extension headers are recommended in RFC 2460. 

First, the  order  of extension headers should follow  Table 4.1 . Although, as stated in 

RFC 2460, IPv6 nodes must accept and attempt to process extension headers in any 

order, it is strongly advised that sources of IPv6 packets adhere to the recommended 

order. In particular, the Hop-by-Hop Options header is restricted to appearing only 

immediately after an IPv6 header as it is processed by all intermediate routers along 

the routing path. Secondly, extension headers must be processed strictly in the order 

in which they appear in the packet since the contents and semantics of each extension 

header determine whether or not to proceed to the next header. Thirdly, intermediate 

routers (i.e., not the destination node) should  not  process extension headers except 

the Hop-by-Hop Option header. Finally, each extension header can occur at most 

 once  only, except for the Destination Options header, which occurs at most twice 

(once before a Routing header and once before the upper-layer header).  

  4.3.3 Fragmentation in IPv6 
 Fragmentation in IPv6 differs slightly from that in IPv4. First, to simplify packet 

processing at routers, fragmentation is not allowed at routers. That is, fragmentation 

is performed only by  sources . Second, the fragment information, such as the “more 

fragment” bit and fragment offset, is carried by an extension header called  fragment 
header  instead of the IPv6 header.  Figure 4.29  shows the format of the fragment 

TABLE 4.1 Order of IPv6 Extension Headers

Basic IPv6 header

Basic IPv6 header

Hop-by-Hop Options header (0)

Destination Options header (60)

Routing header (43)

Fragment header (44)

Authentication header (51)

Encapsulating Security Payload header (50)

Destination Options header (60)

Mobility header (135)

No Next header (59)

Upper-layer header: TCP(6), UDP(17), ICMPv6(58)

16 312980

Next Header Reserved Fragment offset R M

Identifier

   FIGURE 4.29 Fragment header 

lin76248_ch04_223-338.indd   262lin76248_ch04_223-338.indd   262 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 263

header. The Next Header field indicates the type of the next header. The  fragment 
offset  and the  more fragment bit  (the  M  bit in the figure) are used the same way as in 

IPv4.  Figure 4.30  shows an example of fragmenting a large packet into three frag-

ments. The more fragment bit is set to 1 in the first two segments. The fragment offset 

is still measured in  8 octets . 

 However, one issue remains unclarified: Since fragmentation is not allowed at 

immediate routers, how can a source know the MTU of a routing path and perform 

the fragmentation accordingly? There are two approaches to solving this problem. 

First, in IPv6 networks, each link is required to have an MTU of  1280 bytes  or 

greater. Therefore, a source can  always  assume the MTU of each routing path is 1280 

bytes and fragment packets into fragments of 1280 bytes or shorter. Second, a source 

can run the Path MTU Discovery protocol (RFC 1981) to  discover  the path MTU. 

IPv6 hosts are strongly encouraged to implement the Path MTU Discovery protocol 

to take advantage of path MTUs greater than 1280 octets.    

  4.3.4 IPv6 Address Notation 
 Due to the length of the IPv6 address, the dotted decimal notation used for IPv4 is not 

suitable for representing an IPv6 address. Instead, the  colon hexadecimal  notation is 

used, which has the form X:X:X:X:X:X:X:X, where X is a hexadecimal code of a 

16-bit piece of the IPv6 address. Following is an example of the colon hexadecimal 

representation:   

 3FFD:3600:0000:0000:0302:B3FF:FE3C: C0DB   

 The colon hexadecimal notation is still quite long and, in most cases, consists of 

a large number of contiguous zeros. Therefore zero compression is proposed, which 

replaces a sequence of contiguous zeros with a pair of colons. For example, the 

preceding address can be rewritten as:   

 3FFD:3600 :: 0302:B3FF:FE3C: C0DB    

IPv6 header Fragment 1 data

(a) Original packet

Fragment 2 data Fragment 3 data

IPv6 header Fragment header

(b) Fragments

Fragment 1 data

IPv6 header Fragment header Fragment 2 data

IPv6 header Fragment header Fragment 3 data

   FIGURE 4.30 Example of IPv6 fragmentation. 

lin76248_ch04_223-338.indd   263lin76248_ch04_223-338.indd   263 24/12/10   4:14 PM24/12/10   4:14 PM



264 Computer Networks: An Open Source Approach

  4.3.5 IPv6 Address Space Assignment 
 Unlike IPv4, IPv6 addresses do  not  have classes. In IPv6, a prefix is used to identify 

different usages of the IPv6 address. The most recent definition on the use of the 

prefix in IPv6 is in RFC 4291: IP Version 6 Addressing Architecture. Table 4.2 shows 

the current IPv6 prefix allocation as well as the portion of the IPv6 address space al-

located to a given prefix, which is the ratio of the prefix-occupied space to the whole 

IPv6 address space. As we can observe from  Table 4.2 ,   most of the address space is 

unassigned—currently, only 15% of the IPv6 address space has been assigned. 

 There are three types of IPv6 addresses: unicast, multicast, and anycast. Some 

noteworthy unicast addresses include  IPv4 compatible address  (prefix 00000000), 

 Global Unicast Address,     and  Link Local Unicast Address . A multicast address begins 

with prefix 11111111. Finally, the anycast address has a  subnet prefix  followed by 

a number of  zeros ,   similar to the  IPv4 subnet address  format. A group of nodes 

(routers) may share an anycast address. Packets destined for an anycast address 

should be delivered to exactly one member of the group, usually the  closest  one. 

TABLE 4.2 Prefix Assignments of IPv6 Addresses

Prefix Address Type Portion

0000::/8 Reserved 1/256

0100::/8 Unassigned 1/256

0200::/7 Unassigned 1/128

0400::/6 Unassigned 1/64

0800::/5 Unassigned 1/32

1000::/4 Unassigned 1/16

2000::/3 Global Unicast Address 1/8

4000::/3 Unassigned 1/8

6000::/3 Unassigned 1/8

8000::/3 Unassigned 1/8

A000::/3 Unassigned 1/8

C000::/3 Unassigned 1/8

E000::/4 Unassigned 1/16

F000::/5 Unassigned 1/32

F800::/6 Unassigned 1/64

FC00::/7 Unique Local Unicast 1/128

FE00::/9 Unassigned 1/512

FE80::/10 Link Local Unicast Address 1/1024

FEC0::/10 Unassigned 1/1024

FF00::/8 Multicast Address 1/256

lin76248_ch04_223-338.indd   264lin76248_ch04_223-338.indd   264 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 265

 Addresses that begin with prefix 00000000 are reserved for IPv4 compat-

ibility. There are two ways to encode IPv4 addresses into IPv6 addresses. A com-

puter that runs IPv6 software may be assigned an IPv6 address that begins with  96 
zero  bits followed by the 32-bit IPv4 address, referred to as the  IPv4-compatible 
IPv6 address . For example, the IPv4-compatible IPv6 address of 140.123.101.160 

is 0000:0000:0000:0000:0000:0000:8C7B:65A0, which can also be written as 

::8C7B:65A0. A conventional IPv4 computer that does  not  understand IPv6 will 

be assigned an IPv6 address that begins with  80 zero  bits and then  16 one  bits fol-

lowed by the 32-bit IPv4 address, referred to as the  IPv4-mapped IPv6 address . 

For example, the  IPv6 non-compatible address  or IPv4-mapped IPv6 address of 

140.123.101.160 is ::FFFF:8C7B:65A0. 

 Two special addresses also start with prefix 00000000. The address with all 

zeros is a  unicast unspecified address ,   which is used by a host during the bootstrap 

procedure. The  loopback address ,   used for local test, is ::1. 

 IPv6 allows multiple addresses to be assigned to an interface. Therefore, an 

interface may have more than one Global Unicast Address and Link Local Unicast 

Address simultaneously. The Link Local Address is  not  globally unique, and thus 

it is used for addressing on a single link for purposes such as automatic address 

configuration and neighbor discovery. The Link Local Address contains a prefix 

1111111010 followed by  56 zero  bits and then a  64-bit   interface id . The interface id 

can be encoded from its hardware address, for example the EUI-64 format. 

 The general format for the IPv6 Global Unicast Address is shown in  Figure 4.31 . 

To support routing and address aggregation, the global routing prefix is typically 

hierarchically structured. Besides, all Global Unicast Addresses other than those 

starting with binary 000 have a 64-bit interface id field. As shown in  Table 4.2 ,   

currently, assignable Global Unicast Addresses have a prefix of 2000::/3. Up to the 

date of writing (November 2009), there are 36 prefix assignments made by IANA 

to RIRs (RIPE NCC, APNIC, ARIN, LACNIC, and AfriNIC). Most recent IPv6 

unicast address prefix assignments can be found at  http://www.iana.org/assignments/

ipv6-unicast-address-assignments .  
 IPv6 multicast addresses begin with prefix 11111111, as shown in  Figure 4.32 . 

Unlike IPv4, which relies on TTL to control the scope of multicast, the IPv6 multi-

cast address contains a  scope  field to indicate the scope of multicast; five multicast 

scopes are supported:  node-local ,    link-local ,    site-local ,    organization-local ,   and 

 global . It also has a flag field with a T bit to indicate whether the multicast address 

is only a  transient  address (T = 1) or a  well-known  address (to provide persistent 

multicast service).  

 Some multicast addresses have been reserved for special purposes. For example, 

FF02:0:0:0:0:0:0:2 is used to reach  all routers  on the same physical network. 

Examples of reserved multicast addresses are shown in  Table 4.3 . 

   FIGURE 4.31 IPv6 global unicast address format. 

n bits m bits 128-n-m bits

Global routing prefix Subnet id Interface id

lin76248_ch04_223-338.indd   265lin76248_ch04_223-338.indd   265 24/12/10   4:14 PM24/12/10   4:14 PM

http://www.iana.org/assignments/ipv6-unicast-address-assignments
http://www.iana.org/assignments/ipv6-unicast-address-assignments


266 Computer Networks: An Open Source Approach

   4.3.6 Autoconfiguration 
 One of the special features of IPv6 is support of autoconfiguration. Unlike DHCP, 

which requires a DHCP server or a relay agent in each network, IPv6 supports 

 serverless  autoconfiguration. A host first generates a unique  link local  address. The 

64-bit interface id, which contains the lower bits of the link local address, can be en-

coded from its unique  hardware address ,   as described above. The host then uses this 

address to send a  router solicitation  message (an ICMP message). Upon receiving 

the solicitation message, the router will reply with a  router advertisement  message 

which contains the subnet prefix information. The host can then use the subnet prefix 

to generate its global address.  

  4.3.7 Transition from IPv4 to IPv6 
 When and how will the current Internet transit to IPv6? The problem is quite difficult 

as a new version of IP means a new version of network software, and it is impossible 

to have a “flag day” to have all hosts in the Internet change their software to the 

new version at the same time. In this case, how could the Internet operate when 

both IPv4-compatible hosts and IPv6-compatible hosts coexist? Two approaches 

are proposed in RFC 1933:  dual-stack  and  tunneling . Another approach, protocol 

translator, has also been proposed to address the IPv6 transition problem. 

   FIGURE 4.32 Format of IPv6 multicast address. 

8 4 112

1111111 Scope Group idFlag

4

Flag : 0RPT
T = 0 : Well-known multicast address
T = 1 : Transient multicast address
P: Address assigned based on prefix
    or not (RFC 3306)
R: Embed Rendezvous Point address
     or not (RFC 3956) 

Scope : Scope of multicast group
0000 : Reserved
0001 : Node-local scope
0010 : Link-local scope
0101 : Site-local scope
1000 : Organization-local scope
1110 : Global scope

bits 

TABLE 4.3 Reserved IPv6 Multicast Addresses

Scope Reserved Address Purpose

Node-local
FF01:0:0:0:0:0:0:1 All nodes address

FF01:0:0:0:0:0:0:2 All routers address

Link-local

FF02:0:0:0:0:0:0:1 All nodes address

FF02:0:0:0:0:0:0:2 All routers address

FF02:0:0:0:0:1:FFxx:xxxx Solicited node address

Site-local
FF05:0:0:0:0:0:0:2 All routers address

FF05:0:0:0:0:0:0:3 All DHCP servers address

lin76248_ch04_223-338.indd   266lin76248_ch04_223-338.indd   266 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 267

 The dual-stack approach is to have a host (or router) run both IPv6 and 

IPv4. Consider a case where a subnet consists of both IPv4-compatible hosts and 

IPv6-compatible hosts. An IPv6 host would run both IPv4 and IPv6 such that it can 

use IPv4 packets to communicate with IPv4-compatible hosts and IPv6 packets to 

communicate with IPv6-compatible hosts. Another example is to have the subnet 

router of a pure IPv6 network run both IPv4 and IPv6 protocols. IPv6 packets origi-

nated from the subnet are translated to IPv4 packets by the router when leaving the 

network. On the other hand, IPv4 packets received by the router are translated to 

IPv6 packets before being forwarded to the destination. Note that the translation may 

lose some information as the headers of two protocols are not fully compatible. 

 An alternate approach is IP tunneling, which refers to the process of encap-

sulating an IP packet in the payload field of another IP packet. A tunnel may be 

built between the sender and receiver or between two routers. In the first case, 

both sender and receiver are IPv6 compatible, but routers in between are not. The 

sender can  encapsulate  an IPv6 packet in an IPv4 packet with the destination as the 

receiver’s address. This IPv4 packet is then forwarded as a normal IPv4 packet in 

the IPv4 network, and finally arrives at the receiver. For the sender that knows the 

receiver’s IPv4 and IPv6 addresses,  IPv4-compatible IPv6 address  can be used. A 

tunnel can also be built between two routers. Consider a case where two pure IPv6 

networks are connected by an IPv4 backbone network. IPv6 packets originated 

from the subnet will be encapsulated into an IPv4 packet with the destination as the 

receiver’s router. When this IPv4 packet arrives at the receiver’s router, the router 

will recognize it as an encapsulated packet, then extract and forward the embedded 

IPv6 packet to the receiver. Many proposals for tunneling, including configured 

tunneling and automatic tunneling, have been raised. Tunnel broker, proposed in 

RFC 3053, can help users to configure bidirectional tunnels. As described in RFC 

3056, a special address prefix to help connections of IPv6 domains via IPv4 clouds 

is called  6to4 . A remedy for the  6to4  problem for hosts behind an IPv4 NAT to 

connect to IPv6 hosts is called  Teredo,     which is defined in RFC 4380. Another 

automatic tunneling mechanism that aims to connect IPv6 hosts and routers over 

an IPv4 network is called  Intra-Site Automatic Tunneling Addressing Protocol  
( ISATAP ), as defined in RFC 5214. 

 Another possible approach is  protocol translator ,   which translates from one 

protocol to another when communicating pure IPv4 hosts and pure IPv6 hosts. 

Protocol translation requires that a gateway sit between IPv4 and IPv6 networks or 

a middleware in the protocol stack to translate IPv6 protocols and addresses to those 

of IPv4, and vice versa. Solutions proposed include SIIT (RFC 2765), NAT-PT(RFC 

2766, 4966), BIS (RFC 2767), and BIA (RFC 3338). The translation mechanisms 

also require DNS extensions to support IPv6, which are defined in RFC 3596.    

  4.4 CONTROL-PLANE PROTOCOLS: ADDRESS MANAGEMENT 

  In this section, we address two mechanisms for IP address management. In the 

first subsection, we examine the Address Resolution Protocol (ARP) for translation 

between the Internet Protocol layer (Layer-3) address and the link layer (Layer-2) 

lin76248_ch04_223-338.indd   267lin76248_ch04_223-338.indd   267 24/12/10   4:14 PM24/12/10   4:14 PM



268 Computer Networks: An Open Source Approach

address. In the second subsection, we discuss the Dynamic Host Configuration Pro-

tocol (DHCP) for dynamic and automatic IP address configuration. 

  4.4.1 Address Resolution Protocol 
 Recall that when a host wants to send a packet to a destination, the host first deter-

mines whether the destination resides within the same IP subnet. If yes, the packet is 

delivered directly  via the link layer  to the destination; otherwise, the packet is sent, also 

via the link layer, to a router for forwarding. The question is that since the IP address 

is used at the IP layer while the hardware (MAC) address (e.g., the 48-bit Ethernet 

address) is used at the link layer, how can the host use the destination IP address in the 

packet header to obtain the MAC address of the destination or the router? Therefore, 

we need an address resolution protocol that  translates  an IP address to a MAC address. 

 In general, address resolution can be realized in two approaches: with or without 

a server. If there is an address resolution server, all hosts can send registration mes-

sages to the server so that the server knows the mapping of IP address to MAC ad-

dress for all hosts. A host can then query the server when it needs to send a packet to 

another host (or router) within the subnet. To avoid manually configuring the address 

resolution server parameters at each host, the host can broadcast the registration mes-

sage. The disadvantage of this approach is that we need an  address resolution server  

within each IP subnet. The Address Resolution Protocol (ARP), adopted by the Inter-

net, uses the other serverless approach. When a host needs to query the MAC address 

of the destination, it  broadcasts  an ARP request message. The destination will reply 

with an ARP reply message upon receiving the request. Since the ARP request con-

tains the IP and MAC addresses of the sender, the destination can send the ARP reply 

using  unicast . It would be too inefficient if ARP were run each time an IP packet 

was sent. Therefore, each host maintains a  cache table  of (IP address, MAC address) 

pairs so that there is no need to run ARP if the mapping can be found in the cache. On 

the other hand, ARP adopts the soft state approach, which allows a host to dynami-

cally change its IP address or MAC address (e.g., change the network interface card). 

That is, a  timer  is associated with each entry in the cache table, and the timer-expired 

entries will be discarded. Since the ARP request message is a broadcast message, all 

hosts can receive it and see the IP and MAC address of the sender; as a “good” side 

effect, the cache entry for the sender can be  refreshed  by the broadcast message. 

 On some special occasions, we may need a reverse mapping from MAC address 

to IP address, called reversed ARP protocol. For example, a diskless workstation that 

knows its own MAC address may need to obtain its IP address from a server before 

it can use that IP address to access the network file system (NFS) or to retrieve the 

image of an operating system to boot. In the following, we will see that ARP also 

supports reverse ARP request and reply operations. 

  ARP Packet Format 

 The ARP protocol is a general protocol for translating addresses between the 

network layer and the link layer. The ARP packet format is shown in  Figure 4.33 . The 

address type and address length fields allow ARP to be used for various network- and 

link-layer protocols. The  hardware address type  and  protocol address type  indicate 

lin76248_ch04_223-338.indd   268lin76248_ch04_223-338.indd   268 24/12/10   4:14 PM24/12/10   4:14 PM



 Chapter 4 Internet Protocol Layer 269

which protocols are used for the link layer and the network layer, respectively. The 

most common hardware address type is Ethernet, which has the value of 1; the IP 

protocol type is 0x0800. Address type fields are followed by two length fields: the 

hardware address length and the protocol address length. Ethernet and IP have the 

value of 6 and 4, respectively. The  operation code  indicates the operation of the ARP 

message. There are four operation codes:  request  (1),  reply  (2),  RARP request  (3), 

and  RARP reply  (4). The next two fields are the  sender’s  link layer address and IP 

address. The last two fields are the  receiver’s  link layer address and IP address. In an 

ARP request message, the sender will fill in the  Target Hardware Address  field with 

zero bits, as it does not know the receiver’s hardware address yet.  

 Since both ARP and IP (and other network-layer protocols) are carried in the 

payload of a link-layer frame, the control information for multiplexing and de-

multiplexing packets of different network-layer protocols are required at the link-

layer header. For example, Ethernet has a 2-byte type field to indicate the upper-layer 

protocol. The protocol id for IP and ARP are different,  0x0800  and  0x0806 ,   respec-

tively. In Ethernet, broadcasting an ARP request message can be done by filling in 

the destination address with 0xFFFFFFFFFFFF.    

   FIGURE 4.33 ARP packet format. 

160 8 24 31

Hardware Address Type Protocol Address Type

H. Addr Len P. Addr Len Operation Code

Sender Hardware Address (0-3)

Sender Hardware Addr (4-5) Sender Protocol Addr (0-1)

Sender Protocol Addr (2-3)

Target Hardware Address (2-5)

Target Hardware Addr (0-1)

Target Protocol Address

 Open Source Implementation 4.6: ARP 

  Overview 
 Implementation of the ARP protocol requires an ARP cache table and functions 

to send and receive ARP packets. Most of the source codes of ARP can be found 

in  src/net/ipv4/arp.c .  

  Data Structures 
 The most important data structure is  arp_tbl , which keeps most the of im-

portant parameters used by ARP. The  arp_tbl , defined as  struct neigh_
table  ,  consists of a  hash_buckets  entry to hold the ARP cache of neighbor 

information. The following shows the data structure for  neigh_table : 

Continued

lin76248_ch04_223-338.indd   269lin76248_ch04_223-338.indd   269 24/12/10   4:14 PM24/12/10   4:14 PM



270 Computer Networks: An Open Source Approach

 struct neigh_table 
 { 
  struct neigh_table *next; 
  int family; 
  int entry_size; 
  int key_len; 
  __u32 (*hash)(const void *pkey, const struct net_
device *); 
  int (*constructor)(struct 
neighbour *); 
  int (*pconstructor)(struct 
pneigh_entry *); 
  void (*pdestructor)(struct 
pneigh_entry *); 
  void (*proxy_redo)(struct 
sk_buff *skb); 
  char *id; 
  struct neigh_parms parms; 
  int gc_interval; 
  int gc_thresh1; 
  int gc_thresh2; 
  int gc_thresh3; 
  unsigned long last_flush; 
  struct timer_list gc_timer; 
  struct timer_list proxy_timer; 
  struct sk_buff_head proxy_queue; 
  atomic_t entries; 
  rwlock_t lock; 
  unsigned long last_rand; 
  struct kmem_cache *kmem_cachep; 
  struct neigh_statistics *stats; 
  struct neighbour **hash_buckets; 
  unsigned int hash_mask; 
  __u32 hash_rnd; 
  unsigned int hash_chain_gc; 
  struct pneigh_entry **phash_buckets; 

 };   

  Block Diagram 
 Sending and receiving ARP packets are handled by  arp_send()  and  arp_
rcv()  ,  respectively. Call graphs for  arp_send()  and  arp_rcv()  are shown 

in  Figure 4.34 .  arp_send()  calls  arp_create()  to create an ARP packet 

and  arp_xmit() , which in turn calls  dev_queue_xmit()  to send out the 

ARP packet. When an ARP packet is received,  arp_process()  is called to 

process the packet accordingly. In  arp_process()  ,   __niegh_lookp()  is 

called to search the  hash_buckets  with the source IP address as the hash key.   

lin76248_ch04_223-338.indd   270lin76248_ch04_223-338.indd   270 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 271

  Algorithm Implementations 
 The task of  arp_process()  is to send a reply if there is a request for the host 

or if there is a request for someone else the host holds a proxy for; or to process 

a reply from someone else the host sent a request to. For the latter case, the entry 

corresponding to the source of the reply message in the ARP table is updated. 

To implement this update,  arp_process()  first calls  __niegh_lookp()  

to locate the corresponding entry in the ARP table. It then calls  neigh_up-
date()  to update the status of this entry.  

  Exercises 
 The function  __neigh_lookup()  is a common function that implements 

hash buckets. 

    1. Use a free text search or cross reference tool to find out which functions call 

 __neigh_lookup() .  

   2. Trace  __neigh_lookup()  and explain how to look up an entry from 

hash buckets.    

arp_send()

arp_create()

dev_queue_xmit()arp_xmit()

arp_rcv() __neigh_lookup()arp_ process()

neigh_lookup()

   FIGURE 4.34 Call graphs for  arp _ send()  and  arp _ rcv() . 

  4.4.2 Dynamic Host Configuration 
 From Section 4.2, we can observe that each host needs to be properly configured 

with an  IP address ,    subnet mask ,   and  default router . (We also need to configure at 

the host the parameters relevant to the  domain name server ,   which we shall discuss 

in  Chapter 6 .) To a naïve user, such a configuration process does not make any sense, 

and it often becomes the burden of network managers. Misconfiguration of the 

network-layer parameters happens every day without surprise. Unfortunately, unlike 

the MAC address of an Ethernet card, these parameters  cannot  be configured during 

the manufacturing stage because the IP address has a hierarchical structure. Clearly, 

an automated configuration method is needed. IETF thus proposed the Dynamic 

Host Configuration Protocol (DHCP) to solve the automated configuration problem. 

lin76248_ch04_223-338.indd   271lin76248_ch04_223-338.indd   271 24/12/10   4:15 PM24/12/10   4:15 PM



272 Computer Networks: An Open Source Approach

 In general, DHCP follows the client-server model. A host, acting as a client, sends its 

request to the DHCP server, while the server replies the configuration information back 

to the host.  Scalability  is still the main issue in designing this client-server model. First 

of all, how does a host reach the DHCP server? An easy approach is to have  one  DHCP 

server per IP subnet and to have every DHCP client  broadcast  its request to its subnet. 

However, this would result in too many servers. To solve this problem,  relay agents  are 

used in subnets where no DHCP server is present. A relay agent forwards DHCP request 

messages to a DHCP server and then returns the replies from the server to hosts. 

 Assigning an IP address to a host can be done in several ways. A  static  con-

figuration approach maps a specific IP address to a specific host, e.g., identifying 

each host by its MAC address. The advantage of this approach is that the network is 

better managed, as each host has a unique IP address. The DHCP only helps to au-

tomatically configure each host’s IP address. To trace which host owns a specific IP 

address when there is a network security problem is as easy as manual configuration. 

However, when the number of hosts in a subnet is larger than the number of legal IP 

addresses owned by the subnet, we need another approach, the dynamic configura-

tion approach, to adaptively assign IP addresses to  active  hosts. In this approach, the 

DHCP server is configured with a  pool  of IP addresses that are assigned to hosts on 

demand. When a host requests an IP address, the DHCP server selects an unassigned 

IP address from the pool and assigns it to the host. A more complicated use of this 

approach is that each host can send its preferred IP address, usually the IP address it 

was assigned last time, to the server and the server will assign the preferred address 

to the host if it is currently available. To prevent the IP address from being occupied 

by an inactive host, the server actually “loans” an IP address to a host for a limited 

time only. A host needs to request the IP address again before the lease  expires ,   and 

of course, the currently assigned IP address will be the preferred address. 

   FIGURE 4.35 State diagram for DHCP. 
Initial 

Offer

RenewRequest

Bind

Rebind

/DHCPDISCOVER 

/DHCPREQUEST

DHCPACK/ Renewal expires
/DHCPREQUEST

Rebinding expires
/DHCPREQUEST

DHCPNACK
or Lease expires

DHCPACK/

DHCPACK/

DHCPNACK

DHCPOFFER

lin76248_ch04_223-338.indd   272lin76248_ch04_223-338.indd   272 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 273

  DHCP Operation 

 The detailed DHCP procedure is shown in  Figure 4.35 . When a host first boots, 

it  broadcasts  a DHCPDISCOVER message, which is packed in a  UDP  packet 

with port  67 . All DHCP servers that receive the message will send back a 

DHCPOFFER message on  UDP  port  68 . The client selects one offer if there is more 

than one available, and sends a DHCPREQUEST message to the server that gave the 

offer. If everything is all right, the server replies a DHCPACK message. At this time, 

the client is configured with an IP address as well as other information provided by 

the server. The client needs to send a DHCPREQUEST message  again  before the 

lease renewal timer expires (which is usually set to  one-half  of the lease expiration 

time). If no DHCPACK messages are received before lease rebinding time, the client 

sends a DHCPREQUEST message again. The client gives up its IP address when a 

DHCPNACK message is received or when the lease expiration timer expires.  

 The packet format of DHCP [RFC 2131] is shown in  Figure 4.36 ,   which is derived 

from BOOTP. (BOOTP was originally designed to enable automatic boot configura-

tion for diskless workstations.) The  hardware type  indicates the link-layer protocol, 

and the  hardware length  is the length of the link-layer address in bytes. The  hops  field 

is set to zero by the client and  increased  by one when the packet passes a  relay agent . 
The B bit in flags is set if the client wants to receive replies using the  broadcast  address 

instead of its hardware unicast address. Some of the fields are used in BOOTP but are 

not used by DHCP. The option field is used to carry additional information, such as 

subnet mask. More than one option can be packed into a message. The option field 

starts with a 4-byte magic cookie 0x63825363, followed by a list of options. 

 The format of each option, as shown in  Figure 4.37 ,   consists of a  3-octect header  

followed by data in octets. The 3-octect header includes 1-octect code, 1-octect length, and 

   FIGURE 4.36 DHCP packet format. 160 8 24 31

Operation

Transaction ID

Hardware type Hardware length Hops

Client IP address

Seconds FlagsB

Your IP address

Server IP address

Router IP address

Client hardware address (16 octects)

Server host name (64 octects)

Boot file name (128 octects)

Options (variable)

   FIGURE 4.37 Header of the DHCP option field. 160 8 23

Code (53) Length (1) Type (1–7)

lin76248_ch04_223-338.indd   273lin76248_ch04_223-338.indd   273 24/12/10   4:15 PM24/12/10   4:15 PM



274 Computer Networks: An Open Source Approach

1-octect type fields. To convey different types of DHCP messages, the code value is set 

to 53 and the value of the type field, shown in  Table 4.4 ,   indicates which message is sent. 

For example, a DHCP DISCOVER message is encoded as code=53, length=1, type=1. 

 For each type of DHCP message, additional options packed in the code-length-

type format are appended at the end. For example, the DHCP DISCOVER message 

may use code 50 to specify the desired IP address. In this case, the option has 

code=50, length=4, type=the desired IP address. 

   Following are some commonly used options [RFC 2132]: 

   Code: 0 Pad option  

  Code: 1 Subnet mask  

  Code: 3 Routers  

  Code: 6 Domain name servers  

  Code: 12 Host name  

  Code: 15 Domain name  

  Code: 17 Boot path  

  Code: 26 Interface MTU  

  Code: 40 NIS Domain name  

  Code: 50 Requested IP address (DHCPDISCOVER)  

  Code: 51 IP address lease time  

  Code: 53 Message type  

  Code: 54 Server identifier  

  Code: 55 Parameter request list  

  Code: 56 Error message  

  Code: 57 Maximum DHCP message size  

  Code: 58 Renewal (T1) time value  

  Code: 59 Rebinding (T2) time value  

  Code: 60 Vendor class identifier  

  Code: 61 Client-identifier  

  Code: 255 End option   

  FIGURE 4.38  shows an example of the option field of a DHCP OFFER message. 

TABLE 4.4 DHCP Message Types

Type DHCP Message

1 DHCPDISCOVER

2 DHCPOFFER

3 DHCPREQUEST

4 DHCPDECLINE

5 DHCPACK

6 DHCPNACK

7 DHCPRELEASE

lin76248_ch04_223-338.indd   274lin76248_ch04_223-338.indd   274 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 275

160 8 24 31

Op = 0×02

Transaction ID = 0×3981691221

H.T. = 0×01 H. Len = 0×06 Hops = 0×00

Client IP Address = 0×0000

Seconds = 0 Flags = 0×0000B

Your IP Address = 192.168.1.2

Server IP Address = 0×0000

Router IP Address = 0×0000

Client Hardware Address = 00:00:39:1c:86:2a

Server Host Name/Boot File Name = 192 bytes of zeros

Options:
Magic Cookie = 0x63825363
Message Type DHCP Option
       Code: 53; Length: 1; Message Type: 2 (Offer)
Server Identifier DHCP Option
       Code: 54; Length: 4; Address: 192.168.1.1
IP Address Lease Time DHCP Option
       Code: 51; Length: 4; Value: 4294967295
Subnet Mask DHCP Option
       Code: 1;  Length: 4; Address: 255.255.255.0
Routers DHCP Option
       Code: 3;  Length: 4; Address: 192.168.101.3
Domain Name Servers DHCP Option
       Code: 6;  Length: 4; Address: 192.168.1.100
DHCP Option End
       Code: 255;

   FIGURE 4.38 An example of DHCP 
OFFER message. 

 Open Source Implementation 4.7: DHCP 

  Overview 
 DHCP is implemented as a variation of the BOOTP protocol. Information is car-

ried in the option field starting with a magic cookie 0x63825363. After verifying 

this magic cookie, DHCP messages are processed according to the option code 

defined in RFC 2132.  

  Data Structures 
 The data structure for the BOOTP/DHCP protocol is  struct bootp_pkt  in 

 src/net/ipv4/ipconfig.c . 

Continued

lin76248_ch04_223-338.indd   275lin76248_ch04_223-338.indd   275 24/12/10   4:15 PM24/12/10   4:15 PM



276 Computer Networks: An Open Source Approach

  struct bootp_pkt {   /* BOOTP packet format */ 
 struct iphdr iph;   /* IP header */ 
 struct udphdr udph;    /* UDP header */ 
 u8 op; /* 1=request, 2=reply */ 
 u8 htype;   /* HW address type */ 
 u8 hlen;   /* HW address length */ 
 u8 hops;   /* Used only by gateways */ 
 __be32 xid;  /* Transaction ID */ 
 __be16 secs;  /* Seconds since we 
started */ 
 __be16 flags;   /* Just what it says */ 
 __be32 client_ip;   /* Client’s IP address 
if known */ 
 __be32 your_ip;    /* Assigned IP address */ 
 __be32 server_ip; /* (Next, e.g. NFS) 
Server’s IP address */ 
 __be32 relay_ip;      /* IP address of BOOTP 
relay */ 
 u8 hw_addr[16];   /* Client’s HW address */ 
 u8 serv_name[64];   /* Server host name */ 
 u8 boot_file[128];   /* Name of boot file */ 
 u8 exten[312];   /* DHCP options/BOOTP 
vendor extensions */ 

 };   

  Algorithm Implementations 
 If autoconfiguration is defined, the  ip_auto_config()  will be called and 

the defined protocol (RARP, BOOTP, or DHCP) will be used to configure the 

host’s IP address and other parameters. As shown in  Figure 4.39 ,  ic_bootp_
send_if() , called from  ip_auto_config() , will send out the  DHCPRE-
QUEST  message to the DHCP server if the IP address of the DHCP server is 

known, or broadcast the  DHCPDISCOVER  message otherwise. In particular, the 

options of these DHCP messages, such as requests for subnet mask and default 

gateway, are set up by the  ic_dhcp_init_options()  function. A DHCP 

client needs to wait for a  DHCPACK  before using the requested IP address; see 

 ic_dynamic() . 

 A received DHCP message is processed by the  ic_bootp_recv()  

function. Only  DHCPOFFER  and  DHCPACK  messages are processed in the cur-

rent implementation. The additional configuration information is handled by 

 ic_do_bootp_ext() , and currently, only code 1 (subnet mask), 3 (default 

gateway), 6 (DNS server), 12 (host name), 15 (domain name), 17 (root path), 

26 (interface MTU), and 42 (NIS domain name) are processed. Note that ad-

ditional configuration information is always the last part of the DHCP message 

and ends with the octet 0xFF (see the example in  Figure 4.38 ).   

lin76248_ch04_223-338.indd   276lin76248_ch04_223-338.indd   276 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 277

  Exercises 
    1. Trace  ic_bootp_recv()  and explain how the option field of the DHCP 

message is processed.  

   2. There are many new DHCP options defined after RFC 2132. Taking RFC 

5417 as an example, read the RFC and see what options have been defined.    

   FIGURE 4.39 Call graph of DHCP open source implementation. 

ip_auto_config() ic_dynamic() ic_bootp_send_if()

ic_dhcp_init_options()

ic_bootp_recv() ic_do_bootp_ext()

        4.5 CONTROL PLANE PROTOCOLS: ERROR REPORTING 

  Errors occur in the Internet occasionally. For example, a packet cannot be forwarded any 

further due to a zero TTL or due to the unreachable destination. Recall that you often see 

an error message from your browser showing that the server may be down. The Internet 

could handle errors differently—for example, it could just ignore the errors and silently 

drop error packets. However, for debugging, managing, and tracing network status, 

reporting errors  to the source node or the intermediate routers is a better solution. The 

Internet Control Message Protocol (ICMP) is mainly designed for reporting errors, found 

by routers or hosts, to the  source  node. It can also be used for informational reporting. 

  4.5.1 ICMP Protocol 
 ICMP can be used to report errors of TCP/IP protocols and the status of a host/router. 

In most cases, ICMP is implemented as part of IP. Although it is a control protocol at 

the IP layer, ICMP messages are  carried  by IP packets, that is, ICMP lies above IP, as 

shown in  Figure 4.40 . Therefore, ICMP is like an upper-layer protocol to IP. An ICMP 

message is carried in the payload of an IP packet, and the upper-layer protocol id in 

   FIGURE 4.40 ICMP over IP. 
ICMP header ICMP data

IP header IP data

lin76248_ch04_223-338.indd   277lin76248_ch04_223-338.indd   277 24/12/10   4:15 PM24/12/10   4:15 PM



278 Computer Networks: An Open Source Approach

the IP header is set to 1 for the purpose of multiplexing and demultiplexing. An ICMP 

message consists of two parts: the header and the data. The header has a  type  and a  code  

field, as shown in  Figure 4.41 . The payload of an ICMP message may contain control 

data for an informational report, or it may contain the  header  and the partial payload 

of the erroneous IP packet for an error report. (In RFC 792, the  first eight bytes  of the 

datagram that triggered the error are reported; in RFC 1122, more than eight bytes 

may be sent; in RFC 1812, a router should report as much of the original datagram as 

possible in the payload without the length of the ICMP datagram exceeding 576 bytes.) 

Different syntax formats are defined for different types of ICMP messages.   

 The list of types and codes of commonly used ICMP messages for IPv4 is 

shown in  Table 4.5 . Four of them are informational messages, namely  echo   reply  

and  request ,    router advertisement,     and  discovery ; the rest are error messages. For a 

source to know whether a destination is alive, it can send an echo request message 

to the destination. Upon receiving the echo request, the destination responds with an 

echo reply message. The payload of these two messages contains a  16-bit identifier  

   FIGURE 4.41 ICMP packet format. 160 8 24 31

Type Code Checksum

Data

TABLE 4.5 Types and Codes of ICMP for IPv4

Type Code Description

0 0 Echo reply (ping)

3 0 Destination network unreachable

3 1 Destination host unreachable

3 2 Destination protocol unreachable

3 3 Destination port unreachable

3 4 Fragmentation needed and DF set

3 5 Source route failed

3 6 Destination network unknown

3 7 Destination host unknown

4 0 Source quench (congestion control)

5 0 Redirect (destination network)

5 1 Redirect (host)

8 0 Echo request (ping)

9 0 Route advertisement

10 0 Router discovery

11 0 TTL expired

12 0 Bad IP header

lin76248_ch04_223-338.indd   278lin76248_ch04_223-338.indd   278 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 279

and a  16-bit sequence number  such that the source can match replies to the corre-

sponding requests, as shown in  Figure 4.42 . The well-known debugging tool,  ping ,   is 

implemented using ICMP echo request and echo reply messages.  

 Among the ICMP error messages,  destination unreachable  (type 3) is used 

to report various unreachable reasons, such as network, host, or port unreachable. 

However, code 4 of a type 3 message is used to report the error that fragmentation 

is needed at an intermediate router (due to MTU), but the  do not fragment  bit in the 

IP header is set. Type 4 and type 5 messages are seldom used in practice. The  source 
quench  message (type 4) is designed to allow a router to send an error message to the 

source when the packet causes buffer overflow (due to congestion). Upon receiving 

a source quench message, a source should reduce its transmission rate. For an IP 

subnet with more than two routers, the  redirect  message (type 5) is used to inform the 

host of a better alternative route to the destination. Usually, the better route is to send 

the packet to another router in the same subnet. Type 12 messages are used to report 

errors in the IP header, such as invalid IP header or wrong option field. 

 The  time exceeded  message, type 11, is sent to the source host when the TTL 

of the IP packet reaches zero after TTL decrement at a router. This type of message 

is particularly interesting as the traceroute program uses it to trace the route from 

a source host to a destination. The traceroute program sends a sequence of ICMP 

messages to the destination as follows: First, it sends an ICMP echo request with 

 TTL=1  to the target machine. When the first router on the route to the destination 

receives this message, it responds with a time exceeded ICMP error message, as the 

TTL reaches zero after decrement. The traceroute program, upon receiving the time 

exceeded message, then sends another echo request with  TTL=2  to the destination. 

This time, the message will pass the first router but will be discarded by the second 

router, and then the second router will send another time exceeded message back 

to the source. The traceroute program continues sending ICMP echo requests with 

incremental TTL values until it receives an echo reply from the destination. Each 

time the traceroute program receives a time exceeded message, it learns a new router 

on the route. (Note that actually, most traceroute programs send  three  echo request 

messages for a given TTL value and record the response time from each router.) 

 For the next-generation Internet Protocol, a new set of ICMP types and codes is 

defined, as shown in  Table 4.6 . The packet format of ICMPv6 is the same as that of 

ICMPv4, but the values of the ICMPv6 type field are defined in a more recognizable 

way such that error messages have a type less than 127 and informational messages 

have a type larger than 127 but less than 256.     

   FIGURE 4.42 ICMP echo request and reply message format. 

160 8 24 31

Type = 8 or 0 Code = 0 Checksum

Data

Identifier Sequence number

lin76248_ch04_223-338.indd   279lin76248_ch04_223-338.indd   279 24/12/10   4:15 PM24/12/10   4:15 PM



280 Computer Networks: An Open Source Approach

TABLE 4.6 Types and Codes of ICMPv6

Type Code Description

1 0 No route to destination

1 1 Communication with destination administratively prohibited

1 3 Address unreachable

1 4 Port unreachable

2 0 Packet too big

3 0 Hop limit exceeded in transit

3 1 Fragment reassembly time exceeded

4 0 Erroneous header field encountered

4 1 Unrecognized Next Header type

4 2 Unrecognized IPv6 option encountered

128 0 Echo request

129 0 Echo reply

130 0 Multicast Listener Query

131 0 Multicast Listener Report

132 0 Multicast Listener Done

133 0 Router Solicitation

134 0 Router Advertisement

135 0 Neighbor Solicitation

136 0 Neighbor Advertisement

137 0 Redirect

 Open Source Implementation 4.8: ICMP 

  Overview 
 An ICMP message is sent when a packet cannot be forwarded or when some ICMP 

service request, such as an ECHO request, is received. For the former case, an ICMP 

message is sent during the packet forwarding process, such as  ip_forward()  or 

 ip_route_input_slow() . For the latter case, an ICMP message is received 

from the link layer, and  icmp_rcv()  is called to process the request.  

  Data Structures 
 To deal with different types of ICMP messages by different handlers, the 

table  icmp_pointers[]  is used to store ICMP handlers (see  src/net/
ipv4/icmp.c ). For example,  icmp_unreach()  is used for type 3, 4, 

11, and 12;  icmp_redirect()  for type 5;  icmp_echo()  for type 8; 

 icmp_timestamp()  for type 13;  icmp_address()  for type 17; 

 icmp_address_reply()  for type 18; and  icmp_discard()  for other 

types. The  icmp_pointers[]  table is set up as follows: 

lin76248_ch04_223-338.indd   280lin76248_ch04_223-338.indd   280 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 281

 static const struct icmp_control icmp_pointers[NR_
ICMP_TYPES + 1] = { 
 …
    [ICMP_REDIRECT] = { 
        .handler = icmp_redirect,  
        .error = 1,  
 }, 

 … 
 [ICMP_ECHO] = { 
        .handler = icmp_echo,  
 }, 

 … 
 [ICMP_TIMESTAMP] = { 
        .handler = icmp_timestamp,  
 }, 

 … 
 [ICMP_ADDRESS] = { 
       .handler = icmp_address,  
 }, 
 [ICMP_ADDRESSREPLY] = { 
        .handler = icmp_address_reply,  
 }, 

 };   

  Algorithm Implementations 
  Figure 4.43  shows the call graph for sending and receiving an ICMP message. 

When an IP packet is to be forwarded,  ip_forward()  is called to process 

the packet. If there is something wrong with the packet,  ip_forward()  will 

call  icmp_send()  to send an ICMP message back to the source host. The 

sequence of steps for checking the packet in  ip_forward()  is as follows: 

First, if the packet’s TTL is less than or equal to 1, an ICMP time exceeded 

message is sent. Second, if strict source routing is requested and the next 

hop obtained from the routing table is not the router specified by the packet, 

an ICMP destination unreachable message is sent. Third, if route redirect is 

needed,  ip_rt_send_redirect()  is called to redirect the packet, which 

then calls  icmp_send()  to send an ICMP redirect message. Finally, if the 

length of the packet is larger than the interface’s MTU and the do not fragment 

bit is set, then an ICMP destination unreachable (with code = 4,  ICMP_FRAG_
NEEDED ) message is sent. 

 Recall that a received IP packet that matches none of the routes stored in the 

cache will be processed by the  ip_route_input_slow()  function. If the 

resultant routing table lookup returns  RTN_UNREACHABLE ,   ip_error()  is 

called, which will invoke  icmp_send()  to send an ICMP destination unreach-

able message back to the source. 

Continued

lin76248_ch04_223-338.indd   281lin76248_ch04_223-338.indd   281 24/12/10   4:15 PM24/12/10   4:15 PM



282 Computer Networks: An Open Source Approach

 Finally, let us examine how to process an incoming ICMP packet. When 

an ICMP message is received, the  bottom half  interrupt handler of the network 

interface card will call the  icmp_rcv()  function, which then calls an appro-

priate ICMP type handler according to the type field of the ICMP message. Most 

of the ICMP types are processed by the  icmp_unreach()  function. Besides 

checking the received ICMP message, the  icmp_unreach()  function will 

pass error packets to the appropriate upper-layer protocol if the error handler 

of that protocol has been defined. A received echo request is processed by the 

 icmp_echo()  function such that if the echo reply option is not disabled, an 

echo reply message will be returned to the source node.  

 As a final remark, ICMPv6 functions are implemented in similar ways 

(see  src/net/ipv6/icmp.c ). ICMP messages are sent by  icmpv6_
send()  ,  and  icmpv6_rcv()  is called to receive ICMP messages. Echo 

request messages are replied by  icmpv6_echo_reply()  ,  and other error 

messages, such as packet too big, destination unreachable, time exceeded, 

and parameter problem, are processed by  icmpv6_notify()  ,  which will 

pass error packets to upper-layer protocols if error handlers have been defined. 

Neighbor discovery is a new feature of IPv6 that consists of five types of 

messages: router solicitation, router advertisement, neighbor solicitation, neigh-

bor advertisement, and route redirect. The function  ndisc_rcv()  (see  src/
net/ipv6/ndisc.c ) is called upon receiving these types of messages, and 

this function then switches to different functions based on the message type. 

For example,  ndisc_router_discovery()  is called to process router 

advertisements.  

  Exercises 
 Write a pseudocode for the traceroute program, given that you can call the ICMP 

functions in the kernel.  

   FIGURE 4.43 Call graph for sending and receiving an ICMP message. 

ip_ forward()

ip_error()

icmp_send()ic_dhcp_init_options()

icmp _recv()

icmp_unreach()

Ip_route_input_slow()

icmp_echo()

lin76248_ch04_223-338.indd   282lin76248_ch04_223-338.indd   282 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 283

  4.6 CONTROL PLANE PROTOCOLS: ROUTING 

  In the data plane, we have seen how a router forwards packets by looking up its 

routing table. Assuming that the routing table is built and maintained correctly, the 

 forwarding  process is quite simple and straightforward; nevertheless, it all depends 

on the task of  routing  to compute routes and maintain the routing table. In this 

section, we shall first discuss the underlying principles of routing and then address 

how routing is done in the Internet. 

  4.6.1 Routing Principles 
 The task of the IP layer is to provide host-to-host connectivity. This connectivity 

allows one host to send packets to another remote host. To achieve this task, a route 

(a sequence of adjacent routers) needs to be established for each source-destination 

pair so that packets can be transferred along the route. The task of finding the route 

from the source to the destination host is called routing. 

 Desirable properties of a routing mechanism include  efficient ,    stable ,    robust ,   
 fair ,   and  scalable . Since the Internet uses packet switching, resources are shared 

and packets are stored and forwarded by routers. Therefore, the major objective 

of routing is efficient resource sharing while maintaining good performance, such 

as low delay and low packet loss, and optimal routing shall maximize resource 

 utilization ,   minimize packet  delay ,   and/or minimize packet  loss . (Note that these 

goals may conflict with each other.) Scalability is always important in the Internet. 

Scalable routing includes a scalable  data structure  for the use of a routing table, 

a scalable routing information  exchange  mechanism, and a scalable algorithm for 

route  computation . Besides, it is also very important not to form any cycle within a 

route, since  packet looping  may waste a lot of bandwidth and cause the network to 

become unstable. Due to the large number of routers in the Internet, robust routing 

is necessary to prevent a failed link or router, that is, a single point of failure, from 

affecting the whole network. Finally, fairness is also desirable because nodes should 

be treated equally. 

 There are three broad categories of routing: point-to-point, point-to-multipoint, 

and multipoint-to-multipoint. The first one is referred to as unicast routing and the 

other two are referred to as multicast routing. For unicast transmission, packets are 

to be transferred from one source to one destination. For multicast transmission, 

there could be one or more source hosts, and packets are to be transferred from 

these source hosts to more than one destination host. Clearly, unicast routing would 

be very different from multicast routing. Unicast routing, as a more common case, 

is to find a route between a source host and a destination host. On the other hand, 

multicast routing is to find multiple routes from one or more sources to multiple des-

tinations, which usually form a tree structure referred to as a  multicast tree . In this 

section, we focus on unicast routing and leave multicast routing to the next section. 

  Global or Local Information 

 Unicast routing protocols are differentiated from other routing protocols by the 

type of routing information being used, how routing information is exchanged, and 

lin76248_ch04_223-338.indd   283lin76248_ch04_223-338.indd   283 24/12/10   4:15 PM24/12/10   4:15 PM



284 Computer Networks: An Open Source Approach

how routes are determined. A route can be computed based on  global  (complete) 

information or  local  (partial) information about the network. If global information 

is available, route computation can take the status of all routers and links in the net-

work into consideration. Otherwise, route calculation considers only information 

from adjacent routers and links. Routing information needs to be exchanged among 

routers so that global or local information about the network can be obtained. 

Usually, global information is obtained via a reliable  broadcasting  mechanism, 

while local information can be obtained by  exchanging  information with  adjacent  
neighbors. 

 The issue of how to determine a route can be examined from several aspects. 

First, a route can be determined dynamically or statically. Static routing tables can be 

configured manually by network administrators. However, they cannot adapt to dy-

namic network failures. Therefore, routing protocols are used to dynamically update 

routing tables in the Internet. Second, a route can be determined by a  centralized  or 

a  distributed  algorithm. Centralized algorithms require global information, and they 

can be run at a central site or  distributively  at each router. Some routing protocols in 

the Internet adopt the latter approach, called  quasi-centralized  algorithms, for better 

robustness. However, some Internet routing protocols determine the route distribu-

tively using distributed algorithms. Finally, a route can be determined hop-by-hop 

at each intermediate router or be computed at the source host. If routing is done at 

each hop (router) separately, either quasi-centralized or distributed algorithms are 

preferred. The Internet adopts  hop-by-hop  routing as the default routing mechanism 

while also supporting source routing as an option. 

 What is an optimal route? Different applications may have different criteria. 

Interactive applications such as telnet may want a route with minimum delay, while 

multimedia applications may want a route with sufficient bandwidth as well as low 

delay and jitter. Traditionally, a link is associated with a  cost  intended to characterize 

the desirability of routing through this link. For example, a link’s cost may reflect 

the delay or available bandwidth on the link. The routing problem is then modeled 

as a graph theory problem where nodes are routers and edges are links. After trans-

forming a network into a graph, the routing problem is equivalent to the  least-cost 
path  problem. Two types of routing algorithms are used in the Internet to solve the 

least-cost path problem:  link state routing  algorithms and  distance vector routing  

algorithms. We shall examine these two types of algorithms in detail.  

  Optimality of Hop-by-Hop Routing 

 You may wonder if routing is done separately at each router, how can we be sure 

that packets will be forwarded on the optimal route? There is an  optimality principle  

of Internet  hop-by-hop routing . That is, if  k  is an intermediate node on the optimal 

route from the source host  s  to destination  d ,   then the route from  s  to  k  on the 

optimal route from  s  to  d  is also the optimal route from  s  to  k . Therefore, each router 

can simply trust its neighbor that if this neighbor is the  next hop  on the  optimal route  

to a remote destination, this neighbor will indeed know how to forward packets to 

the destination along the optimal route. By the optimality principle, each router can 

construct a  shortest-path tree  with itself as the root spanning all other routers in the 

network. 

lin76248_ch04_223-338.indd   284lin76248_ch04_223-338.indd   284 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 285

 Principle in Action: Optimal Routing 

 In the literature, a graph is used to formulate the routing problem. A graph 

 G=(N, E)  consists of a set of nodes,  N ,  and a set of edges,  E . Corresponding to 

the IP routing problem, a node in the graph represents a router in the Internet and 

an edge between two nodes represents the physical link between two adjacent 

routes.  Figure 4.44  shows an example of such a graph model.  
 Recall that the routing problem is to find a path between a source node and 

a destination node. Apparently, there are many alternate paths between each pair 

of source-destination nodes. Optimal routing is to choose the  best  path for each 

source-destination pair. But what is the  best  path? How to define the quality of a 

path? In the graph shown in  Figure 4.45 ,  we can see that each edge is associated 

with a  cost . In the graph model, the cost of a path is defined as the sum of all 

the edge costs along the path. By assuming the edge costs are given, the optimal 

routing problem becomes finding the  least-cost path . Furthermore, if all edges 

in the graph have the same cost, the  least-cost path  becomes the  shortest path . 

Several well-known algorithms were proposed in the graph theory literature in 

1950s, e.g., the Kruskal algorithm and Dijkstra’s algorithm. Most of these algo-

rithms are actually finding the shortest path from a source node to all other nodes 

in the graph, called  shortest spanning tree  or  minimal spanning tree . 

 Apparently, how to define the edge cost determines the quality and the 

meaning of the  least-cost path . In some routing protocols, such as RIP, the edge 

cost is set to 1 for all edges such that the  least-cost path  is the  shortest path ,  that 

is, the path with minimum hop count or the path that traverses the least number 

of routers. That seems a reasonable choice because passing a router introduces 

additional processing, transmission, and queuing delay. However, each router 

might have different processing capabilities, and each edge might have different 

bandwidth and traffic load from others, too. That is, their processing, transmis-

sion, and queuing delays may be different. Therefore, some other routing proto-

cols, such as OSPF, allow multiple definitions of the edge cost, each related to 

a certain kind of quality-of-service metric, such as delay, bandwidth, reliability, 

or packet loss. It is possible to support multiple routing tables, one for each type 

of QoS. In summary, although edge costs are assumed to be given in the graph 

abstraction model, how to define the edge cost is very critical to determining the 

quality of the  optimal path ,  i.e., the  least-cost path . 

   FIGURE 4.44 Graph model for 
route calculation. 

A

D

EC

B

1

1

1
32

2

4

F

1

6

lin76248_ch04_223-338.indd   285lin76248_ch04_223-338.indd   285 24/12/10   4:15 PM24/12/10   4:15 PM



286 Computer Networks: An Open Source Approach

    For each   v   in   V  -{  s  } {  
   If v is adjacent to   s  
    C(v)=lc(s,v) 
  p(v) = s  
  Else  
    C(v)  =∞  
  }  
  T   = {  s  }  
  While (  T≠V  ) {  
   find   w   not in   T   s.t.   C(w)   is the minimum for all   w   in  ( V-T  )  
   T = T  • { w  }  
   For each   v   in   V-T   {  
    C(v)   =   MIN(C(v), C(w)+lc(w,v))  
    If ((C(w)+lc(w,v)) > C(v)) p(v) = w  
   }  
  }  

 FIGURE 4.45 Dijkstra’s algorithm. 

    Link State Routing 

 Link state routing requires global information to compute least-cost paths. The global 

information means the network topology with all link costs, and it is obtained by having 

each router  broadcast  the costs of its adjacent outgoing links to  all other  routers in the 

network. As a result, all routers in the network will have a  consistent  view of the network 

topology and link costs.  Dijkstra’s  algorithm is then used to compute the least-cost paths 

at each router. Because all routers use the same least-cost path algorithm and network 

topology to build their routing tables, packets will be forwarded on the least-cost path 

in a hop-by-hop manner (recall the optimality principle of Internet hop-by-hop routing). 

 Dijkstra’s algorithm computes the least-cost path from a source node to all other 

nodes in the network, which forms a  least spanning tree . A routing table is then built 

based on this  least spanning tree . The basic idea of Dijkstra’s algorithm is to find 

the least-cost path to all other nodes  iteratively . During each iteration, a new least-

cost path from the source node to one of the destination nodes is selected. That is, 

after the  k th iteration,  k  least-cost paths to  k  destination nodes are known. Therefore, 

for an  N -node network, the Dijkstra’s algorithm will terminate after  N −1 iterations. 

 Figure 4.45  shows the pseudocode of Dijkstra’s algorithm. The following notations 

are used in the pseudocode:

    � lc(s,v) : link cost from node  s  to node  v . If  s  and  v  are not directly connected, the 

link cost from  s  to  v  is set to infinity.  

   � C(v) : up to current iteration, the least cost of the path from the source node to 

node  v .  

   � p(v) : the immediately preceding node of  v  along the least-cost path.  

   � T:  the set of nodes whose least-cost path is known     

 Initially, a node only needs to know the link costs of its  outgoing  links. The cost to an 

adjacent node is set to the cost of the link directly connected to it. The algorithm main-

tains a set of nodes,  T ,   that are on the least spanning tree. Initially,  T  contains only the 

source node  s.  At each iteration, it selects the node  w  that has the minimum cost,  C(w) ,   

lin76248_ch04_223-338.indd   286lin76248_ch04_223-338.indd   286 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 287

from the nodes that are not on the spanning tree yet. After node w is added to the tree, 

i.e., into the set  T ,   the cost of a node  v  that is not on the tree is updated if the cost from 

the source to  v  could be reduced by going through this new added node  w . The while 

loop is guaranteed to terminate after  N −1 iterations, and  p(v)  records the parent of  v  on 

the  least spanning tree . The routing table can then be built based on  p(v) . 
 Let us further illustrate Dijkstra’s algorithm by an example. Consider the net-

work in  Figure 4.46  with node  A  being the source node. The result at the end of 

each iteration is summarized in  Figure 4.47 . Initially,  A  knows only the costs to  B  

and  C ,   which are  4  and  1 ,   respectively. The costs to  D  and  E  are infinity, as they are 

not directly connected to  A . During each iteration, a node with the minimum cost 

but not included in  T  yet is chosen. (A tie is broken by random selection if there is 

any.) Therefore, in the first iteration, node  C  is selected and added to the set  T ,   which 

means that the least-cost path from  A  to  C  is determined now and the cost is  1 . With 

this information, all other nodes can now try to connect to  A  through  C . (Again, recall 

the optimality principle of hop-by-hop routing.) For example,  D  and  E  can reach  A  

through  C  now at the sum of the cost from  D  (or  E ) to  C  and the least cost from  C  to 

 A . We can also observe that the cost to  B  can be reduced if the path traverses  C ,   i.e., 

from  A  to  C  and then from  C  to  B . At the end of the first iteration,  C  has been added 

to the set  T . Besides,  B ,    D ,   and  E  have updated their least costs from  A . In the sec-

ond iteration,  E  has the least cost and thus is added to  T . The least cost from  A  to  D  

is also updated because the path from  A  to  D  through  E  has a cost smaller than that 

of the path through  C . The loop continues until all nodes are added in  T ,   as shown 

in  Figure 4.47 . The least-cost path from A to all other nodes can be constructed by 

using the predecessor node information. Do not forget the task of a routing algorithm 

is to construct the routing table. After constructing the least-cost path from A to other 

nodes, the final routing table of A is shown in  Figure 4.48 . For example, the results of 

 Figure 4.47  show that the least the cost path from  A  to  D  is  A -> C -> E ->D, and the path 

cost is 3. Therefore, the next hop from A to D in  Figure 4.48  is C and the cost is 3.     

A

D

EC

B

1

1

1
3

2

4

1   FIGURE 4.46 An example network. 

T C(B),p(B)Iteration C(C),p(C) C(D),p(D) C(E),p(E)

0 A 4,A 1,A ∞ ∞

1 AC 3,C 4,C 2,C

2 ACE 3,C 3,E

3 ACEB 3,E

4 ACEBD

   FIGURE 4.47 Results of running 
Dijkstra’s algorithm on the 
network in  Figure 4.46.  

lin76248_ch04_223-338.indd   287lin76248_ch04_223-338.indd   287 24/12/10   4:15 PM24/12/10   4:15 PM



288 Computer Networks: An Open Source Approach

  Distance Vector Routing 

 The distance vector algorithm is another major routing algorithm used in the Inter-

net. While the link state algorithm is a quasi-centralized algorithm that uses global 

information, the distance vector algorithm is an  asynchronous ,    distributed  algorithm 

that uses  local  information. It uses only information  exchanged  from the directly 

connected  neighbors . The distributed  Bellman-Ford  algorithm is used to calculate the 

least-cost path asynchronously. That is, unlike link state routing, it does  not  require 

all the routers to exchange link state information and compute a routing table  at the 
same time . Instead, each router will perform the route computing when it receives 

new routing information from neighbors. After the computation, new routing infor-

mation will be sent to its neighbors. 

  Figure 4.49  shows the pseudocode for the distance vector routing algorithm. Ini-

tially, each router knows the costs to its directly connected neighbors, as in Dijkstra’s 

algorithm. Each router then asynchronously runs the algorithm shown in  Figure 4.48 . 

When a router has new routing information, such as a new least cost to a destina-

tion, it will send the routing information to its directly connected neighbors. When a 

router receives routing information from its neighbors, it will  update  its routing table 

if necessary. The routing information may contain the cost to a  destination  which 

is  new  to the router. In this case, a new routing entry is created, and the cost to that 

destination is computed as the  sum  of the cost to the neighbor plus the cost from the 

Destination Cost NextHop

B 3 C

C 1 C

D 3 C

E 2 C

   FIGURE 4.48 The routing table of node A in the 
network of  Figure 4.46 . 

     While (1) { 
   If node  x  received route update message from neighbor  y  { 
    For each (Dest, Distance) pair in  y ’s report { 
     If (Dest is new) { /* Dest not in routing table */ 
      Add a new entry for destination Dest 
      rt(Dest).distance = Distance+ lc(x,y)  
      rt(Dest).NextHop =  y  
     } 
    else if ((Distance+ lc(x,y) )&rt(Dest).distance){ 
     /* y reports a shorter distance to Dest */ 
     rt(Dest).distance = Distance+ lc(x,y)  
     rt(Dest).NextHop =  y  
    } 
   } 
   Send update messages to all neighbors if route changes 

   Also send update messages to all neighbors periodically 
  }  

 FIGURE 4.49 The distance vector routing algorithm. 

lin76248_ch04_223-338.indd   288lin76248_ch04_223-338.indd   288 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 289

neighbor to the destination. (The latter cost is known from the routing information.) 

If the routing cost to the destination already exists in the routing table, the router will 

check if the new cost results in a new least-cost path. That is, if the sum of the cost 

to the neighbor plus the cost from the neighbor to the destination is  less than  the cost 

recorded in the routing table, then the routing entry is  updated  with the new cost and 

the neighbor becomes the  new  next hop to that destination. 

 Let us consider  Figure 4.46  again as an example and use this example to show 

how node A computes its routing table based on the distance vector algorithm. 

Since distance vector algorithm runs asynchronously, it is very difficult to give a 

clear picture of the whole network when the routing table at each router changes 

asynchronously. Therefore, we shall  pretend  the algorithm runs  synchronously  at 

each router in our illustration. That is, we assume that each router exchanges its new 

routing information with its neighbors simultaneously. After the routing information 

is exchanged, each router then computes its new routing table simultaneously. The 

procedure then repeats until the routing table at each router converges to a stable 

state. (We shall check if the final routing table at each router is the same as the one 

computed using Dijkstra’s algorithm.)  

 Initially, node  A  knows only the cost to its neighbors, as shown in  Figure 4.50 . 

Then, node  A  informs its neighbors about this routing table. Similarly, nodes  B  and 

 C  also send their new routing table information to node  A . For example, node  B  tells 

node  A  that its cost to node  C  and  D  is 2 and 1, respectively. Based on this informa-

tion, node  A  creates a new routing entry for node  D  with a cost of 5 (4 + 1). Similarly, 

Node  C  also tells node  A  that its cost to node  B ,    D ,   and  E  is 2, 3, and 1, respectively. 

A

D

EC

B

1

1

1
3

2

4 1

Dt. C NH

B

C

4

1

B

C

Dt. C NH

C

D

1

1

C

D

Dt. C NH

Dt. C NH

A

B

1

2

A

B

1

3D D

E E

B

C

1

3

B

C

1E E

Dt. C NH

A

C

4

2

A

C

1D D

   FIGURE 4.50 Initial routing tables for nodes in  Figure 4.46 . 

lin76248_ch04_223-338.indd   289lin76248_ch04_223-338.indd   289 24/12/10   4:15 PM24/12/10   4:15 PM



290 Computer Networks: An Open Source Approach

With this information, node  A  updates its cost to  B  and  D  to 3 (1 + 2) and 4 (1 + 3). 

Since node  E  is new to node  A ,   node  A  also creates a routing entry for node  E  with 

a cost of 2 (1 + 1). At this time, all nodes have their routing tables updated and shall 

inform their neighbors of the new routing table information again. (Note that node  C  

knows its least cost to node  D  is 2 at this time, as shown in  Figure 4.51 .) When node 

 A  receives new routing information from node  B  and  C ,   the last to be updated is the 

least cost to node  D ,   and node  C  tells node  A  that its new cost is 2 instead of 3. There-

fore, the new least cost from node  A  to node  D  becomes 3. The final routing table 

obtained by each node is shown in  Figure 4.52 ,   if no new cost updates are found. 

Readers shall notice that it is the same as the one calculated by Dijkstra’s algorithm.     

  The Looping Problem of Distance Vector Routing 

 As we can observe from the preceding example, the distance vector routing algo-

rithm requires several iterations of exchanging routing updates between neighbors 

before the routing table stabilizes. Will there be any problem using  unstable  routing 

tables to forward packets during the  transient  period? Or to be more specific, is it 

possible that packets can be forwarded around a loop due to  inconsistency  among 

nodes’ routing tables? Unfortunately, the answer is yes. In particular, there is an in-

teresting phenomenon called “ good news travels fast while bad news travels slowly. ” 

That is, a router learns a better least-cost path very quickly but realizes a path with a 

large cost very slowly. 

A

D

EC

B

1

1

1
32

4
1

Dt. C NH

A

B

2

2

C

D

1

1C C

D D

Dt. C NH

A

B

1

2

A

B

1

2D E

E E

Dt. C NH

B

C

3

1

C

C

2

4D C

E C

Dt. C NH

A

B

4

1

C

B

1

2C E

E E

Dt. NHC

A

C

3

2

C

C

2

1D D

E D

   FIGURE 4.51 Intermediate routing tables (until the second step) for nodes in  Figure 4.45 . 

lin76248_ch04_223-338.indd   290lin76248_ch04_223-338.indd   290 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 291

    FIGURE 4.52   Routing table for node  A  in  Figure 4.46  after convergence. 

A

D

EC

B

1

1

1
32

4
1

Dt. C NH

A

B

2

2

C

D

1

1C C

D D

Dt. C NH

A

B

1

2

A

B

1

2D E

E E

Dt. C NH

B

C

3

1

C

C

2

3D C

E C

Dt. C NH

A

B

3

1

E

B

1

2C E

E E

Dt. NHC

A

C

3

2

C

C

2

1D D

E D

 Let us use the network in  Figure 4.53  as an example to explain how good news 

travels fast. Originally, the cost of the link between  A  and  C  is 7. If the cost changes 

to 1, node  A  and node  C  will inform their neighbors. With one routing update mes-

sage, nodes  B ,    D ,   and  E  will know that their least costs to  A  have changed to 3, 4, 

and 2, respectively. With another run of sending routing update messages, all routing 

tables will converge, and node  D  knows its least cost to  A  is 3 after the second run. 

Clearly, the good news that the cost of a link decreases dramatically travels fast to all 

nodes in the network.  

 On the other hand, let us consider the change of the link cost in  Figure 4.54  to 

explain why bad news travels slowly. When the link between  A  and  C  goes down 

(i.e., cost becomes infinity), other nodes besides node  A  and  C  may not learn this 

quickly. When the link goes down, node  C  will inform its neighbors that its cost to 

    FIGURE 4.53  Good news travels fast 
in the distance vector algorithm. 

A

D

EC

B

7

1

1
3

2

4

1

1

lin76248_ch04_223-338.indd   291lin76248_ch04_223-338.indd   291 24/12/10   4:15 PM24/12/10   4:15 PM



292 Computer Networks: An Open Source Approach

node A is infinity now. However, depending on the  arrival times  of routing updates, 

node  E  may inform node  C  immediately that its cost to node  A  is 2. (Node  C  may 

also receive information from  B  and  D  that their least costs to  A  are 3 and 4, re-

spectively.) Therefore, node  C  updates the entry for node  A  in its routing table with 

a cost of 3 and the new next hop  E . As we can see, this updating is  wrong  because 

a routing loop is formed between  C  and  E . That is, node  C  thinks that it should 

forward packets destined to  A  through node  E  while node  E  also thinks that these 

packets should be forwarded to node  C . Packets will then be bounced back and 

forth between node  C  and  E  forever. The problem is that node  C  and node  E  will not 

learn the correct route in a short period of time. Let us continue with our example 

and see when all nodes can learn about the bad news. As node  C  updates its rout-

ing table, it then sends the route update message to its neighbors. Nodes  B ,    D ,   and 

 E  will then update their least costs to  A  to 5, 3, and 4, respectively. After node  E  

sends this new update message to  C ,   node  C  then updates its cost to  A ,   again, to 5. 

This procedure repeats until node  B ,    C ,    D ,   and  E  all learn that their least-cost path 

to  A  is through  B  instead of  C . Because the cost of the link between  A  and  B  is quite 

large, it will take more than 25 iterations of routing updates before routing tables 

converge. If there is no link between  A  and  B ,   then the procedure will repeat until 

the cost to  A  is so huge that nodes  B ,    C ,    D ,   and  E  believe their costs to  A  are infin-

ity. Therefore, this bad news travels slowly principle is also known as the “ count 
to infinity ” problem.  

 Several partial solutions have been adopted in practice to cope with the looping 

problem. From the preceding example, we can observe that the looping problem 

occurs because node  C  does not know that the least-cost path from node  E  to node 

 A  passes itself. Therefore, the simplest solution, called  split horizon ,   is to  prohibit  
node  E  from telling node  C  its least cost to node  A . In general, a router should not tell 

its neighbors those least-cost routes learned from them. For example, since node  E  

learned its least-cost path to node  A  from node  C ,   node  E  should not include its least 

cost to node  A  in the message for node  C . In an even stronger approach, called  poison 
reverse ,   node  E  should tell node  C  that its least cost to node  A  is infinity. Unfortu-

nately, these two solutions only solve the looping problem involved with  two  nodes. 

For a larger routing loop, a more sophisticated mechanism is required, such as to add 

the  next hop  information in routing update messages. Another approach adopted by 

some commercial routers is to use a  hold down timer . In this approach, a router will 

keep its least-cost path information for a time equal to the hold down timer before 

making routing updates. For example, continuing the preceding example, when 

   FIGURE 4.54  Bad news travels slowly 
in the distance vector algorithm. 

A

D

EC

B

1

1

1
3

2

50

1

∞

lin76248_ch04_223-338.indd   292lin76248_ch04_223-338.indd   292 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 293

node  E  receives the routing update from node  C  and knows its least cost to node  A  

becomes infinity, node  E  should not update its routing table nor send new routing 

updates to node  C  until the hold down timer expires. This will prevent node  C  from 

receiving least-cost path information from all other nodes to node  A  and thus will 

grant node  A  and node  C  some time to let all other nodes know that the link between 

node  A  and node  C  has failed.  

  Hierarchical Routing 

 The number of routers in the Internet is huge. Therefore, for scalability, routers are 

not connected into a flat network. Otherwise, neither the link state algorithm nor 

the distance vector algorithm would be scalable enough for a network of hundreds 

of thousands of routers. Just image how large the size of the routing entries would 

be if all routers in the Internet were connected into a flat network. There is another 

reason why we prefer partitioning routers into groups:  administrative autonomy . For 

example, there are many Internet Service Providers (ISPs), each of which has its own 

routers and backbone network. Naturally, each ISP would like to have total control 

of its routers and backbone bandwidth such that it may want to prohibit traffic from 

other ISPs passing through its backbone. As a consequence, Internet routers are orga-

nized into two levels of hierarchy. At the lower layer, routers are grouped into admin-

istrative domains, or  autonomous systems  (ASs). Routers within an AS are under the 

same administrative control and run the same routing protocol, called  intra-domain  

routing protocol or  interior gateway protocol  (IGP). Selected routers, called  border 
routers ,   from an AS will have physical links connected to border routers of other 

ASs. Border routers are responsible for forwarding packets to outside ASs. The rout-

ing protocol run among these border routers, referred to as the  inter-domain  routing 

protocol or  exterior gateway protocol  (EGP), may be different from the intra-domain 

routing protocol. 

 The Internet can therefore be viewed as a set of interconnected autonomous sys-

tems. There are three types of ASs:  Stub AS ,    multihomed AS ,   and  transit AS . Many 

users access the Internet through campus networks or enterprise networks, which are 

typical stub ASs. Since a stub AS has only one border router and connects to only one 

ISP, there is no transit traffic passing through stub ASs. Multihomed ASs may have 

more than one border router and connect to more than one ISP. However, multihomed 

ASs also do not allow transit traffic to pass through. Most ISPs need to allow transit 

traffic and have many border routers connecting to other ISPs. Therefore, they are 

called transit ASs. 

 In the following two subsections, we examine intra-domain routing and 

inter-domain routing separately.  Figure 4.55  shows a simple network consisting of 

three domains (ASs): domain  A ,    B ,   and  C . Within each domain, there are several 

intra-domain routers, for example, intra-domain router  B.1 ,    B.2 ,    B.3 ,   and  B.4  within 

domain  B . An interior gateway protocol will be run among these routers to establish 

and maintain their routing tables.  A.3 ,    B.1 ,    B.4 ,   and  C.1  are border routers and run 

an exterior gateway protocol to exchange routing information. Domains  A  and  C  are 

stub ASs because they do not allow transit traffic, while domain  B  is a transit AS. 

Let us explain how intra-domain routing and inter-domain routing are used to send 

packets from a host in domain  A  to a destination in domain  C . First, based on the 

lin76248_ch04_223-338.indd   293lin76248_ch04_223-338.indd   293 24/12/10   4:15 PM24/12/10   4:15 PM



294 Computer Networks: An Open Source Approach

result of intra-domain routing, all packets originated from domain  A  and destined to 

 C  need to be passed to  A ’s border router,  A.3 . Router  A.3  will forward these packets 

to  B.1  based on the routing result of inter-domain routing. Router  B.1  knows to for-

ward these packets to  B.4  based on inter-domain routing, but knows the actual path 

to route to  B.4  based on intra-domain routing. (That is, the route between  B.1  and 

 B.4  is found by intra-domain routing.) Finally, router  B.4  forwards these packets to 

the border router of domain  C ,   i.e.,  C.1 ,   based on the result of inter-domain routing. 

Router  C.1  then forwards these packets to appropriate routers based on the result of 

intra-domain routing.  

 As a final remark, let us reexamine the scalability problem of Internet routing. 

If all routers in  Figure 4.55  are viewed as a flat network, then there are 10 routers, 

and each router needs to know the routing information of the other nine routers in 

the network. However, with the two-level hierarchical organization, each router only 

needs to communicate with two or three routers. Routing information of a domain 

is summarized and exchanged among border routers (or exterior gateways) first, and 

then the summarized information will be propagated to all the interior routers. Scal-

ability is thus achieved by limiting the number of routers that need to communicate 

and exchange routing information.   

  4.6.2 Intra-Domain Routing 
 An AS comprises of several physical networks which are connected via routers. Pro-

viding connectivity among these networks is the task of routers. Recall that routers in 

an AS are under the same administrative control. Therefore, the network administra-

tor of an AS has total control over all the routers, and decides how to configure these 

routers, what routing protocols to run on these routers, and how to set link costs. 

Given the homogeneous configuration and routing protocols, the optimal path, i.e., 

the least-cost path, found by the routing protocol reflects the administrator’s concern 

Inter-domain routers (exterior gateway) 

Intra-domain routers (interior gateway)

Domain B

Domain A 
Domain C 

C.1

C.2 

C.3 

A.3 

A.1 

A.2 

B.3

B.1
B.4

B.2

   FIGURE 4.55  Inter-AS and intra-AS routing. 

lin76248_ch04_223-338.indd   294lin76248_ch04_223-338.indd   294 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 295

for route quality. For example, if link cost is set according to delay, a path with a 

shorter delay is preferred by the administrator. Usually, the link cost is set such that 

the efficiency of resource sharing  within  an AS can be maximized. 

 A routing protocol called an intra-domain routing protocol or interior gateway 

protocol (IGP) is used to maintain the routing table at each router such that the con-

nectivity among all routers in the AS is achieved. In practice, two commonly used 

intra-domain routing protocols are RIP (Routing Information Protocol) and OSPF 

(Open Shortest Path First). We examine these two protocols from the following as-

pects: what kind of path selection algorithm is used, how it operates, scalability and 

stability considerations, packet format, and open source implementation. 

  RIP 

 RIP, one of the most widely used intra-domain routing protocols, was originally de-

signed for Xerox PARC Universal Protocol to be used in the Xerox Network Systems 

(XNS) architecture. Its wide use was due to its inclusion (the  routed  daemon) in the 

popular Berkeley Software Distribution (BSD) version of UNIX in 1982. The first 

version of RIP (RIPv1) was defined in RFC 1058, and the latest update of RIPv2 was 

defined in RFC 2453. 

 RIP is a canonical example of a  distance vector routing  protocol. It is a very 

simple routing protocol designed for small networks. The link cost metric used by 

RIP is  hop count ,   i.e., all links have a cost of 1. In addition, RIP limits the maximum 

cost of a path to  15 ,   i.e., a path with a cost of 16 means unreachable. Therefore, it 

is only suitable for small networks with a  diameter  of less than 15 hops. The RIP 

protocol uses two types of messages: request and response. The response message is 

also known as the  RIP advertisements . These messages are sent over  UDP  using port 

 52 . Because the distance vector algorithm is used to find the least-cost path, when 

there is a link cost change, adjacent routers will send RIP advertisements to their 

neighbors. Each advertisement may consist of up to  25 routing entries ,   i.e.,  distance 
vectors . Each routing entry contains a  destination  network address, the  next hop,     and 

the  distance  to the destination network. RIP supports multiple address families. That 

is, the destination network address is specified by using a family field and a destina-

tion address field. In RIP, routers also send RIP advertisements to neighbors  periodi-
cally ,   with a default period of 30 seconds. In addition, two timers are associated with 

each routing entry. The first one is a  route invalid timer,     called  timeout . If no routing 

update for this route is received before the timeout timer expires, the routing entry is 

marked as an invalid (obsolete) entry. The default value for this timer is 180 seconds. 

Once an entry is marked as invalid, a deletion process begins which sets the second 

timer, called the  garbage-collection timer ,   to  120  seconds and the cost for that route 

to  16  ( infinity ). When the  garbage-collection  timer expires, the route is deleted from 

the routing table. 

 Several mechanisms are adopted in RIP to cope with the stability problem of 

distance vector routing. First, limiting the path cost to 15 enables a failure link to be 

identified  quickly . Three partial solutions to the looping problem are also adopted, 

namely split horizon, poison reverse, and stabilization (hold down) timer. As dis-

cussed above, split horizon suppresses updates on the  backward  route. Poison reverse 

explicitly sends updates to a neighbor, but for the routes learned from that neighbor, 

lin76248_ch04_223-338.indd   295lin76248_ch04_223-338.indd   295 24/12/10   4:15 PM24/12/10   4:15 PM



296 Computer Networks: An Open Source Approach

poison reverse sets their route metric in the update to  infinity . Stabilization timer 

avoids sending route updates too quickly.  

  RIP Packet Format 

 The second version of RIP has better scalability than the first version. For example, 

RIPv2 supports CIDR, which allows aggregation of routes with arbitrary prefix 

length. The packet format of RIPv2 is shown in  Figure 4.56 . Each packet is filled 

with  routing entries . Each routing entry consists of information such as address (pro-

tocol) family, destination address, subnet mask, next hop, and distance.   

  RIP Example 

 Let us look at an example of the RIP routing table. The routing table shown in 

 Figure 4.57  is taken from the border router of a department of a university (only 

   FIGURE 4.56 RIPv2 packet format. 160 8 24 31

Command

Family of net 1

Subnet mask for net 1

Version Must be zero

Address of net 1

Route tag for net 1

Next hop for net 1

Distance to net 1

Subnet mask for net 2 

Address of net 2

Next hop for net 2

Distance to net 2

Family of net 2 Route tag for net 2

Destination Gateway Distance/
Hop 

Update
Timer 

Flag Interface 

35.0.0.0/8 140.123.1.250 120/1 00:00:28 R Vlan1

127.0.0.0/8 Directly connected C Vlan0

136.142.0.0/16 140.123.1.250 120/1 00:00:17 R Vlan1

150.144.0.0/16 140.123.1.250 120/1 00:00:08 R Vlan1

140.123.230.0/24 Directly connected C Vlan230

140.123.240.0/24 140.123.1.250 120/4 00:00:22 R Vlan1

140.123.241.0/24 140.123.1.250 120/3 00:00:22 R Vlan1

140.123.242.0/24 140.123.1.250 120/1 00:00:22 R Vlan1

192.152.102.0/24 140.123.1.250 120/1 00:01:04 R Vlan1

0.0.0.0/0 140.123.1.250 120/3 00:00:08 R Vlan1

   FIGURE 4.57 RIP routing table from 
cs.ccu.edu.tw. 

lin76248_ch04_223-338.indd   296lin76248_ch04_223-338.indd   296 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 297

 Open Source Implementation 4.9: RIP 

  Overview 
 Most of the open source implementations of routing protocols, such as  routed  

and  gated ,  operate in user space. Implemented as the application-layer user 

processes, routing protocols can send and receive messages over TCP or UDP 

(see  Figure 4.58 ). Since 1996, the Zebra project ( http://www.zebra.org ), a free 

routing software distributed under the GNU General Public License, has become 

one of the major players in open source implementations of routing protocols.   

  Zebra 
 Zebra is targeted at providing reliable route servers with full function routing 

protocols. Several commonly used routing protocols are supported, such as RIPv1, 

RIPv2, OSPFv2, and BGP-4 (see  Table 4.7 ). The modular design of Zebra software 

allows it to support multiple routing protocols; that is, Zebra has a  process  for each 

protocol. Modularity also makes Zebra flexible and reliable. Each routing protocol 

can be upgraded independently, and failure of one routing protocol does not affect 

the entire system. Another advanced feature of Zebra is that it uses  multithread  

technology. These good features of Zebra make it a top-quality routing engine 

software. The current version of Zebra is beta 0.95a released in 2005. Platforms 

part of the routing table is shown). This router has several ports. One of them is 

connected to the AS border gateway, 140.123.1.250. The rest of the interfaces are 

connected to local IP subnets. VLAN is enabled such that the whole department is 

partitioned into several VLANs. CIDR is supported, thus the destination network 

address is associated with a subnet mask length. Most of the routes are learned from 

RIP advertisements (flag  R ). Subnets that are directly connected have zero cost and 

are manually configured (flag  C ). The routing table also shows the update timer for 

each routing entry.    

   FIGURE 4.58 Implementation of routing protocols as user processes. 

Packets from NICs

Data packets

Kernel

Routing manager
(Zebra, routed, gated, …)

Handling protocol specific packets
User space

Kernel space

Routing table
Control
packets

Continued

lin76248_ch04_223-338.indd   297lin76248_ch04_223-338.indd   297 24/12/10   4:15 PM24/12/10   4:15 PM

http://www.zebra.org


298 Computer Networks: An Open Source Approach

supported by Zebra include Linux, FreeBSD, NetBSD, and OpenBSD. In 2003, a 

new project, called Quagga ( http://www.quagga.net ), was forked from the GNU 

Zebra, which aimed to build a more involved community than Zebra. 

  Block Diagram 
 In the following, we will use Zebra as our example for open source implementa-

tion of routing protocols. We examine the implementation of RIP, OSPF, and 

BGP in Zebra. Before we look at the implementation of each routing protocol, 

let us discuss the general software architecture of Zebra.  Figure 4.59  shows the 

architecture of Zebra, where  routing daemons  communicate with the  Zebra dae-
mon ,  which in turn communicates with the kernel through varied APIs, such as 

netlink  and  rtnetlink .  
 The interaction between a routing daemon and the Zebra daemon follows a 

client/server model, as shown in  Figure 4.60 . It is possible to run multiple rout-

ing protocols on the same machine. In this case, each routing daemon (process) 

has its own routing table, but they need to communicate with the zebra daemon 

to change the kernel routing table.   

  Data Structures 
 The global routing table entrance in Zebra described in the data structure  vrf_
vector .  vrf_vector  consists of a set of dynamic routing tables and a set of 

static routing configurations, as shown in the following codes: 

  struct vrf { 
   u_int32_t id; /* Identifier (routing table 
vector index). */ 
   char *name; /* Routing table name. */ 
   char *desc; /* Description. */ 
   u_char fib_id; /* FIB identifier. */ 
   struct route_table *table[AFI_MAX][SAFI_MAX]; 
    /* Routing table. */ 
   struct route_table *stable[AFI_MAX][SAFI_MAX]; 
    /* Static route configuration. */ 
 }  

TABLE 4.7 RFCs Supported by Zebra

Daemons RFC # Function

ripd 2453 Manages RIPv1, v2 protocol

ripngd 2080 Manages RIPng protocol

ospfd 2328 Manages OSPFv2 protocol

ospf6d 2740 Manages OSPFv3 protocol

bgpd 1771 Manages BGP-4 and BGP-4+ protocol

lin76248_ch04_223-338.indd   298lin76248_ch04_223-338.indd   298 24/12/10   4:15 PM24/12/10   4:15 PM

http://www.quagga.net


 Chapter 4 Internet Protocol Layer 299

 Each  route_table  consists of a  tree  of routing entries. Each routing 

entry is described by the structure  route_node . Two important variables in 

the  route_node  structure are  prefix  ( struct prefix p; ) and  info
( void *info; ), which describe the actual prefix and route information of this 

route entry, respectively. Each routing process will define its own instances of 

these structures; for example, the RIP process casts the variable info to a pointer 

of  struct rip_info .  

  Algorithm Implementation 
 A route process maintains its routing table and route nodes in the routing 

table through a set of functions, such as  vrf_create() ,  vrf_table() , 

 vrf_lookup() ,  route_node_lookup() ,  route_node_get() , and 

route_node_delete() . For example, the RIP process calls  route_
node_get (rip->table, (struct prefix *) &p)  to get the route 

node for the prefix  p .  

   FIGURE 4.59 Architecture of Zebra. 

KernelRouting table

ioctl sysctl proc fs rtnetlinknetlink

Zebra Daemon

RIPd OSPFd BGPd RIPngd

R
ou

tin
g 

in
fo

rm
at

io
n

(v
ia

 s
oc

ke
t i

nt
er

fa
ce

)

   FIGURE 4.60 Client/server model of Zebra. 

Make zebra server socket

zclient_init()
Install callback functions

callback functions

Zebra client APIs

zclient_connect

Zebra server APIs Z
eb

ra
co

nn
ec

tio
n

Continued

lin76248_ch04_223-338.indd   299lin76248_ch04_223-338.indd   299 24/12/10   4:15 PM24/12/10   4:15 PM



300 Computer Networks: An Open Source Approach

  RIP Daemon 
  Overview 
 The RIP protocol is implemented as a routing daemon, called ripd.  

  Data Structures 
 The related data structures are defined in  ripd/ripd.h , including the  rip_
packet  structure for RIP packet format, the  rte  structure for  routing table 
entry  in a RIP packet, and structure  rip_info  for RIP routing information 

(pointed to by  route_node  to describe the detailed information of a node in 

the routing table). The  rte  in a RIP packet includes four important components: 

network prefix, subnet mask, next hop, and routing metric (distance), as shown 

below. 

  struct rte 
  { 
   u_int16_t family; /* Address family of this route. 
*/ 
  u_int16_t tag; /* Route Tag which included in 
RIP2 packet. */ 
  struct in_addr prefix;  /* Prefix of rip route. */ 
  struct in_addr mask; /* Netmask of rip route. */ 
  struct in_addr nexthop; /* Next hop of rip route. */ 
  u_int32_t metric;  /* Metric value of rip route. */ 
 };  

 As mentioned, the maximum metric is 16 for RIP. A definition of this maxi-

mum value could also be found in  ripd/ripd.h  as follows. 

 #define RIP_METRIC_INFINITY   16   

  Algorithm Implementations 
 The call graph of ripd is shown in  Figure 4.61 .  

 The Bellman-Ford algorithm is implemented in the  rip_rte_process()
function defined in  ripd/ripd.c . When a RIP packet is received,  rip_
rte_process()  is called with the  rte  (routing table entry) carried in the 

RIP packet as a parameter. Based on the prefix of  rte ,  route_node_get()  

is called to fetch the node information ( route_node ) from the routing table. 

Once the RIP route information ( rip_info ) is obtained through the “info” 

pointer, the Bellman-Ford algorithm is then executed. For example, if there is 

no RIP route information for this node, the prefix (Dest) must be new and a 

new  rip_info  structure is created by calling  rip_info_new() . The next 

hop and distance (metric) of  rte  are then copied into the new entry. Finally, 

 rip_zebra_ipv4_add()  is called to add the new route node into the rout-

ing table. Otherwise, if the  rte  reports a shorter distance to the prefix (Dest), 

lin76248_ch04_223-338.indd   300lin76248_ch04_223-338.indd   300 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 301

the code in  rip_rte_process()  performs the route update on the route 

node of this prefix in the routing table.   

  Exercises 
 Trace  route_node_get()  and explain how to find the  route_node  based 

on the prefix.  

   FIGURE 4.61 Call graph of ripd. 

Initialization Scheduling

Routemap Offset Zebra Daemon

Interface
rip_network
rip_neighbor

rip_passive_interface
ip_rip_version

ip_rip_authentication
rip_split_horizon

RIP peer
rip_peer_timeout
rip_peer_update
rip_peer_display

RIP core
rip_version

rip_default_metric
rip_timers
rip_route

rip_distance

Zebra
client

  OSPF 

 Open Shortest Path First (OSPF), another commonly used intra-domain routing 

protocol, is considered the successor to RIP and the dominant intra-domain routing 

protocol. The second version of OSPF and its extension for IPv6 are defined in RFC 

2328 and RFC 5340, respectively. Unlike RIP, OSPF is a  link-state routing  protocol. 

Link-state information is flooded to  all  routers in the domain. Each router uses 

Dijkstra’s algorithm to calculate the least-cost path tree using itself as the root, and 

then builds the routing table based on this tree. 

 OSPF has several unique features that make it superior to RIP. First, for  load 
balancing ,   OSPF supports equal-cost  multipath  routing. With this feature, traffic can 

be evenly distributed over equal-cost routes. Second, to support CIDR routing, each 

route is described by a prefix length. Third, multicast routing can be based on the 

results of unicast routing. The multicast routing protocol, Multicast OSPF (MOSPF), 

uses the  same  topology database as OSPF. Next, for stabilization and security rea-

sons, a routing message is accompanied by an 8-byte password for  authentication . 

Finally, for scalability, OSPF has two levels of hierarchy so that an OSPF autono-

mous system can be further partitioned into  areas . An area is a group of contiguous 

lin76248_ch04_223-338.indd   301lin76248_ch04_223-338.indd   301 24/12/10   4:15 PM24/12/10   4:15 PM



302 Computer Networks: An Open Source Approach

networks and hosts. The topology of an area is  invisible  from outside. Routing in an 

AS thus takes place at two levels:  intra-area routing  and  inter-area routing .  

  Hierarchical OSPF Network 

  Figure 4.62  shows a hierarchically structured OSPF network. As we can see from the 

figure, routers are classified into four types: two types of boundary routers and two 

types of internal routers. An area consists of several internal routers and one or more 

 area border routers . Internal routers only perform intra-area routing and learn routing 

information about the outside area from area border routers. An area border router 

participates in  both  inter-area and intra-area routing. It is responsible for summariz-

ing the routing information of other areas inside and outside the AS and broadcasting 

the routing information throughout the area. The  AS boundary router  participates in 

intra-domain routing (at the  inter-area  level) and inter-domain routing. It runs OSPF 

to obtain the routing information in the AS and some exterior routing protocol, such as 

BGP, to learn the routing information outside the AS. External routing information is 

then advertised through the AS without modification.  Backbone routers  are intermedi-

ate routers that connect AS boundary routers and area border routers.   

  OSPF Example 

 Let us use the network of  Figure 4.63  as an example to show how two levels of hier-

archical routing are performed in OSPF.  1   The AS of  Figure 4.63 ,   which consists of 

five internal routers ( RT1, RT2, RT8, RT9 ,   and  RT12 ), four area border routers ( RT3, 
RT4, RT10, RT11 ), one backbone router ( RT6 ), and two AS boundary routers ( RT5, 
RT7 ), is configured into three areas. Area 2 is a special type of area called a  stub . An 

area can be configured as a stub if there is only  one  single exit point from the area. 

The purpose of configuring an area as a stub is to avoid external routing information 

being broadcast into a stub area. The AS consists of 11 subnets ( N1  through  N11 ), 

and is connected to four external networks ( N12  to  N15 ). Note that a link cost in 

   FIGURE 4.62 Two-level hierarchical 
structure of OSPF. 

AS boundary router

Area BArea A Area C 

Area border
router 

Area border
router 

Backbone
router

Internal
router

Internal
router

Internal
router

Backbone

  1  The example is taken from RFC 2328. 

lin76248_ch04_223-338.indd   302lin76248_ch04_223-338.indd   302 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 303

 Figure 4.63  is  directional . That is, the two end points of a link may assign different 

costs to the link. For example, the link between  RT3  and  RT6  has a cost of 8 and 6 for 

 RT3-to-RT6  and  RT6-to-RT3 ,   respectively.   

 Let us first consider the intra-routing of area 1. After exchanging routing infor-

mation via flooding, area border routers  RT3  and  RT4  calculate the shortest paths by 

using the Dijkstra algorithm. The  summarized  routing information is then advertised 

to the AS backbone via  inter-area routing .  Table 4.8  shows the routes advertised by 

 RT3  and  RT4 . For internal routers  RT1  and  RT2 ,   the routing table for intra-area net-

works is built similarly.  Table 4.9  shows the intra-area routing table for  RT1 . 

 Area border routers then exchange the  intra-area route summaries  with each 

other on the AS backbone. Every area border router will hear the intra-area route 

summaries from all other area border routers. Based on these route summaries, each 

area border forms a graph of the distance to all networks outside of its area, again by 

Area 2

Area 1

Area 3

N128

8

6

6

7

7

5

3

21

1 1

9

26

1

4

1
10

1

2

Ia

Ib

6

8

1

1
1

3

3 1

2

8
RT4

RT3
RT2

N4

RT1

N2

N1

RT5

RT6

RT10

N12
RT7

N15

RT8

N7

RT9

RT11
N9

N3

Stub

H1

N11

N10

RT12

N8
N6

8
8 N13

Internal router

Area border
router

AS boundary
router

N14

   FIGURE 4.63 An example OSPF network. 

TABLE 4.8 Routes Advertised to the Backbone by RT3 and RT4

Network Cost Advertised by RT3 Cost Advertised by RT4

N1 4 4

N2 4 4

N3 1 1

N4 2 3

lin76248_ch04_223-338.indd   303lin76248_ch04_223-338.indd   303 24/12/10   4:15 PM24/12/10   4:15 PM



304 Computer Networks: An Open Source Approach

TABLE 4.9 Intra-Area Routing Table for RT1

Network Cost Next Hop

N1 3 Direct

N2 4 RT2

N3 1 Direct

N4 3 RT3

TABLE 4.10 Routes Advertised to Area 1 by RT3 and RT4

Destination Cost Advertised by RT3 Cost Advertised by RT4

Ia, Ib 20 27

N6 16 15

N7 20 19

N8 18 18

N9–N11 29 36

RT5 14 8

RT7 20 14

the Dijkstra algorithm. Area border routers then summarize and flood routes of the 

whole AS throughout each area.  Table 4.10  shows the  inter-area routes  advertised 

into area 1 by  RT3  and  RT4 . Note that area 2 is configured as a  stub  network, thus 

routing information of  N9, N10, N11  is condensed to one entry. Usually a network is 

configured as a stub area if there is a single exit point from this network. External AS 

routing information is not flooded into/throughout stub areas. 

 Besides the inter-area routing information, area border routers  RT3  and  RT4  will 

also hear  AS-external  routing information from AS boundary routers, i.e.,  RT5  and 

 RT7 . There are two types of the external route cost.  Type 1 external cost  is compatible 

with costs of routing within the area, and the cost to an external network is the sum of 

the internal cost and the external cost.  Type 2 external cost  is an order of magnitude 

larger than the internal cost, so the cost to an external network is solely determined 

by the  external  cost. When  RT3  or  RT4  broadcasts external costs learned from  RT5  

or  RT7  into area 1, internal routers of area 1, such as  RT1 ,   will build their routes to 

external networks based on the  type  of external costs advertised. Finally,  Table 4.11  

shows part of the routing table of  RT4  with  intra-area ,    inter-area ,   and  external  routes. 

   OSPF Packet Format 

 There are five types of OSPF messages, all beginning with the same header as shown 

in  Figure 4.64 . The  Type  field indicates the type of message, and  Table 4.12  shows 

the five OSPF message types. The  Type  field is followed by the IP address and the 

area ID of the  source router . The entire message, except the authentication data, is 

protected by a 16-bit checksum to which various types of authentication mechanisms 

can be applied. The  Authentication Type  indicates the mechanism being used.  

lin76248_ch04_223-338.indd   304lin76248_ch04_223-338.indd   304 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 305

TABLE 4.11 Routing Table of RT4

Destination Path Type Cost Next Hop

N1 intra-area 4 RT1

N2 intra-area 4 RT2

N3 intra-area 1 Direct

N4 intra-area 3 RT3

N6 inter-area 15 RT5

N7 inter-area 19 RT5

N8 inter-area 25 RT5

N9–N11 inter-area 36 RT5

N12 Type 1 external 16 RT5

N13 Type 1 external 16 RT5

N14 Type 1 external 16 RT5

N15 Type 1 external 23 RT5

 Except for the  hello  message, the other types of OSPF messages are used to re-

quest, send, and reply  link-state  information. An OSPF message may contain one or 

more  link-state advertisement  (LSA) messages, each describing the cost information 

of a link or a router. There are also five types of LSA messages, or LSAs, as shown 

in  Table 4.13 ,   and all types of LSAs share the same header, as shown in  Figure 4.65 . 

Each type of LSA is used by different routers to describe different routing informa-

tion. For example,  AS-external  LSAs originating from AS boundary routers describe 

routes to destinations in other autonomous systems.  

      4.6.3 Inter-Domain Routing 
 The task of inter-domain routing is to achieve connectivity among autonomous 

systems in the Internet. While intra-domain routing takes place within an AS that is 

under the same administrative control, inter-domain routing is much harder to ac-

complish due to the large number of ASs and the complicated relationships between 

ASs. The most apparent feature of inter-domain routing is that among its concerns, 

 reachability  is more important than  resource utilization . Since each AS may run a 

different routing protocol and assign link costs based on  different  criteria, finding the 

160 8 24 31

Type Packet length

Router ID

Area ID

Checksum Authentication type

Authentication

Version

Authentication

   FIGURE 4.64 OSPF header format. 

lin76248_ch04_223-338.indd   305lin76248_ch04_223-338.indd   305 24/12/10   4:15 PM24/12/10   4:15 PM



306 Computer Networks: An Open Source Approach

least-cost path between a source-destination pair may be  meaningless . For example, 

a cost of 15 is considered a large cost in one AS running RIP but a relatively small 

cost in another AS running OSPF. Therefore, link costs of different ASs may  not  be 

 compatible ,   and thus  additive . (Recall that OSPF has two types, Type 1 and Type 2, 

of external cost for the same reason.) On the other hand, finding a  loop-free  path to 

reach a destination network is more important in inter-domain routing. The compli-

cated relationship between ASs makes the task of finding a loop-free path nontrivial. 

For example, consider a university that owns an AS number and runs BGP to connect 

to two Internet service providers (ISPs), AS number X and Y, respectively. Assume 

that the university purchases more bandwidth from the ISP with AS number X. In 

addition, the university certainly does not want transit traffic from AS X to AS Y 

or vice versa passing through its domain. Therefore, it may set up a policy: “route 

all traffic to AS X unless it is down; in that case, route traffic to AS Y” and “do not 

carry traffic from AS X to AS Y or vice versa.” Such routing is referred to as  policy 
routing ,   where a policy allows the administrator of a routing domain to set rules on 

how to route packets to destinations. A policy may specify preferred ASs or not-to-

transit ASs. Policy routing also deals with security and trust issues. For example, we 

may have a policy stating that traffics destined for an AS may not be routed through 

certain domains, or that packets with prefix p should only be routed through AS X 

if prefix p is reachable from AS X. In summary,  scalability  and  stability  are more 

important in inter-domain routing than  optimization . 

TABLE 4.13 Five Types of LSAs

LS Type LS Name Originated by Scope of Flood Description

1 Router LSAs All routers Area Describes the collected states of the 

router’s interfaces to an area

2 Network LSAs Designated router Area Contains the list of routers 

connected to the network

3 Summary LSAs 

(IP network)

Area border router Associated 

areas

Describes routes to inter-area 

networks

4 Summary LSAs 

(ASBR)

Area border router Associated 

areas

Describes routes to AS boundary 

routers

5 AS-external LSAs AS boundary router AS Describes routes to other ASs

TABLE 4.12 Five Types of OSPF messages

Type Description

1 Hello

2 Database Description

3 Link State Request

4 Link State Update

5 Link State Acknowledgment

lin76248_ch04_223-338.indd   306lin76248_ch04_223-338.indd   306 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 307

160 8 24 31

LS typeOptions

Link state ID

Advertising router

LS sequence

LS checksum Length

LS age

   FIGURE 4.65 LSA header format. 

 Open Source Implementation 4.10: OSPF 

  Overview 
 The most interesting part of the OSPF source code is the implementation 

of Dijkstra’s algorithm as shown in  Figure 4.45 . Dijkstra’s algorithm is 

implemented in  ospf_spf_calculate()  (defined in  ospf_spf.c ), 

which is called by  ospf_spf_calculate_timer()  to calculate the 

shortest paths for each area when the scheduled timer expires (scheduled by 

 ospf_spf_calculate_schedule() ).  

  Data Structures 
 Related data structures include  vertex ,  route_table , and  route_node  

defined in  ospf_spf.h  and  table.h . The root of the shortest path tree 

across an area is pointed to by the variable  area->spf , and each node in the 

tree is described by a structure of  vertex : 

  struct vertex 
  { 
   u_char flags; 
   u_char type; /* router vertex or network vertex */ 
   struct in_addr id; /* network prefix */ 
   struct lsa_header *lsa; 
   u_int32_t distance; 
   list child; /* list of child nodes */ 
   list nexthop; /* next hop information for routing 
table */ 

 };   

  Algorithm Implementations 
 The  ospf_spf_calculate()  is scheduled to run when various types of 

LSAs (Network LSA, Router LSA, Summary LSA) are  received  or when the 

Continued

lin76248_ch04_223-338.indd   307lin76248_ch04_223-338.indd   307 24/12/10   4:15 PM24/12/10   4:15 PM



308 Computer Networks: An Open Source Approach

virtual link or the status of the area border router has been changed.  Figure 4.66  

shows the call graph of  ospfd  of Zebra. 

 The  while  loop of  Figure 4.45  is implemented by a  for  loop in  ospf_spf_
calculate() . The list of nodes (candidates) not included in T (i.e.,  V-T  in 

 Figure 4.45 ) is obtained by the  ospf_spf_next()  function first. The node 

which has the minimum cost is obtained from the head of the candidate list. The 

 ospf_vertex_add_parent()  is called to set up the next hop informa-

tion (i.e.,  p(v)=w  in  Figure 4.45 ), and then the node is added to the SPF tree 

by  ospf_spf_register() . The operation on updating the cost of nodes 

( C(v)=MIN(C(v), C(w)+c(w,v)) ) is also performed in  ospf_spf_
next()  by the following statement: 

  w->distance = v->distance + ntohs (l->m[0].metric);    

  Exercises 
 Trace the source code of Zebra and explain how the shortest path tree of each 

area is maintained.  

   FIGURE 4.66 Zebra implementation of OSPF. 

Interface

Initialization scheduling

RouteOSPF core

ip_ospf_interface
ip_ospf_neighbor

ospf_router_id
network_area

show_ip_ospf_cmd

OSPF SPF
calculation

zclient

Zebra
daemon

Network

LSDBOSPF flooding
Route map

route_map_update
route_map_event

LSA
Link State

Advertisement

ASE
AS external

route calculation

ospf_spf_calculate_schedule() ospf_spf_calculate_timer()

ospf_spf_calculate()

lin76248_ch04_223-338.indd   308lin76248_ch04_223-338.indd   308 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 309

 Performance Matters: Computation Overhead 
of Routing Daemons 

  Figure 4.67  compares the execution time of the core function in RIP and 

OSPF routing daemons, i.e.,  rip_rte_process()  and  ospf_spf_cal-
culate()  for RIP and OSPF, respectively. RIP scales well even under a 

1500-router network. However, the execution time of OSPF exceeds 10 ms in 

a 250-router network and surpasses 100 ms in a 1500-router network. Com-

putational complexity of the routing algorithm is the key impact factor on the 

execution time. RIP adopts the Bellman-Ford algorithm, whose time complexity 

is less than the Dijkstra algorithm used by OSPF.  

   FIGURE 4.67 Execution time of RIP and OSPF. 

1
100 250

# of routers

500 1500

10

100

1000

T
im

e 
(μ

s)

10000

100000

rip_rte_process()

ospf_spf_calculate()

  BGP 

 The Border Gateway Protocol version 4 (BGP-4) is the current de facto standard 

for inter-domain routing. The most recent RFC for BGP-4 is RFC 4271. Since the 

backbone of a large ISP (an AS by itself) that hosts many enterprise or campus ASs 

is very likely to have more than one border router connected to other ASs, there are 

two types of BGP:  interior  BGP (IBGP) and  exterior  BGP (EBGP). An IBGP session 

is established for communication between two BGP routers within the same AS, say 

an ISP, while an EBGP session is established for two BGP routers in different ASs. 

The purpose of IBGP is to make sure that if there are multiple routers running BGP 

in the same AS, the routing information between them is kept synchronized. At least 

one of the routers in an AS is selected as the representative of the AS, called a  BGP 
speaker . A BGP speaker uses an EBGP session to exchange routing information with 

peer  BGP speakers in other ASs. Furthermore, as stability and reliability are very 

important to inter-domain routing, BGP runs over  TCP  on port  179 ,   and authentica-

tion can be used to further secure the TCP connection. For routers  within  the same 

lin76248_ch04_223-338.indd   309lin76248_ch04_223-338.indd   309 24/12/10   4:15 PM24/12/10   4:15 PM



310 Computer Networks: An Open Source Approach

AS, a  logical   fully connected  mesh is constructed based on TCP and the underlying 

IBGP sessions. (Again, among the interior BGP routers, one of them is designated 

as the BGP speaker which represents and speaks for the AS.) Finally, CIDR is also 

supported by BGP.  

  Path Vector Routing 

 The large number of AS routers in the Internet makes  distance vector  algorithm more 

suitable for BGP than link state algorithm. However, since reachability and loop-

free operation are more important concerns than route optimization, BGP adopts 

 path vector  algorithm, a  variant  of distance vector algorithm, for finding the rout-

ing path between two networks. The path vector algorithm also exchanges routing 

information with  neighbors only ,   but in order to prevent looping, the  complete path  

information is advertised when exchanging a route entry. Since each AS has a unique 

AS number (a 16-bit identifier), a complete path keeps an ordered sequence of AS 

numbers the path has traversed through. A loop is detected if the current AS number 

is found in the path. Furthermore, due to the inconsistency among different ASs’ cost 

definitions, the exchanged information of a route does  not  contain the cost informa-

tion. Therefore, the selection of a route path depends mostly on the administrative 

preference and the number of ASs on the path. 

 There are four types of BGP packets, including OPEN, KEEPALIVE, 

UPDATE, and NOTIFICATION. After two BGP routers establish a TCP connection, 

an OPEN message is sent to the peer. Afterward, they send KEEPALIVE messages 

to each other periodically to make sure that the peer is alive. Routing information is 

exchanged using UPDATE messages. Unlike RIP, BGP does  not  refresh the entire 

table periodically due to its big table size. The UPDATE message includes a set 

of routes that the sender wants to  withdraw  and the  path  information for a set of 

destination networks. The format of UPDATE messages is shown in  Figure 4.68 . 

The  path attributes  are applied to all destinations listed in the destination networks 

(called Network Layer Reachability Information, NLRI). Information carried in path 

attributes may include the  origin  of the path information (from IGP, EGP, or incom-

plete), the list of ASs on the  path  to the destination, the  next hop  to the destination, 

the discriminator used for multiple AS  exit points  (Multi_Exit_Disc, MED), the 

160 8 24 31

Withdraw length

Withdraw destinations (variable)

Path length 

Path attributes (variable)

Destination networks (variable)

   FIGURE 4.68 Packet format for a BGP UPDATE message. 

lin76248_ch04_223-338.indd   310lin76248_ch04_223-338.indd   310 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 311

local preference (LOCAL_PREF) to indicate the preference of routers within an AS, 

routes that have been  aggregated ,   and the identifier of the AS that aggregates routes. 

Finally, a NOTIFICATION message is sent to the peer when an error is encountered.  

 Each BGP router keeps  all  feasible paths to a destination, but advertises 

only the “ best ” path to its neighbors. Selecting the “best” route depends on the poli-

cies of the AS. However, in general, preference goes to  larger LOCAL_REF ,    shorter 
path ,    lower origin code  (IGP is preferred to EGP),  lower MED ,    closer  IGP neighbor, 

and BGP router with lower IP address. After the “best” route is determined for a des-

tination,        2   the  BGP speaker  then advertises the highest degree of preference of each 

destination to  neighbor BGP speakers  via EBGP. A BGP speaker will also propagate 

its learned routing information to BGP routers (non BGP speakers) via IBGP.   

  BGP Example 

 Finally, let us look at an example of a BGP routing table.  Table 4.14  shows part of 

the BGP table taken from the border router of a university. (The full BGP table of 

an Internet backbone router has more than 300,000 routing entries; see  http://bgp.

potaroo.net/  for the current BGP table size.) The AS number of the university is 

17712. The first routing entry indicates that the BGP router had received UPDATE 

messages, regarding the destination network of 61.13.0.0/16, from three neigh-

bors, 139.175.56.165, 140.123.231.103, and 140.123.231.100. The best AS path to 

61.13.0.0/16 is through 140.123.231.100 (maybe just because it is the shortest path). 

The origin code indicates that the router’s neighbor 140.123.231.100 learned the AS 

PATH via an IGP protocol.      

TABLE 4.14 A BGP Routing Table Example

Network Next Hop LOCAL_
PREF

Weight Best? PATH Origin

61.13.0.0/16 139.175.56.165 0 N 4780,9739 IGP

140.123.231.103 0 N 9918,4780,9739 IGP

140.123.231.100 0 0 Y 9739 IGP

61.251.128.0/20 139.175.56.165 0 Y 4780,9277,17577 IGP

140.123.231.103 0 N 9918,4780,9277,17577 IGP

211.73.128.0/19 210.241.222.62 0 Y 9674 IGP

218.32.0.0/17 139.175.56.165 0 N 4780,9919 IGP

140.123.231.103 0 N 9918,4780,9919 IGP

140.123.231.106 0 Y 9919 IGP

218.32.128.0/17 139.175.56.165 0 N 4780,9919 IGP

140.123.231.103 0 N 9918,4780,9919 IGP

140.123.231.106 0 Y 9919 IGP

  2  Actually, it can be a set of destination networks. 

lin76248_ch04_223-338.indd   311lin76248_ch04_223-338.indd   311 24/12/10   4:15 PM24/12/10   4:15 PM

http://bgp.potaroo.net/
http://bgp.potaroo.net/


312 Computer Networks: An Open Source Approach

 Open Source Implementation 4.11: BGP 

  Overview 
 BGP adopts distance vector routing but includes routing path information in 

its messages to avoid looping. It emphasizes  policy  routing instead of path cost 

optimization. Therefore, in its implementation, we shall look for how it chooses 

its  preferred  route according to some policies.  

  Data Structures 
 The BGP routing table is a structure of  bgp_table , which consists of BGP 

nodes (structure of  bgp_node ) (see  bgpd/bpg_table.h ). Each  bgp_
node  has a pointer to BGP route information,  struct bgp_info , which 

is defined in  bgpd/bg_route.h . The  bgp_info  consists of a pointer to 

 struct peer , which stores neighbor routers’ information.  

  Algorithm Implementations 
  Figure 4.69  shows the call graph of bgpd for processing a BGP packet. When 

a BGP UPDATE packet is received, the  bgp_update()  function is invoked 

with path attribute  attr  as one of its parameters.  bgp_update()  then calls 

 bgp_process()  to process updates on routing information, which in turn 

calls  bgp_info_cmp()  to compare the priority of two routes according to the 

following priority rule: 

    0. Null check: prefer non-null route  

   1. Weight check: prefer larger weight  

   2. Local preference check: if local preference is set, prefer larger local 

preference  

   3. Local route check: prefer static route, redistributed route, or aggregated 

route  

   4. AS path length check: prefer shorter AS path length  

   5. Origin check: prefer origin of the route learned in following order: IGP, 

EGP, incomplete  

   6. MED check: prefer lower MED (MULTI_EXIT_DISC)  

   7. Peer type check: prefer EBGP peer than IBGP peer  

   8. IGP metric check: prefer closer IGP  

   9. Cost community check: prefer low cost  

   10. Maximum path check: not implemented  

   11. If both paths are external, prefer the path that was received first (the 

oldest one)  

   12. Router-id comparison: prefer lower id  

   13. Cluster length comparison: prefer lower length  

   14. Neighbor address comparison: prefer lower IP address     

lin76248_ch04_223-338.indd   312lin76248_ch04_223-338.indd   312 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 313

  Exercises 
 In this exercise, you are asked to explore the prefix length distribution of the 

current BGP routing table. First, browsing at  http://thyme.apnic.net/current/ , 

you will find some interesting analysis of BGP routing tables seen by APNIC 

routers. In particular, “number of prefixes announced per prefix length” will let 

you know the number of routing entries of a backbone router and the distribution 

of prefix length of these routing entries. 

 1. How many routing entries does a backbone router own on the day you visit 

the URL?  

 2. Draw a graph to show the distribution of prefix length (length varies from 

1 to 32) in a logarithmic scale because the number of prefixes announced 

varies from 0 to tens of thousands.    

   FIGURE 4.69 Call graph of bgpd in Zebra. 

bgp_update() bgp_process() bgp_info_cmp()

  4.7 MULTICAST ROUTING 

  So far we have seen the complete Internet solution for host-to-host packet delivery 

from a single source to a single destination. However, many emerging applications 

require packet delivery from one or more sources to a group of destinations. For ex-

ample, video conferencing and streaming, distance learning, WWW cache updating, 

shared whiteboard, and network games are popular applications of multiparty com-

munications. Sending a packet to multiple receivers is called multicast. A multicast 

session consists of one or more senders, and usually several receivers that send or 

receive packets on the same multicast address. 

  4.7.1 Shifting Complexity to Routers 
Scalability  is still the major concern in implementing the Internet multicast service. 

We first address several issues from the aspects of senders, receivers, and routers 

while keeping scalability in mind. A sender may face the following questions: How 

does the sender send a packet to a group of receivers? Does the sender need to know 

where  and  who  the receivers are? Does the sender have control over the  group mem-
bership ? Can more than one sender send packets to a group simultaneously? Keeping 

the sender’s work as simple as possible can make the task of sending a packet to a 

multicast group  highly scalable, so the solution provided by the Internet multicast is 

to remove the burden of multicast from the sender and leave it to Internet  routers . 

This, however, shifts the complexity back to the core networks, the routers, and away 

from the hosts at the edge. It turns the core network from  stateless  to  stateful ,   as we 

shall see later, which has a large impact on the infrastructure. Thus, whether to put 

lin76248_ch04_223-338.indd   313lin76248_ch04_223-338.indd   313 24/12/10   4:15 PM24/12/10   4:15 PM

http://thyme.apnic.net/current/


314 Computer Networks: An Open Source Approach

multicast at the IP layer or leave it to the application layer is still a debatable issue. 

We shall turn to this issue at the end of this section. 

 As shown in  Figure 4.7 ,   a class D IP address space is reserved for multicast. A 

multicast group is assigned with a class D IP address. A sender intending to send 

packets to the multicast group just puts the group’s class D IP address in the destina-

tion field of the IP header. A sender does  not  need to know  where  the receivers are 

and  how  packets are delivered to the group members. In other words, the sender is  off 
duty  on maintaining the list of group members and putting receivers’ IP addresses in 

the IP header. Scalability is thus achieved since from a sender’s perspective, sending 

a multicast packet is as simple as sending a unicast packet. Multiple senders can send 

packets to a multicast group simultaneously. The drawback is that the sender has no 

control on the group membership at the Internet layer (but could at the application 

layer). 

 From a receiver’s aspect, one might ask the following questions: How does one 

 join  a multicast group? How does one know about ongoing multicast groups on the 

Internet? Can anyone join a group? Can a receiver  dynamically  join or leave a group? 

Can a receiver know other receivers in the group? Again, the solution of the Internet 

is to make the task of receiving a multicast packet as simple as receiving a unicast 

packet. A receiver sends a  join  message to the  nearest router  to indicate which mul-

ticast group (a class D IP address) it wants to join. A receiver can then receive mul-

ticast packets in the same way as receiving unicast packets. A receiver can join and 

leave a multicast group whenever it wishes. There is no specific mechanism other 

than manual configuration for assigning a class D IP address to a group. However, 

there are protocols and tools for  advertising  addresses of multicast sessions on the 

Internet. Furthermore, the IP layer does not provide mechanisms for knowing all 

receivers in a multicast group. It leaves the job to application protocols. 

 Finally, a router may ask how to deliver multicast packets. Does a router need 

to know all senders and receivers in a multicast group? As multicast senders and 

receivers shake off the burden of multicast, routers need to take on the burden of 

this work. There are two tasks for multicast routers:  group membership management  
and multicast packet  delivery . First, a router needs to know whether any host in its 

 directly connected subnets  have joined a multicast group. The protocol used to man-

age multicast group membership information is called Internet Group Management 

Protocol (IGMP). Next, a router needs to know how to deliver multicast packets to all 

members. One might think of establishing many one-to-one connections to deliver 

multicast packets. However, this is certainly not an efficient approach, as the Internet 

would be filled with  duplicated  packets. A more efficient approach is to establish a 

 multicast tree ,   rooted at  each  sender or  shared  by the whole group. Multicast pack-

ets can then be delivered on the multicast tree where a packet is duplicated only at 

 branches  of the tree. The task of establishing a multicast tree is done by the multicast 

routing protocol, such as DVMRP, MOSPF, and PIM. 

 It should be clear now that the IP layer solution for multicast is to make the task 

of sender and receiver as simple as possible while leaving the burden on routers. In 

the following, we thus focus on the tasks of routers. Specifically, we first examine the 

group membership management protocol, which runs between  hosts  and the  desig-
nated router  of an IP subnet. It allows the designated router to know whether  at least 

lin76248_ch04_223-338.indd   314lin76248_ch04_223-338.indd   314 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 315

one  host has joined a specific multicast group. We then discuss the multicast routing 

protocols. Multicast routing protocols, running among multicast-capable routers, are 

used to establish the multicast tree(s) for each multicast group. Finally, since most 

of the multicast routing protocols are designed for  intra-domain  multicast, we shall 

introduce some new developments for  inter-domain  multicast routing.  

  4.7.2 Group Membership Management 
 A router that is responsible for delivering multicast packets to its  directly connected 
IP subnet  is called a  designated router . A designated router needs to maintain group 

membership information of all hosts in the subnet such that it knows whether pack-

ets destined for a specific multicast group should be forwarded into the subnet. The 

group membership management protocol used in the Internet is called Internet Group 

Management Protocol (IGMP). 

  Internet Group Management Protocol (IGMP) 

 The current version of IGMP is IGMPv3, defined in RFC 3376. IGMP allows a 

router to query hosts in its directly connected subnet to see whether any of them has 

joined a specific multicast group. It also allows a host to respond to the query with a 

report or to inform the router that the host will leave a multicast group. 

 Basically, there are three types of IGMP messages:  query ,    report ,   and  leave . 

The IGMP packet format is shown in  Figure 4.70 . The query message has a type 

value of 0x11. A query message could be a  general  query or a  group-specific  

query. The multicast group address is filled with zeros when it is a general query 

message. An IGMPv3 membership report message has a type value of 0x22. For 

backward compatibility, the IGMPv1 membership report, IGMPv2 membership 

report, and  IGMPv2 leave group message use type 0x12, 0x16, 0x17, respectively. 

IGMP messages are carried within an IP packet with protocol identifier  2  and sent 

to specific multicast addresses such as  all-systems  multicast address and  all-routers  

multicast address.  

 Let us briefly view the operation of IGMP. A multicast router plays one of two 

roles:  querier  or  nonquerier . A querier is responsible for maintaining membership 

information. If there is more than one router in an IP subnet, the router with the 

 smallest  IP address becomes the querier, and the other routers are nonquerier. Routers 

determine their roles by hearing the query messages sent by other routers. A querier 

will periodically send general query messages to solicit membership information. A 

general query message is sent to 224.0.0.1 (ALL-SYSTEMS multicast group).  

160 8 24 31

Type
Max. resp.

code
Checksum

multicast group Address

   FIGURE 4.70 IGMP packet format. 

lin76248_ch04_223-338.indd   315lin76248_ch04_223-338.indd   315 24/12/10   4:15 PM24/12/10   4:15 PM



316 Computer Networks: An Open Source Approach

  At Least One Member or None 

 When a host receives a general query message, it waits a random amount of time 

between zero and the maximum response time, which is given in the general query 

message. The host then sends a report message with  TTL=1  when the timer expires. 

However, if the host sees report messages of the same multicast group sent by other 

hosts, the host will stop the timer and  cancel  the report message. The use of a random 

timer is to suppress  further  report messages from other group members as the router 

only cares whether  at least one  host joined the multicast group. Similar actions are 

taken when a host receives a group-specific query message if the host is a member of 

the multicast group specified by the query message. 

 When a router receives a report message, it adds the group reported in the mes-

sage to the list of multicast groups in its database. It also sets a timer for the member-

ship to the “Group Membership Interval,” and the membership entry will be deleted 

if no reports are received before the timer expires. (Recall that query messages are 

sent periodically. So a router is expected to see reports back before the timer expires.) 

Besides responding to query messages, a host can send an  unsolicited report  imme-

diately when it wants to join a multicast group. 

 When a host leaves a multicast group, it should send a leave group message to 

the all-routers multicast address (224.0.0.2) if it is  the  last host that replies to a query 

message to that group. When a queries router receives a leave message, for every 

“Last Member Query Interval” it sends group-specific queries to the associated 

group on the attached subnet for “Last Member Query Count” times. If no report is 

received before the end of “Last Member Query Interval,” the router assumes that the 

associated group has no local member and that there is no need to forward the mul-

ticasts for that group onto the attached subnet. By this assumption, the router does 

not need to count how many hosts are members of the associated group when a host 

leaves the group; it simply asks “anybody still in this group?” 

 From the overview of IGMP operations, we can see that there is no control 

on who can join a multicast group or who can send packets to a multicast group. 

There is also no IP-layer mechanism for knowing the receivers in a multicast group. 

IGMPv3 adds support for “ source filtering ”: that is, a receiver may request to receive 

packets only from specific source addresses. A receiver may join a multicast group 

by invoking a function like IPMulticastListen (socket, interface, multicast-address, 

filter-mode, source-list), where the filter-mode is either INCLUDE or EXCLUDE. 

If the filter-mode is INCLUDE, the receiver expects to receive packets only from 

the senders in the source-list. On the other hand, if the filter-mode is EXCLUDE, no 

packets are to be received from senders in the source-list.   

  4.7.3 Multicast Routing Protocols 
 The second component of multicast is the multicast routing protocol, which builds 

multicast trees for multicast packet delivery. What should a multicast tree look like? 

From a  sender’s  point of view, it should be a  unidirectional  tree rooted at the sender 

that can reach all receivers. However, what happens to a multicast group with more 

than one sender? In the Internet, two approaches have been adopted for building 

lin76248_ch04_223-338.indd   316lin76248_ch04_223-338.indd   316 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 317

multicast trees; they differ in whether a  single  tree is used by  all  senders to deliver 

packets or whether each sender has a  source-specific  multicast tree to deliver packets. 

How scalable are these two approaches? The first approach, a  group shared tree ,   is 

more scalable since a multicast router only maintains  per-group  state information, 

while the latter source-based approach requires  per-source per-group  state informa-

tion. However, the source-based approach renders a shorter path because packets 

traverse along the tree. Multicast routing protocols that build source-based trees 

include Distance Vector Multicast Routing Protocol (DVMRP), Multicast extension 

of OSPF (MOSPF), and dense mode of Protocol Independent Multicast (PIM-DM). 

On the other hand, PIM sparse mode (PIM-SM) and Core-Based Trees (CBT) build 

group-shared trees. It appears that on a sparse group where members are distrib-

uted sparsely over a network topology, the shared tree approach is preferred for its 

scalability, which shall be clarified later. 

  Steiner Tree vs. Least-Cost-Path Tree 

 Before we describe the details of multicast routing protocols, let us examine two is-

sues involved in building a multicast tree. We have discussed optimal point-to-point 

routing; what is optimal multicast routing? In the literature, the multicast problem 

is modeled as a graph theory problem in which each link is assigned a cost. Optimal 

multicast routing involves finding a multicast tree with minimum cost, where the cost 

of a multicast tree is the sum of the costs of all links on the tree. Certainly, the multi-

cast tree must be rooted at the source and span to all receivers. The optimal multicast 

tree, or the tree with the least total cost, is called a  Steiner tree . Unfortunately, the 

problem of finding a Steiner tree is known to be NP-complete, even if all the links 

have unit cost. Thus, most previous researchers have focused on developing  heuristic  

algorithms that take  polynomial  time and produce near-optimal results. Furthermore, 

these heuristic algorithms often guarantee that their solutions are within twice the 

cost of the optimal solution. However, even though heuristic algorithms show good 

performance, none of the Internet multicast routing protocols try to solve the Steiner 

tree problem. Why? There are three obvious reasons that make these heuristic algo-

rithms unpractical. First, most of these algorithms are  centralized  and require global 

information—that is, the information about all links and nodes in the network. How-

ever, a centralized solution is not suitable for the distributed Internet environment. 

Second, the Steiner tree problem is formulated for multicast with  static  membership, 

where the source node and all receivers are fixed and known a priori. This is certainly 

not the case in the Internet. Finally, the computational  complexity  of most heuristic 

algorithms is not acceptable for online computation. After all, minimizing the cost 

of a multicast tree is not as important as scalability. Furthermore, without a clear 

definition of the link cost, how can we interpret the cost of a multicast tree and how 

important is it to minimize the cost? 

 Another issue on building a multicast tree is whether the multicast routing 

protocol relies on some specific unicast routing protocol. Instead of solving the 

Steiner tree problem, most current Internet multicast routing protocols build the 

multicast tree based on  least-cost path  algorithms. For source-based trees, the path 

from the source to each destination is the least-cost path found by  unicast  routing. 

lin76248_ch04_223-338.indd   317lin76248_ch04_223-338.indd   317 24/12/10   4:15 PM24/12/10   4:15 PM



318 Computer Networks: An Open Source Approach

The combination of least-cost paths from the source to each receiver thus forms 

a  least-cost-path tree  rooted at the source. For group-shared trees, least-cost-path 

trees are built from a center node (called a  rendezvous point  or core) to all receivers. 

Furthermore, the least-cost paths are used to send packets from sources to the center 

node. Since both types of trees are built based on the least-cost paths, the results of 

unicast routing certainly can be utilized. The question is then whether a multicast 

routing protocol needs the  cooperation  of certain specific unicast routing protocols, 

or whether it is  independent  of the underlying unicast routing protocol. For current 

Internet solutions, DVMRP is an example of the former approach while PIM, as its 

name indicates, is independent of unicast routing protocol. In the following, we in-

troduce the two most commonly used multicast routing protocols: DVMRP and PIM.   

 Principle in Action: When the Steiner Tree 
Differs From the Least-Cost-Path Tree 

  Figure 4.71  shows a simple example where the least-cost-path tree is not the 

Steiner tree. In this example,  A  is the source node and C, D are two receivers. 

The least-cost path from  A  to  C  is the direct link from A to C with cost of 3. The 

same is true of least-cost path from  A  to  D . Therefore, the least-cost path tree 

rooted from  A  and spanning to  C  and  D  has cost of 6. However, the optimal solu-

tion, the Steiner tree, is rooted from  A ,  connects to  B  first, and then spans to  C  

and  D . The Steiner tree has a cost of 5, which is less than the least-cost-path tree.  

3

4
3

3
1

1

A

C

D

B

   FIGURE 4.71 Example where Steiner 
tree differs from least-cost-path tree. 

  Distance Vector Multicast Routing Protocol (DVMRP) 

 DVMRP, proposed in RFC 1075, is the first and most widely used multicast routing 

protocol in the Internet. DVMRP has RIP as its built-in unicast routing protocol. 

When Internet multicast was initiated, DVMRP was the multicast routing protocol 

that ran on an experimental backbone called MBone. DVMRP constructs a  source-
based  tree for each multicast sender. A multicast tree is constructed in two steps. In 

the first step,  Reverse Path Broadcast  (RPB) is used to broadcast multicast packets to 

all routers.  Prune  messages are then used to prune the RPB tree into a Reverse Path 

 Multicast  (RPM)  tree .  

lin76248_ch04_223-338.indd   318lin76248_ch04_223-338.indd   318 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 319

  Reverse Path Broadcast (RPB) 

 Traditionally, broadcast in a mesh network is implemented by  flooding ,   i.e., forward-

ing a broadcast packet to all outbound links except the interface on which the packet 

was received. However, a router will receive the same packet more than once due to 

flooding. How do we avoid a router forwarding the same packet more than once? 

RPB is a brilliant idea that is illustrated in  Figure 4.72 . When a broadcast packet is 

received by a router, the packet is flooded (forwarded) only if the packet  arrived  on 

the link that is on the shortest (least-cost) path from the router  back  to the sender. 

Otherwise, the packet is simply discarded. A broadcast packet is guaranteed to be 

flooded by a router only  once ,   and the flooding procedure stops when all routers have 

done the flooding once. A router may still receive the same packet more than once, 

but there is no looping or infinite flooding problem. 

 Clearly, RPB requires that each router has already built its unicast routing table. 

That is, DVMRP needs an underlying unicast routing algorithm. RPB is called 

“reverse path” because though the shortest-path tree should be rooted at the  sender  

and toward the receivers, each router decides whether to flood the packets based on 

the information of the “reverse shortest path,” i.e., from the  router  to the  sender . 

As a consequence, packets arrive at each destination through the shortest path from 

the  receiver  to the  sender . Why not just use the forward shortest path? Recall that 

the distance vector algorithm finds the next hop from a router to destinations. There-

fore, a router that receives a broadcast packet does not know the shortest path from 

the sender to itself, but knows the shortest path from itself to the sender.   

  Reverse Path Multicast (RPM) 

 When a source broadcasts a multicast packet to all routers (and subnets), many 

routers and subnets that do not want to receive this packet cannot avoid receiving 

it. To overcome this problem, a router not leading to any receivers would send a 

prune to its  upstream  router, as shown in  Figure 4.73 . (Recall that a router knows 

   FIGURE 4.72 Reverse Path Broadcast (RPB). 

ForwardMember Source

Router w/
member

Router w/o
member

Discard

lin76248_ch04_223-338.indd   319lin76248_ch04_223-338.indd   319 24/12/10   4:15 PM24/12/10   4:15 PM



320 Computer Networks: An Open Source Approach

membership information via IGMP.) An intermediate router maintains a list of 

dependent  downstream  routers for each multicast group. When a prune message 

is received, an intermediate router then checks to see that none of its downstream 

routers have members that joined the multicast group—that is, that all of them have 

sent prune messages to it. If yes, it then sends another prune message to its upstream 

router. No packet will be sent to the router after it has been pruned from the RPB tree. 

As shown in  Figure 4.74 ,   a Reverse Path Multicast (RPM) tree will then be formed 

after pruning the RPB tree. 

 The next question is what happens if a host under a pruned branch wants to join 

the multicast group. There are two possible solutions. First, a prune message consists 

of a  prune lifetime ,   which indicates how long a pruned branch will remain pruned. 

Therefore, after the prune lifetime times out, a pruned branch will be added back to 

   FIGURE 4.73 Pruning an RPB tree. 

ForwardMember Source

Router w/
member

Router w/o
member

Prune

   FIGURE 4.74 The RPM tree of  Figure 4.73  after pruning. 

Member Source

Router w/
member

Router w/o
member

Forward

lin76248_ch04_223-338.indd   320lin76248_ch04_223-338.indd   320 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 321

the tree. In other words, a multicast packet will be flooded periodically when the 

prune lifetime expires. On the other hand, a router can also send a  graft  message 

explicitly to its upstream router to force a pruned branch to be added back to the 

multicast tree again.   
 DVMRP has several drawbacks. For example, the first few multicast packets 

have to be flooded to all routers. This makes it only work well for groups with  dense  

members. The lifetime feature of a prune message also requires a router to periodi-

cally refresh its prune state. Finally, since DVMRP builds source-based trees, each 

router needs to maintain  per-source per-group  state information. For a multicast 

group with two senders, an intermediate router needs to maintain two states for 

this group because the multicast trees for different senders would be different. That 

is, how to forward packets depends on who the sender is. As a consequence, with 

DVMRP a large amount of state information needs to be stored at each router. In 

summary, even though DVMRP is not very scalable, DVMRP is still the most widely 

used protocol for its simplicity.  

  Protocol Independent Multicast (PIM) 

 As we have seen, DVRMP is not scalable for multicast groups with sparsely 

distributed members. The reasons are twofold: First, source-oriented tree con-

struction, the way an RPB tree is pruned to an RPM tree, is not scalable; second, 

building a source-based multicast tree is not scalable as it requires too much state 

information. The state overhead grows quickly as the  path  gets longer and as 

the number of  groups  and  senders per group  gets larger. For  sparsely  distributed 

group members, a  shared  tree with  receiver -oriented tree construction would be 

more scalable, so a new multicast routing protocol has been proposed for the 

Internet, called Protocol Independent Multicast (PIM) protocol. PIM explicitly 

supports two ways of constructing a multicast tree by using two modes. PIM 

 dense  mode (PIM-DM) constructs a  source-based  multicast tree in a manner very 

similar to DVMRP and is suitable for multicast groups with densely distributed 

members. On the other hand, PIM  sparse  mode (PIM-SM) constructs only a group 

 shared  tree for each multicast group and, thus, is suitable for groups with mem-

bers that are widely dispersed. Since PIM-DM is very similar to DVMRP, we will 

only discuss PIM-SM in this section. A recent version of PIM-SM is described in 

RFC 4601. We also note that the scalability problem of multicast also results from 

a large number of multicast groups globally that are neither tackled by DVMRP 

nor PIM. 

 PIM-SM is designed with the principle that a router should not be involved in 

multicast routing of a multicast session if it does not lead to any  receiver . Therefore, 

in PIM-SM, the tree is constructed in a  receiver-driven  manner: That is, a router that 

leads to the subnets where the receivers are located needs to send a join message 

 explicitly . The center node of a shared tree is called a rendezvous point (RP). The RP 

of each multicast group is uniquely determined by a  hash  function which we shall 

describe later. The shared tree is thus called an  RP-based  tree (RPT). The router 

responsible for forwarding multicast packets and sending join messages for a subnet 

is called the  designated router  (DR). The routing table called the Multicast Routing 

Information Base (MRIB) is used by a DR to determine the next-hop neighbor to 

lin76248_ch04_223-338.indd   321lin76248_ch04_223-338.indd   321 24/12/10   4:15 PM24/12/10   4:15 PM



322 Computer Networks: An Open Source Approach

which any join/prune message is sent. MRIB is either taken directly from the unicast 

routing table or derived by a separate routing protocol. Let us examine the  three 
phases  of PIM-SM that construct an RPT in a receiver-oriented manner.  

  Phase One: RP Tree 

 In phase one, an RP tree is constructed as shown in  Figure 4.75 . We describe the 

procedure from two aspects: receivers and senders. When a receiver wants to join a 

multicast group, it sends a join message to its DR using IGMP. Upon receiving the 

join message, the DR sends a general group join message to the  RP . A general group 

join message is denoted by (*,G), which indicates that the receiver wants to receive 

multicast packets from  all  sources. As the PIM join message travels toward RP on 

the shortest path from DR to RP, it may finally reach RP (e.g., the join message from 

A in  Figure 4.75 ), or may reach a router already on the RPT (e.g., the message from 

B in  Figure 4.75 ). In both cases, routers on RPT will know that the DR wants to join 

the multicast group and will forward multicast packets along the reverse shortest path 

from RP to DR. A particular feature of PIM-SM is that no acknowledge message in 

response to a join message will be sent back to the DR. Therefore, a DR needs to 

send join message  periodically  to maintain the RPT; otherwise, it will be pruned after 

time out.  
 On the other hand, a sender that wants to send a multicast packet can just send 

it to the address of the multicast group. Upon receiving a multicast packet, the 

sender’s DR  encapsulates  it into a PIM Register packet and then forwards it to the 

RP. When RP receives the PIM Register packet, it  decapsulates  it and forwards it 

to RPT. You may wonder why the sender’s DR needs to encapsulate a multicast 

packet. Remember that any host can become a sender, so how does an RP know 

where the potential senders are? Even if the RP knows where the senders are, how 

does an RP receive packets from a sender? In the first phase, an RP receives mul-

ticast packets from a sender with the help of the sender’s DR because this DR is 

able to identify a multicast packet and knows where the RP for the multicast group 

is located.  

   FIGURE 4.75 Operations of PIM-SM phase one. 

Join

Encapsulated
Member

RP

DR

Multicast send

(*,G)
(*,G)

Source

A B

RP

lin76248_ch04_223-338.indd   322lin76248_ch04_223-338.indd   322 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 323

  Phase Two: Register-Stop 

 While the encapsulation mechanism allows an RP to receive multicast packets from 

a sender’s DR, the operations of encapsulation and decapsulation are too expensive. 

Therefore, in phase two (shown in  Figure 4.76 ), the RP would like to receive the 

multicast packets  directly  from the sender without encapsulation. To do so, the RP 

initiates a PIM  source-specific  join message to the sender. A source-specific  Join  

message is denoted by (S,G), which indicates that the receiver wants to receive mul-

ticast packets only from the specific source S. When the source-specific join message 

traverses the shortest path from RP to the source, all routers on the path  record  the 

join information in their multicast state information. After the join message reaches 

the DR of the source, multicast packets start to flow following the  source-specific 
tree (SPT) ,   the (S,G) tree, to the RP. As a consequence, the RP may now receive 

duplicate packets, one in native multicast format and the other encapsulated. The RP 

discards the encapsulated packet and sends a PIM  Register-Stop  message to the DR 

of the sender. At the same time, RP should continue to forward multicast packets onto 

the RPT. Afterward, the DR of the sender will not encapsulate and forward multicast 

packets to the RP, so RP can receive native multicast packets directly from the sender.  
 An interesting scenario of this phase is: What if a router is on the source-specific 

tree as well as the RPT? Clearly, it is possible to make a  shortcut  by sending the 

multicast packets received from the source-specific tree directly to the downstream 

routers of the RPT.  

  Phase Three: Shortest-Path Tree 

 One of the disadvantages of delivering multicast packets on a shared tree is that the 

path from the sender to the RP and then from the RP to receivers may be quite long. 

A novel feature of PIM-SM is to allow a receiver’s DR to optionally initiate a switch 

from an RPT to a  source-specific tree .  Figure 4.77  shows the steps performed to switch 

from an RPT to an SPT. A receiver’s DR first issues a source-specific join message, 

(S,G), to the source S. The join message may either reach the source or converge at 

some router on the SPT. The DR then starts to receive two copies of multicast pack-

ets from both trees. It will drop the one received from RPT. The DR then sends a 

   FIGURE 4.76 Operations of PIM-SM phase two. 

Source-specific join
Member

RP

DR (S,G)

Source

RP

lin76248_ch04_223-338.indd   323lin76248_ch04_223-338.indd   323 24/12/10   4:15 PM24/12/10   4:15 PM



324 Computer Networks: An Open Source Approach

 source-specific prune  message, (S,G), to the RP. The prune message either reaches the 

RP or is converged at some router on the RPT. The DR will then not receive packets 

from the RPT. Note that the prune message is a source-specific message because the 

DR still wants to receive packets from other senders via the RPT.  

 PIM-SM can also cooperate with some new features of IGMPv3, in particular the 

source-specific join feature. If a receiver sends a source-specific join using IGMPv3, 

the receiver’s DR may omit performing a general group join, (*,G). Instead, it 

should issue a source-specific (S,G) join message. The multicast addresses reserved 

for source-specific multicast are in the range from 232.0.0.0 to 232.255.255.255. 

In addition,  source-specific multicast (SSM)  defined in RFC 4607 introduces a new 

one-to-many multicasting model. It describes how multicasting with a source address 

and a group address, particularly well-suited to dissemination-style applications, can 

be achieved using PIM-SM.  

  PIM Packet Format 

  Figure 4.78  shows the header of a PIM packet. The first field describes its PIM 

version; the current PIM version is 2. The second field is the type field. There are 

nine types of PIM packets, as shown in  Figure 4.78 . The third field is reserved for 

future use, and the last field is the checksum of the PIM packet, which is the 16-bit 

1’s complement of the 1’s complement sum of the entire PIM packet.    

   FIGURE 4.77 Operations of PIM-SM 
phase three. Source-specific join

Member

RP

DR

Source-specific prune

(S,G)

(S,G)

Source

RP

   FIGURE 4.78 PIM packet format. 160 248 31

Type Reversed ChecksumVer

Type Description

0 Hello
1 Register
2 Register-Stop
3 Join/Prune
4 Bootstrap
5 Assert
6 Graft (used in PIM-SM)
7 Graft (used in PIM-DM)
8 Candidate-RP-Advertisement

lin76248_ch04_223-338.indd   324lin76248_ch04_223-338.indd   324 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 325

  4.7.4 Inter-Domain Multicast 
 The idea of sharing a single RP with a group makes PIM-SM against the autonomous 

nature of a domain and thus hard to apply for the purpose of inter-domain multicast. 

For example, if a sender and a bunch of receivers within a domain form a multicast 

group but the RP for the group is located in an other domain, then all the packets 

need to go to the RP, which is in the other domain, before they can be received by 

those receivers. As a consequence, PIM-SM usually is not used across domains. Each 

group will have an RP within each domain. 

 If PIM-SM is used in a single domain, then each RP knows all of the sources 

and receivers of all groups under its management. However, it has no mechanism 

to know sources  outside  its domain. The Multicast Source Discovery Protocol 

(MSDP) is proposed for RPs to learn about multicast sources in remote domains. 

Specifically, the RP in each domain establishes an MSDP  peering  relation with RPs 

in remote domains. When the RP learns of a new multicast source within its own 

domain, it informs its MSDP peers using the Source Active message. Specifically, 

the RP  encapsulates  the  first  data packet received from the source into a Source 

Active message, and then sends the SA to  all  peers, as shown in  Figure 4.79 . If 

the receiving RP has a (*,G) entry for the group in the SA, the RP sends a (S,G) 

join message toward the original RP so that the packet can be forwarded to the 

RP. The RP also  decapsulates  the data and forwards it down its shared tree if there 

are receivers in its domain. A shorter path from the source could be established by 

sending a source-specific (S,G) join message. Each RP also periodically sends SAs, 

which include all sources within its domain, to its peers. RFC 3446 also proposes the 

Anycast RP protocol to provide fault tolerance and load sharing within a PIM-SM 

domain for MSDP applications.  
 On the other hand, multiprotocol extensions to BGP (MBGP), defined in RFC 

2858, also allow routers to exchange multicast routing information. Therefore, if 

MBGP is adopted to provide MRIB, DRs of PIM-SM would also have inter-domain 

routes.        

   FIGURE 4.79 Operation flow of MSDP. 

Register
192.1.1.1,224.2.2.2

Domain A

SA

Domain B
Join

(S, 224.2.2.2)

MSDP Peers

Source Active Messages
SA

RP

S

RP

r

SA Message
192.1.1.1, 224.2.2.2

lin76248_ch04_223-338.indd   325lin76248_ch04_223-338.indd   325 24/12/10   4:15 PM24/12/10   4:15 PM



326 Computer Networks: An Open Source Approach

 Principle in Action: IP Multicast or Application 
Multicast? 

 In the current Internet, IP multicasting still cannot be widely deployed due to 

several concerns. Routers supporting IP multicasting have to maintain the  states  

of all active multicast sessions and therefore are likely to become the system 

bottleneck as these sessions grow in number, resulting in poor scalability. Ad-

ditionally, transport layer functionalities to support IP multicasting are still open 

issues. For instance, there is no optimal solution to meet reliability and conges-

tion control requirements for all IP multicasting applications. Furthermore, few 

Internet service providers (ISPs) are willing to support IP multicasting due to the 

lack of proper billing mechanisms, making IP multicasting difficult to deploy 

widely. 

 Several researchers have proposed the concept of application-level multi-

casting (ALM) to solve these problems. The basic idea of ALM is that the multi-

cast service is provided by the application layer instead of the network layer. The 

user space deployment makes ALM compatible with current IP networks; that 

is, no change or special support is needed for routers and ISPs. In addition, ALM 

allows more flexible control in customizing application-specific aspects, making 

transport layer functionalities easy to deploy. Participants in an ALM session 

form an  overlay  that consists of  unicast  connections between participants. The 

participants can be either dedicated machines or end hosts. An  infrastructure-
based  ALM approach refers to an approach in which the overlay is formed by 

 dedicated  machines, while the overlay of a  peer-to-peer-based  ALM approach is 

shaped by  end hosts . More recently, ALM has become one of the special appli-

cations of the peer-to-peer model which we shall describe further in  Chapter 6 . 

 Open Source Implementation 4.12: Mrouted 

  Overview 
 The open source implementation of multicast routing we will look at is the 

mrouted ,    which implements the DVMRP protocol.  

  Data Structures 
 In mrouted, the multicast routing table is stored as a  doubly linked list  of routing 

entries represented by the structure “ rtentry ” (in  mrouted/route.h ). 

There is one routing entry for each  subnet  if its multicast capability is enabled. 

The list of active multicast groups in a subnet, referred to as group  table ,  is 

pointed to by the  rt_groups  pointer, as shown in  Figure 4.80 . The group table 

consists of two doubly linked lists of group entries which are represented by the 

structure  gtable  (defined in  mrouted/prune.h ). The first linked list is a 

lin76248_ch04_223-338.indd   326lin76248_ch04_223-338.indd   326 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 327

list of active groups of the same source sorted by the group address under the 

routing entry pointed to by pointer  gt_next  and  gt_prev . The second linked 

list (linked by  gt_gprev ,  gt_gnext ) is a list of active groups of  all  sources 

and groups and is pointed to by  kernel_table .   

  Algorithm Implementations 
  Figure 4.81  shows the call graph of functions related to multicast routing in 

mrouted. When an IGMP packet is received, the  accept_igmp()  function is 

called to process the packet. Depending on the type and code of this packet, dif-

ferent functions are invoked accordingly. If the type is related to IGMP protocol, 

for example, membership query or report (version 1 or version 2), then  ac-
cept_membership_query()  or  accept_group_report()  is called, 

respectively. On the other hand, if the type of the packet is  IGMP_DVMRP , then 

the code of the packet is checked to determine the corresponding operation. For 

example, if the code is  DVMRP_REPORT , then the  accept_report()  is 

invoked. In  accept_report() , routes reported in the packet are processed 

Routing_table 

rtentry 

rt_next

rt_groups

rt_next

rt_groups

gt_next

gt_gprev

gtable

gt_gnext

gt_prev 

gt_next

gt_gprev

gtable

gt_gnext

gt_prev 

gt_next

gt_gprev

gtable

gt_gnext

gt_prev 

Groups orginated from the same source

   FIGURE 4.80 Data structures of mrouted. 

accept_igmp()

send_prune()accept_prune()

update_route()accept_report()

   FIGURE 4.81 Mrouted open source implementation. 
Continued

lin76248_ch04_223-338.indd   327lin76248_ch04_223-338.indd   327 24/12/10   4:15 PM24/12/10   4:15 PM



328 Computer Networks: An Open Source Approach

and  update_route()  is called to update the routes. If the code is  DVMRP_
PRUNE , then  accept_prune()  is called. In  accept_prune() , if all the 

child routers have expressed no interest in the group,  send_prune()  is called 

to send a prune message to the upstream router.   

  Exercises 
 Trace the following three functions:  accept_report()  ,   update_route()  ,  
and  accept_prune(),  in the source code of mrouted and draw their flow-

charts. Compare the flowcharts you draw with the DVMRP protocol introduced 

in this section.  

  4.8 SUMMARY 

  In this chapter, we have learned about the Internet 

Protocol (IP) layer, or the network layer, of the 

Internet Protocol stack. It is the most important layer 

for achieving global connectivity. We have discussed 

several mechanisms of the control plane and data 

plane used in the Internet to provide host-to-host 

connection service. Among these mechanisms we 

have discussed, routing and forwarding are the two 

most important in this layer. Routing, a control-plane 

mechanism, determines the route or path taken by 

packets from source router to destination router. 

Forwarding is a data-plane operation that transfers 

a packet from an incoming network interface to an 

outgoing network interface in a router based on the 

routing table computed by the control plane. 

 Given that a router may need to process 

millions of packets per second, scalability is very 

important to these two mechanisms. For routing, 

we have learned that the Internet adopts a  two-level
routing hierarchy, namely, intra-domain routing 

and inter-domain routing. At the lower layer, 

routers are grouped into autonomous systems (ASs). 

Routers within an AS are under the same administra-

tive control and run the  same  intra-domain routing 

protocol, such as RIP or OSPF. Selected routers, 

called border routers, are connected to each other 

and are responsible for forwarding packets among 

ASs using the inter-domain routing protocol, such as 

BGP. We also have examined two underlying routing 

algorithms, namely, distance vector routing and link 

state routing. Current Internet routing protocols are 

designed based on one of these two basic routing 

algorithms. The distance vector routing algorithm 

adopts a  distributed  approach that only exchanges 

routing information with neighbors, while link state 

routing algorithm is a  centralized  approach that 

floods routing information to all routers within the 

same domain; thus each router can build a  global
topology database of all routers. For forwarding, 

we have learned that the data structure of the rout-

ing table and the lookup and update algorithms for 

this data structure are very critical to scalability. The 

routing table consists of more than 300,000 entries 

in the current Internet backbone, making forwarding 

even more challenging. In some circumstances, 

specific ASIC might be needed to offload routing 

table lookup from the CPU to achieve a forwarding 

speed of millions of packets per second. 

 Two versions of the Internet Protocol (IP) have 

been addressed in this chapter, IPv4 and IPv6. We 

assume that IPv6 will predominate in the next few 

years. To cope with the IP address depletion problem, 

we have also introduced the network address transla-

tion (NAT) protocol and private IP address. Besides 

the IP protocol, we have also studied several control-

plane protocols, such as ARP, DHCP, and ICMP. 

lin76248_ch04_223-338.indd   328lin76248_ch04_223-338.indd   328 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 329

 In this chapter, we also have described three 

types of communication, namely, unicast, multi-

cast, and broadcast. In addition, we have seen a 

new type of communication,  anycast ,   supported in 

IPv6. Unicast, i.e., point-to-point communication, 

has been the major focus of our discussion. Broad-

cast and multicast are also supported by IPv4/IPv6. 

An IP subnet is defined as a broadcast domain with 

an IP address called a subnet address, which can be 

obtained by an AND operation of an IP address and 

its subnet mask. Packets with an IP subnet address 

as their destination address are delivered to all hosts 

within the subnet, which usually corresponds to a 

LAN consisting of several Layer-2 devices. We have 

learned that several protocols rely on the broadcast 

service, such as ARP and DHCP. In the last part 

of this chapter, we also have seen several multi-

cast routing protocols and membership management 

protocols. 

 Having completed the study of host-to-host con-

nectivity, it is time for us to learn about  process-
to-process  connectivity, the next upper layer in the 

Internet Protocol stack. We shall see how packets 

from different processes on the  same  host are multi-

plexed together to send through the IP protocol. We 

shall also learn how to build  reliable  communica-

tion over the best-effort service provided by the IP 

protocol. Finally, we shall see how to write network 

application programs through the  socket  program-

ming interface.   

   COMMON PITFALLS 

   MAC Address, IP Address, and 
Domain Name 
 Each network interface is associated with at least one 

MAC address, one IP address, and one domain name. 

They are used by different layers of the protocol stack 

for addressing. The MAC address comes along with a 

network card; it is used by the link-layer protocols, and 

is a universal unique address assigned and “hard-coded” 

during the production of each network card. Thus, it is 

a  hardware address . Usually, the MAC address does  not  
have a hierarchical structure and can be used only for ad-

dressing in a  broadcast  environment. The IP address is 

used by the network-layer protocols as described in this 

chapter. Unlike the MAC address, the IP address has a 

hierarchical structure and can be used for routing. It is 

configured manually or automatically; thus, it is a  software 
address . The domain name is a string of characters that is 

human readable. Although in most cases the domain name 

is a string of letters from the English alphabet, it could be 

in any language now. The purpose of the domain name is 

to enable people to easily remember the address of a host, 

especially for applications like WWW where the domain 

name is expressed in the URL format. When sending a 

packet, address translation is required for the protocol 

of each layer to fetch the correct address. Therefore, the 

Domain Name System (DNS) is used to translate the do-

main name to the IP address, and ARP is used to translate 

the IP address to the MAC address. Both DNS and ARP 

also support the  reversed  translation.  

  Forwarding and Routing 
 Again, it is very important to understand the differences 

between forwarding and routing. Forwarding is a data 

plane function, while routing is a control plane function. 

The task of forwarding is to transfer a packet from an in-

coming network interface to an outgoing network interface 

in a router, while that of routing is to find a routing path 

between any two hosts.  

  Classful IP and CIDR 
 Classful IP addressing refers to the original design of IP ad-

dresses in the Internet Protocol. With the classful IP address, 

the length of the network prefix is  fixed  for each class of IP 

addresses, and addresses can be easily differentiated by the 

first several bits. In addition, the maximum number of hosts 

that can be accommodated for a network prefix is also fixed. 

However, this design causes  inflexibility  in IP address allo-

cation and increases the number of class C address  entries  in 

the routing table. Classless Inter Domain Routing (CIDR) is 

thus proposed to allow variable network prefix length. CIDR 

lin76248_ch04_223-338.indd   329lin76248_ch04_223-338.indd   329 24/12/10   4:15 PM24/12/10   4:15 PM



330 Computer Networks: An Open Source Approach

is most effective in aggregating several  consecutive  class C 

addresses. Currently, CIDR is supported by most routers.  

  DHCP and IPv6 Auto-Configuration 
 In IPv4, DHCP is used to automatically configure a host’s 

IP address. However, in IPv6, autoconfiguration is sup-

ported via ICMPv6 protocol using router  advertisement  
and router  solicitation  messages. Are they different and do 

we still need DHCP in an all-IPv6 network? The answer 

to both questions is yes. DHCP is based on BOOTP. As 

a consequence, a lot of fields in the packet header are un-

used, while option fields are used to carry information that 

we really need. The autoconfiguration process in IPv6 is a 

new design, not based on DHCP or BOOTP. However, for 

security or network management concerns, a network ad-

ministrator may choose to use a DHCP server to control IP 

address assignment.  

  Multicast Tree and Steiner Tree 
 A Steiner tree, named after Jakob Steiner, is a tree rooted 

at a source node and spanning a set of destination nodes 

with the minimum cost. It differs from the minimum 

spanning tree by the fact that the set of destination nodes 

does not necessarily include all nodes (vertices) in the 

graph. Therefore, a Steiner tree could be viewed as one 

of the optimal solutions to a multicast routing. However, 

in all the multicast routing protocols we studied, none of 

them tried to construct a Steiner tree. Instead, most of 

them construct  reverse shortest-path trees ,   either rooted 

at the source or the rendezvous point (RP). The rationale 

is that finding a Steiner tree is an NP-complete problem, 

and most heuristic algorithms require  global  informa-

tion. Therefore, the reverse shortest-path tree becomes a 

more practical solution for building multicast trees in the 

Internet.    

   FURTHER READINGS 

   IPv4 
 For a historical view of the development of the Internet 

Protocol, the following papers are old but important pio-

neering works. Their key ideas have been reviewed in this 

chapter and  Chapter 1 . 

   • V. Cerf and R. Kahn, “A Protocol for Packet Network 

Intercommunication,”  IEEE Transactions on Commu-
nications,     Vol. 22, pp. 637–648, May 1974.  

  • J. B. Postel, “Internetwork Protocol Approaches,”  IEEE 
Transactions on Communications,     Vol. 28, pp. 604–611, 

Apr. 1980.  

  • J. Saltzer, D. Reed, and D. Clark, “End-to-End Argu-

ments in System Design,”  ACM Transactions on Com-
puter Systems (TOCS) ,   Vol. 2, No. 4, pp.  195–206, 

1984.  

  • D. Clark, “The Design Philosophy of the Internet Pro-

tocols,”  Proceedings of ACM SIGCOMM ,   Sept. 1988.   

 Related RFCs for IPv4, ICMP, and NAT are: 

   • J. Postel, “Internet Protocol,” RFC 0791, Sept. 1981. 

(Also STD 0005.)  

  • K. Nichols, S. Blake, F. Baker, and D. Black, “Definition 

of the Differentiated Services Field (DS Field) in the 

IPv4 and IPv6 Headers,” RFC 2472, Dec. 1998.  

  • J. Postel, “Internet Control Message Protocol,” RFC 

792, Sept. 1981. (Also STD 0005)  

  • P. Srisuresh and K. Egevang, “Traditional IP Network 

Address Translator (Traditional NAT),” RFC 3022, Jan. 

2001.  

  • J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, 

“Session Traversal Utilities for NAT (STUN),” RFC 

5389, Oct. 2008.    

  Fast Table Lookup 
 One interesting topic for data plane packet processing is 

fast table lookup for packet forwarding and packet classi-

fication. The former is longest prefix matching on a single 

field (destination IP address), while the latter is multi-field 

matching on, say, 5-tuple (source/destination IP address, 

source/destination port number, protocol id). The first 

paper listed below is on packet forwarding with a software 

algorithm, which requires only a small table size, while the 

next two are hardware solutions. The last two papers are on 

packet classification with hardware solutions. 

   • M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, 

“Small Forwarding Tables for Fast Routing Lookups,” 

ACM SIGCOMM’97, pp. 3–14, Oct. 1997.  

  • M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, 

“Scalable High Speed Routing Lookups,”  ACM SIG-
COMM’97 ,   pp. 25–36, Oct. 1997.  

lin76248_ch04_223-338.indd   330lin76248_ch04_223-338.indd   330 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 331

  • P. Gupta, S. Lin, and N. McKeown, “Routing Look-

ups in Hardware at Memory Access Speeds,”  IEEE 
INFOCOM ,   Apr. 1998.  

  • P. Gupta and N. McKeown, “Packet Classification on 

Multiple Fields,”  ACM SIGCOMM ,   Sept. 1999.  

  • V. Srinivasan, G. Varghese, and S. Suri, “Packet Classi-

fication Using Tuple Space Search,”  ACM SIGCOMM ,   
Sept. 1999.    

  IPv6 
 The RFC by Bradner and Mankin is the starter for the next-

generation IP. They also published a book on IPng. The 

current version of IPv6, ICMPv6, and DNS can be found 

in RFC 2460, 4443, and 3596, respectively. 

   • S. Bradner and A. Mankin, “The Recommendation for 

the Next Generation IP Protocol,” RFC 1752, Jan. 1995.  

  • S. Bradner and A. Mankin,  IPng: Internet Protocol 
Next Generation ,   Addison-Wesley, 1996.  

  • S. Deering and R. Hinden, “Internet Protocol, Version 6 

(IPv6) Specification,” RFC 2460, Dec. 1998.  

  • A. Conta, S. Deering, and M. Gupta, “Internet Control 

Message Protocol (ICMPv6) for the Internet Protocol 

Version 6 (IPv6) Specification,” RFC 4443, Mar. 2006.  

  • S. Thomson, C. Huitema, V. Ksinant, and M. Souissi, 

“DNS Extensions to Support IP Version 6,” RFC 3596, 

Oct. 2003.   

 The basic IPv4 to IPv6 transition mechanisms for hosts 

and routers is described in RFC 4213. In addition, applica-

tion aspects of transition mechanisms can be found in RFC 

4038. For the three transition approaches, namely, dual 

stack, tunneling, and protocol translation, there have been 

many proposals. For example, tunnel broker is proposed in 

RFC 3053 to help users to configure bidirectional tunnels. 

The  6to4  and its remedy,  Teredo,     are described in RFC 

3056 and 4380, respectively. A new IPv6 rapid deployment 

mechanism on IPv4 infrastructures (6rd) that builds upon 

6to4 is proposed in RFC 5569.  ISATAP  is defined in RFC 

5214. Solutions of protocol translation, such as SIIT and 

NAT-PT, are defined in RFC 2765 and 4966, respectively. 

Finally, Geoff Huston wrote several interesting articles 

about the IPv4 address depletion problem and transition 

process to IPv6. 

   • E. Nordmark and R. Gilligan, “Basic Transition Mecha-

nisms for IPv6 Hosts and Routers,” RFC 4213, Oct. 2005.  

  • M-K. Shin, Ed., Y-G. Hong, J. Hagino, P. Savola, and 

E. M. Castro, “Application Aspects of IPv6 Transition,” 

RFC 4038, Mar. 2005.  

  • A. Durand, P. Fasano, I. Guardini, and D. Lento, “IPv6 

Tunnel Broker,” RFC 3053, Jan. 2001.  

  • B. Carpenter and K. Moore, “Connection of IPv6 

Domains via IPv4 Clouds,” RFC 3056, Feb. 2001.  

  • C. Huitema, “Teredo: Tunneling IPv6 over UDP 

through Network Address Translations (NATs),” RFC 

4380, Feb. 2006.  

  • E. Exist and R. Despres, “IPv6 Rapid Deployment on 

IPv4 Infrastructures (6rd),” RFC 5569, Jan. 2010.  

  • F. Templin, T. Gleeson, and D. Thaler, “Intra-Site Au-

tomatic Tunnel Addressing Protocol (ISATAP),” RFC 

5214, Mar. 2008.  

  • E. Nordmark, “Stateless IP/ICMP Translation 

Algorithm (SIIT),” RFC 2765, Feb. 2000.  

  • C. Aoun and E. Davies, “Reasons to Move the Network 

Address Translator–Protocol Translator (NAT-PT) to 

Historic Status,” RFC 4966, July 2007.  

  • Geoff Huston, “IPv4 Address Report,” retrieved 

April  24, 2010, from  http://www.potaroo.net/tools/

ipv4/index.html   

  • Geoff Huston, “Is the Transition to IPv6 a “Market 

Failure?’,” The ISP Column, Apr. 2010, retrieved April 

24, 2010, from  http://cidr-report.org/ispcol/ 2009-09/

v6trans.html .    

  Routing 
 The most recent RFCs for RIP, OSPF, and BGP are:

   • G. Malkin, “RIP Version 2,” RFC 2453, Nov. 1998.  

  • J. Moy, “OSPF Version 2,” RFC 2328, Apr. 1998. (Also 

STD0054.)  

  • R. Coltun, D. Ferguson, J. Moy, and A. Lindem, “OSPF 

for IPv6,” RFC 5340, July 2008.  

  • Y. Rekhter, T. Li, and S. Hares, “A Border Gateway 

Protocol 4 (BGP-4),” RFC 4271, Jan. 2006.    

 Optimal routing has been formulated as a network flow 

problem in the literature where traffics are modeled as 

flows between sources and destinations in the network. 

The textbook by Bertsekas and Gallagher gives a good 

tutorial on this treatment. 

   • D. Bertsekas and R. Gallagher,  Data Networks,     2 nd  edi-

tion, Prentice Hall, Englewood Cliffs, NJ, 1991.   

 For more detailed study of Internet routing, OSPF, and 

BGP, the following books may be useful.

   • C. Huitema,  Routing in the Internet,     2 nd  edition, 

Prentice Hall, 1999.  

lin76248_ch04_223-338.indd   331lin76248_ch04_223-338.indd   331 24/12/10   4:15 PM24/12/10   4:15 PM

http://www.potaroo.net/tools/ipv4/index.html
http://www.potaroo.net/tools/ipv4/index.html
http://cidr-report.org/ispcol/2009-09/v6trans.html
http://cidr-report.org/ispcol/2009-09/v6trans.html


332 Computer Networks: An Open Source Approach

  • S. Halabi and D. McPherson,  Internet Routing 
Architectures,     2 nd  edition, Cisco Press, 2000.  

  • J. T. Moy,  OSPF: Anatomy of an Internet Routing 
Protocol,     Addison-Wesley Professional, 1998.  

  • I. V. Beijnum,  BGP,     O’Reilly Media, 2002.    

 The dynamics of inter-domain routing have received atten-

tion through measurement and modeling. Many interesting 

results could be found in a special issue of  IEEE Network 
Magazine  on inter-domain routing, which was published 

in Nov-Dec 2005. Recently, the fault tolerance of BGP has 

also received much attention, especially the solution based 

on multipath routing. Papers by Xu  et al.  and Wang  et al.  

are good examples. 

   • M. Caesar and J. Rexford, “BGP Routing Policies in 

ISP Networks,”  IEEE Network,     Vol. 19, Issue 6, Nov/

Dec 2005.  

  • R. Musunuri and J. A. Cobb, “An Overview of So-

lutions to Avoid Persistent BGP Divergence,”  IEEE 
Network,     Vol. 19, Issue 6, Nov/Dec 2005.  

  • A. D. Jaggard and V. Ramachandran, “Toward the De-

sign of Robust Interdomain Routing Protocols,”  IEEE 
Network,     Vol. 19, Issue 6, Nov/Dec 2005.  

  • W. Xu and J. Rexford, “Miro: Multi-Path Interdomain 

Routing,”  ACM SIGCOMM,     Sept. 2006.  

  • F. Wang and L. Gao, “Path Diversity Aware Interdomain 

Routing,”  IEEE IEEE INFOCOM,     Apr. 2009.    

  Multicast 
 Although not very successful in Internet deployment, 

many protocols have been proposed for intra- and 

inter-domain multcast. A quite complete survey is done 

in a tutorial paper by Ramalho. For the original work on 

multicast, Deering and Cheriton’s paper is a must read. For 

comparison of IPv4 multicast with IPv6 multicast, readers 

can refer to Metz and Tatipamula’s paper. 

   • M. Ramalho, “Intra- and Inter-Domain Multicast 

Routing Protocols: A Survey and Taxonomy,”  IEEE 
Communications Surveys and Tutorials,     Vol. 3, No. 1, 

1 st  quarter, 2000.  

  • S. Deering and D. Cheriton, “Multicast Routing in 

Datagram Internetworks and Extended LANs,”  ACM 
Transactions on Computer Systems,     Vol. 8, pp. 85–110, 

May 1990.  

  • C. Metz, and M. Tatipamula, “A Look at Native IPv6 

Multicast,”  IEEE Internet Computing,     Vol. 8, pp. 48–

53, July/Aug 2004.   

 The most recent RFCs for multicast membership manage-

ment and routing are:

   • B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. 

Thyagarajan, “Internet Group Management Protocol, 

Version 3,” RFC 3376, Oct. 2002.  

  • D. Waitzman, C. Partridge, and S.E. Deering, “Dis-

tance Vector Multicast Routing Protocol,” RFC 1075, 

Nov. 1998.  

  • B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, 

“Protocol Independent Multicast–Sparse Mode (PIM-

SM): Protocol Specification (Revised),” RFC 4601, 

Aug. 2006.  

  • N. Bhaskar, A. Gall, J. Lingard, and S. Venaas, “Boot-

strap Router (BSR) Mechanism for Protocol Indepen-

dent Multicast (PIM),” RFC 5059, Jan. 2008.  

  • D. Kim, D. Meyer, H. Kilmer, and D. Farinacci, 

“Anycast Rendevous Point (RP) Mechanism Using 

Protocol Independent Multicast (PIM) and Multicast 

Source Discovery Protocol (MSDP),” RFC 3446, Jan. 

2003.       

   FREQUENTLY ASKED QUESTIONS 

     1. Why do we need both MAC address and IP address 

for a network interface? Why not just one address? 

   Answer: 

   If only IP address: no link layer operations, no 

bridging, no broadcast links. 

   If only MAC address: no hierarchical Internet 

architecture, no subnet operations, no routing.  

   2. Why are MAC addresses fl at but IP addresses 

hierarchical? 

   Answer: 

   MAC address: manufactured globally unique without 

location implication, thus fl at. 

   IP address: confi gured globally unique with location 

implication, thus hierarchical.  

   3. Why is netmask used inside a router and a host? 

   Answer: 

   Router: to select the longest one among the matched 

prefi xes 

lin76248_ch04_223-338.indd   332lin76248_ch04_223-338.indd   332 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 333

   Host: to determine whether the destination IP 

address is within my subnet  

   4. Routing vs. forwarding? (Compare their type of 

work and the algorithm used.) 

   Answer: 

   Forwarding: data-plane; longest prefi x matching by 

table lookup. 

   Routing: control-plane; shortest path computation by 

Dijkstra or Bellman-Ford algorithm.  

   5. Why could there be multiple matched IP prefi xes 

in a router’s table lookup? (Explain what network 

confi gurations could result in this.) 

   Answer: 

   If an organization that is allocated a prefi x, say 

140.113/16, has created remote branches, say 

140.113.0/18 and 140.113.192/18, it would have 

multiple prefi xes, say 3 in this example, in all 

routers. If a packet is destined to 140.113.221.86, it 

would match both 140.113/16 and 140.113.192/18, 

with the latter being the longest match.  

   6. How is longest-prefi x matching done in the Linux 

kernel? Why is the matched prefi x guaranteed to be 

the longest? 

   Answer: 

   The forwarding table is organized into an array of 

hash tables of the same prefi x length. The array is 

ordered according to the length of prefi xes. Starting 

from the non-empty hash table with the longest 

prefi xes, the fi rst match is thus guaranteed to be the 

longest.  

   7. How is the forwarding table organized in the Linux 

kernel? 

   Answer: 

   It consists of a forwarding cache and a FIB 

(Forwarding Information Base), where the former is 

a hash table that stores the recently looked up entries 

and the latter is an array of hash tables of the same 

prefi x length (and is looked up after a miss in the 

forwarding cache).  

   8. What header fi elds are needed in IP reassembly at 

destination hosts? 

   Answer: 

   Identifi er, the more bit, and fragmentation offset.  

   9. What packet modifi cations are needed for FTP 

through NAT? 

   Answer: 

   Non-ALG modifi cations: source (destination) 

IP address and source port number for outgoing 

(incoming) packets, IP header checksum, and TCP 

checksum. 

   ALG modifi cations: IP address and port number 

in FTP messages, TCP sequence number, and TCP 

acknowledgement number.  

   10. What packet modifi cations are needed for ICMP 

through NAT? 

   Answer: 

   Non-ALG modifi cations: source (destination) 

IP address and source port number for outgoing 

(incoming) packets, and IP header checksum. 

   ALG modifi cations: ICMP checksum and IP address 

in ICMP messages.  

   11. How is the NAT table implemented in the Linux 

kernel? 

   Answer: A hash table  

   12. What header fi elds in IPv4 are removed from or 

added into the header of IPv6? Why? 

   Answer: 

   Removed from: header checksum, fragmentation 

(identifi er, more bit, don’t fragment bit, 

fragmentation offset), protocol, and options. 

   Moved into: fl ow label and next header.  

   13. How can IPv4 and IPv6 coexist? 

   Answer: 

   Dual stack: both IPv4 and IPv6 stacks in routers and 

hosts 

   Tunneling: v6-v4-v6 tunneling between IPv6 islands 

or v4-v6-v4 tunneling between IPv4 islands  

   14. How does a host translate IP addresses to MAC 

addresses through ARP? 

   Answer: 

   Broadcast an ARP request, with a specifi ed IP 

address, on the local subnet and get a unicast 

ARP response from the host with the specifi ed IP 

address.  

   15. How does a host obtain its IP address through DHCP 

or ARP? 

   Answer: 

   DHCP: broadcast DHCPDISCOVER to fi nd a DHCP 

server and then get confi gurations. 

   ARP: broadcast an RARP request, with its own 

MAC address, and get unicast RARP response from 

the RARP server.  

   16. How are ping and tracepath implemented? 

   Answer: 

   Ping: ICMP echo request and reply 

   Tracepath: repeatedly send UDP or ICMP echo 

requests with TTL=1, 2, etc. until an ICMP port 

unreachable (for UDP) or ICMP echo reply (for 

ICMP echo request) is received from the target 

machine.  

lin76248_ch04_223-338.indd   333lin76248_ch04_223-338.indd   333 24/12/10   4:15 PM24/12/10   4:15 PM



334 Computer Networks: An Open Source Approach

   17. How does the count-to-infi nity problem occur in 

RIP? 

   Answer: 

   A router detecting a link failure updates and 

exchanges distance vectors with its neighbor 

routers. If the router also receives and accepts a 

distance vector from its neighbor without checking 

whether the path is through itself, the routers might 

end up updating the distance vector of each other 

incrementally until information of an available 

path is propagated here. During this period, packet 

looping is possible between these two peer routers.  

   18. RIP vs. OSPF? (Compare their network state 

information and route computation.) 

   Answer: 

   RIP: exchanged distance vector with neighbors; 

distance vector updated by the Bellman-Ford 

algorithm. 

   OSPF: broadcast link state to all routers; routing 

table computed by the Dijkstra algorithm based 

on the whole topology.  

   19. Distance vector routing vs. link state routing? 

(Compare their routing message complexity, 

computation complexity, speed of convergence, 

and scalability.) 

   Answer: 

   Routing message complexity: DV > LS 

   Computation complexity: LS > DV 

   Speed of convergence: LS > DV 

   Scalability: DV > LS  

   20. RIP vs. BGP? (Summarize their similarities and 

differences.) 

   Answer: 

   Similarities: exchanged neighbor information, 

Bellman-Ford algorithm 

   Differences: distance vector vs. path vector (for 

loop-free routing), RIP-over-UDP vs. BGP-over-

TCP, shortest-path routing vs. shortest-path and 

policy routing, single path vs. multiple path  

   21. Why do RIP, OSPF, and BGP run over UDP, IP, 

and TCP, respectively? 

   Answer: 

   RIP: one connectionless UDP socket, on UDP 

port 52, that can receive requests from and send 

responses (advertisements) to all neighbor routers. 

   OSPF: one raw IP socket used to broadcast link 

states to all routers in the domain. 

   BGP: connection-oriented TCP sockets for reliable 

transfer with remote peer routers.  

   22. Can you estimate the number of routing table entries 

in intra-AS and inter-AS routers? (Estimate the range 

or order of magnitude.) 

   Answer: 

   Intra-AS: tens to hundreds, depending on how large 

a domain is. 

   Inter-AS: tens of thousands world-wide, depending 

on the number of prefi xes  

   23. How do routing protocols in zebra exchange 

messages with other routers and update routing 

tables in the kernel? 

   Answer: 

   Routing message exchange: through various sockets 

(IP, UDP, TCP) to other routers 

   Routing table update: through ioctl, sysctl, netlink, 

rtnetlink, etc. to access kernel  

   24. How does a router know through IGMP whether 

hosts in its subnet have joined a multicast group? 

   Answer: 

   The router broadcasts a general query or group-

specifi c query (addressed to 224.0.0.1 all-system 

multicast group) on its subnet to solicit membership 

information. A host joins by responding/broadcasting 

an IGMP report with TTL=1 if no one on the 

subnet responds before its random timer expires. 

The router knows whether there are any hosts in a 

specifi c multicast group but does not know who and 

how many.  

   25. Does a router know exactly which hosts have joined 

a multicast group? 

   Answer: 

   No. It only knows whether there are any hosts of a 

subnet in a specifi c multicast group.  

   26. Source-based vs. core-based multicast tree? 

(Compare their number of states and scalability.) 

   Answer: 

   Number of states: source-based > core-based 

   Scalability: core-based > source-based  

   27. How many pieces of state information are kept in 

routers for source-based and core-based multicast 

routers, respectively? (Consider the numbers of 

multicast groups and sources.) What kinds of state 

information might be kept? 

   Answer: 

   Source-based: per-group x per-source, i.e., 

(group, source) pairs 

   Core-based: per-group 

   State information: membership state of a subnet, 

prune state, or join state.  

lin76248_ch04_223-338.indd   334lin76248_ch04_223-338.indd   334 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 335

   28. Do multicast packets really fl ow on the shortest path 

in the reverse path multicasting in DVMRP? 

   Answer: 

   Not necessarily. The shortest path is from a 

downstream router to the source router. Its reverse 

path might not be the shortest from the source router 

to the downstream router.  

   29. What state information is kept in routers for the 

reverse path multicasting in DVMRP? 

   Answer: 

   Per-(group, source) prune state  

   30. How is the RP of a multicast group determined in 

PIM-SM? 

   Answer: 

   The same hash function, on class-D multicast 

IP addresses, is used by all multicast routers in 

the domain. The hashed value is transformed to select 

a multicast router from a list of candidate routers.     

    1. Use Wireshark or similar software to observe 

fragments of a large IP packet.  

   2. Use Wireshark or similar software to capture packets 

for couple of seconds. Find an ARP packet and an 

IP packet from the data you have captured. Compare 

the difference between the MAC header of these 

two packets. Can you fi nd the protocol ID for ARP 

and IP? Is the destination address of the ARP packet 

a broadcast address or a unicast address? Is this 

ARP packet a request or reply packet? Examine the 

payload of this ARP packet.  

   3. Use Wireshark or similar software to capture 

an IP packet and analyze the header and payload 

of this packet. Are you able to identify the 

transport layer protocol and the application layer 

protocol?  

   4. Use Wireshark or similar software to fi nd out how 

ping is implemented using ICMP messages. Show 

the packets captured to verify your answer. Note that 

the ping command may be implemented differently 

on different operating systems. (Hint: Start capturing 

using Wireshark fi rst, then use the command line to 

issue a ping command.)  

   5. Use Wireshark or similar software to fi nd out how 

traceroute is implemented using ICMP messages.  

   6. Use visualroute or traceroute to fi nd out the 

infrastructure of your domain and the routes to 

foreign countries. (Hint: traceroute will give you a list 

of routers; try to identify different types of routers by 

their subnet addresses and round trip delays.)  

   7. Build a NAT server using a Linux-based PC. (Hint: 

Linux implements NAT by IP TABLES.)  

   8. Build a DHCP server using a Linux-based PC.  

   9. Write a program to implement the ping command. 

(Hint: Use the raw socket interface to send ICMP 

packets. Refer to  Chapter 5  for socket interfaces.)  

   10. Trace  ip_route_input()  and  ip_route_
output_key()  in the Linux source codes. 

Describe how IP packets are forwarded to the upper 

layer and the next hop, respectively. (Hint: Both 

functions can be found in net/ipv4/route.c.)    

  Written Exercises 
    1. What would be the problems when two hosts use the 

same IP address and ignore each others’ existence?  

   2. Compare the addressing hierarchy in the telephone 

system with that in the Internet. (Hint: The telephone 

system uses geographical addressing.)  

   3. Why is fragmentation needed in IP? Which fi elds 

in an IP header are needed for fragmentation and 

reassembly?  

   4. What is the purpose of the identifi er fi eld in the IPv4 

header? Will wraparound be a problem? Give an 

example to show the wraparound problem.  

   5. How does the IP protocol differentiate the upper 

layer protocol of an IP packet? For example, how 

does it know whether the packet is an ICMP, TCP, or 

UDP packet?  

   6. How does an Ethernet driver determine whether a 

frame is an ARP packet?  

   7. Consider an IP packet traversing a router:

     Which fi elds in the IP header must be changed by a 

router when an IP packet traverses the router?  

    Which fi elds in the IP header may be changed by a 

router?  

  EXERCISES 

   Hands-On Exercises 

lin76248_ch04_223-338.indd   335lin76248_ch04_223-338.indd   335 24/12/10   4:15 PM24/12/10   4:15 PM



336 Computer Networks: An Open Source Approach

    Design an effi cient algorithm for recalculating the 

checksum fi eld. (Hint: think about how these fi elds 

are changed.)     

  8.   Consider a company assigned an IP prefi x of 

163.168.80.0/22. This company owns three 

branches; these have 440, 70, and 25 computers, 

respectively. A router with two WAN interfaces is 

allocated at each branch to provide internetworking 

such that three routers are fully connected. If you 

are asked to plan subnet addresses for these three 

branches as well as addresses for router interfaces, 

what would you do? (Hint: a subnet is also required 

for each link between two routers.)  

   9. If a host has an IP address of 168.168.168.168 

and a subnet mask of 255.255.255.240, what is 

its subnet address? What is the broadcast address 

of this subnet? How many legal IP addresses are 

available in this subnet? This IP address is a class 

B address. Suppose it belongs to a company. How 

many subnets can be created in this company if 

the subnet mask is fi xed to 255.255.255.240 for 

all subnets?  

   10. Consider a host X with IP address 163.168.2.81 and 

subnet mask 255.255.255.248. Now, assume X sends 

a packet to the following IPs (hosts): 163.168.2.76, 

163.168.2.86, 163.168.168.168, 140.123.101.1, 

respectively. How is routing different for each IP? 

How are different ARP packets sent to fi nd out MAC 

addresses? (For each IP address, routing and ARP 

packets sent may be the same or different; explain 

your answer.)  

   11. When an IP packet is fragmented into fragments, a 

single fragment loss will cause the whole packet to 

be discarded. Consider an IP packet that contains 

4800 bytes of data (from the upper layer) that is 

to be delivered to a directly connected destination. 

Consider two types of link layers with different 

MTUs. Type A technology uses 5 bytes of header 

and has an MTU of 53 bytes (you may think of it 

as the ATM technology). On the other hand, type B 

technology uses 18 bytes of header and has an MTU 

of 1518 bytes (say it is Ethernet). Assume the frame 

loss rate of type A is 0.001 while that of type B is 

0.01. Compare the packet loss rate under these two 

types of link layer technology.  

   12. What is the minimum number of IP fragments 

required to send a 1 MB mp3 fi le over a fast Ethernet 

connection? (Hint: Ignore headers above the IP 

layer; a maximum IP fragment consists of a 20-byte 

header and a 1480-byte payload.)  

   13. When reassembling fragments, how does the receiver 

know whether two fragments belong to the same IP 

packet? How does it know whether the size of each 

fragment is correct?  

   14. In your opinion, how is quality of service better 

supported in IPv6?  

   15. Why is the order of IPv6 extension headers 

important and not to be altered?  

   16. Describe the path MTU discovery procedure defi ned 

in RFC 1981.  

   17. Compare the differences between IPv4 and IPv6 

header formats. Discover the changes and explain 

why these changes were made.  

   18. Compare the differences between ICMPv4 and 

ICMPv6. Do we still need DHCP, ARP, and IGMP in 

IPv6?  

   19. In the IPv4 header, there is a protocol id fi eld. 

What is the functionality of this fi eld? Is there a 

corresponding fi eld in the IPv6 header?  

   20. Given an IP packet of 6000 bytes, assume the 

packet is to be transmitted over Ethernet. Explain 

how it will be fragmented under IPv4 and IPv6, 

respectively. (You should clearly explain how many 

fragments will be produced, the size of each frame, 

and how related fi elds in each IP header will be set 

accordingly.)  

   21. Discuss the diffi culties of building connectionless 

service over a virtual circuit subnet, e.g., IP over ATM.  

   22. How would the time out value of an ARP cache 

affect its performance?  

   23. An ARP request is broadcast in a subnet to obtain 

the MAC address of a host within the same subnet. 

Does it make sense to use an ARP request to 

obtain the MAC address of a remote host outside the 

subnet?  

   24. What would happen if an intruder usesd a DHCP 

spoofi ng device to send replies to DHCP requests 

ahead of replies from the real DHCP server?  

   25. Is it possible for an attacking device to continually 

request IP addresses from a real DHCP server with 

continually changing MAC addresses? (Hint: This is 

called the DHCP starvation problem.)  

   26. What are the differences between BOOTP and 

DHCP? Why is DHCP designed based on BOOTP?  

   27. Let A be a host with private IP that connects to the 

Internet through a NAT server. Can a host outside A’s 

subnet telnet to A?  

   28. Why does NAT become a problem for P2P 

applications? Will we need different solutions for 

symmetric NAT and cone NAT?  

lin76248_ch04_223-338.indd   336lin76248_ch04_223-338.indd   336 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 4 Internet Protocol Layer 337

   29. Consider the following LAN with one Ether switch 

S, one intra-domain router R, and two hosts X and Y. 

Assume switch S has been just powered on.

     1.  Describe the routing and address resolution steps 

performed at X, Y, and S when X sends an IP 

packet to Y.  

    2.  Describe the routing and address resolution steps 

performed at X, Y, and S when Y replies an IP 

packet to X.  

    3.  Describe the routing and address resolution steps 

performed at X, S, and R when X sends an IP 

packet to a host that is outside the domain. (Hint: 

Do not forget to explain how X knows of the 

router R.) 

  

Y

R

S

Ethernet

X

Ethernet

      

   30. Consider the following network topology. Show how 

node  A  constructs its routing table using link state 

routing and distance vector routing, respectively. 

  

3

6 

4

2 10

1 

1 

B

A

C

D E F
  

    31. Continue from Question 30: Now suppose link  A-B  

fails. How will the LS and DV routing react to this 

change?  

   32. Compare the message complexity and convergence 

speed of LS and DV routing.  

   33. Suppose that a positive lower bound is known for all 

link costs. Design a new link state algorithm which 

can add more than one node into the set N at each 

iteration.  

   34. Distance vector routing algorithm is adopted in intra-

domain routing (e.g., RIP) as well as inter-domain 

routing (e.g., BGP), but it is implemented with 

different concerns and additional features. Compare 

the differences between intra-domain routing and 

inter-domain routing when both of them use the 

distance vector algorithm.  

   35. Route looping is a problem in RIP. Why is it not a 

problem in BGP?  

   36. What are the major differences between link state 

routing and distance vector routing? What are the 

stability problems of distance vector algorithms, 

and what are the possible solutions to these 

problems?  

   37. If the objective of routing is to fi nd the path with 

the largest available bandwidth (called widest path), 

how do we defi ne the link cost? What needs to be 

changed when computing the path cost? (Not just 

adding link costs into the path cost!)  

   38. What is longest prefi x matching? Why should the 

router use longest prefi x matching? Will this still be 

a problem for IPv6? (Why and why not, justify your 

answer.)  

   39. In order to provide QoS to some multimedia 

applications, QoS routing has been studied for a 

while (but without success). Consider a streaming 

video application that requires constant bit rate 

transmission. How do we perform QoS routing for 

this kind of application? Explain how to defi ne the 

link cost function, how to compute a path cost from 

link costs, the granularity of routing decision, the 

interaction between application protocols and QoS 

routing.  

   40. Consider the tunneling technique between two 

mrouters. Describe how a multicast packet is 

encapsulated in a unicast packet. How does the 

mrouter at the other side of the tunnel know it is an 

encapsulated packet?  

   41. Since there are no centralized controls on IP 

multicast address assignment, what is the probability 

that two groups of users choose the same multicast 

address if they choose the address randomly?  

   42. Consider the operation of the IGMP protocol; when 

a router (querier) sends a group-specifi c query 

message to one of its subnets, how is the ACK 

(report message) explosion problem suppressed if 

there are many subscribers to the multicast group?  

   43. In IGMPv3, how do we subscribe multicast packets 

from a specifi c source?  

   44. Does DVMRP minimize the use of network 

bandwidth or end-to-end delay to each destination? 

Will a node receive multiple copies of the same 

packet? If yes, propose a new protocol such that all 

nodes will receive only one copy.  

lin76248_ch04_223-338.indd   337lin76248_ch04_223-338.indd   337 24/12/10   4:15 PM24/12/10   4:15 PM



338 Computer Networks: An Open Source Approach

   45. PIM consists of two modes: dense mode and sparse 

mode. What are the differences between these two 

modes? Why defi ne two modes?  

   46. In PIM-SM, how does a router know where to fi nd 

the RP for a newly joined member of a multicast 

group?  

   47. When a host sends a packet to a multicast group, 

how is the packet handled differently by the 

designated router under DVMRP and PIM-SM?  

   48. A multicast tree with the minimized cost is called 

a Steiner tree. Why do none of the protocols 

proposed in IETF RFCs try to construct a Steiner 

multicast tree?  

   49. In general, we may think that the cost of a 

source-based tree shall be less than that of a 

shared-based tree. Do you agree or not? Why? 

Construct a counter example to show that the 

cost of a source-based tree is actually larger than 

that of a shared-based tree.  

   50. Show the multicast tree built by DVMRP in the 

following network topology: 

  

Source

Receiver A

Receiver B

R1

R2R3 

2

2

2

1

2

             

lin76248_ch04_223-338.indd   338lin76248_ch04_223-338.indd   338 24/12/10   4:15 PM24/12/10   4:15 PM



5

 339

C h aa p t e rr

 Transport Layer 

The transport layer, also known as the end-to-end protocol layer, is like the 

 interface  of the whole Internet Protocol suite, providing end-to-end services to 

application programs.  Chapter 3  focuses on the link layer, which provides  node-
to-node single-hop  communication channels between directly linked nodes. Issues 

such as “how fast to send the data” and “does the data correctly reach the receiver 

attached on the same wired or wireless link?” arise and are answered in  Chapter 3 . 

The IP layer provides  host-to-host multi-hop  communication channels across the In-

ternet; similar issues arise for the IP layer and are answered in  Chapter 4 . Next, since 

there may be multiple application processes running on a host, the transport layer 

provides  process-to-process  communication channels between application processes 

on different Internet hosts. The services provided by the transport layer include 

(1)   addressing ,  (2)  error control ,   (3)  reliability ,   and (4)  rate control . The address-

ing service determines to which application process a packet belongs; error control 

detects if the received data is valid; the reliability service guarantees the transferred 

data will reach its destination; rate control adjusts how fast the sender should trans-

mit the data to the receiver for the purpose of  flow control  and to the network for 

 congestion control . 
 In the presence of different demands from a vast variety of application pro-

grams, exactly what services to offer in a transport protocol is a big issue. The 

transport protocols have evolved over time into two dominant ones: the sophis-

ticated  Transmission Control Protocol  (TCP) and the primitive  User Datagram 
Protocol  (UDP). While TCP and UDP exercise the same addressing scheme and 

similar error-control methods, they differ much in their design for reliability and 

rate control: TCP elaborates all the services mentioned above, but UDP completely 

omits the reliability and rate control services. Due to its sophisticated services, 

TCP has to establish an end-to-end logical connection between communicating 

hosts first (i.e., it is  connection-oriented ) and keep necessary  per-connection  or 

 per-flow  state information at the end hosts (i.e., it is  stateful ). This connection-

oriented and stateful design is intended to realize per-flow reliability and rate 

control for a specific process-to-process channel. On the other hand, UDP is 

 stateless  and  connectionless ,   without having to establish a connection to exercise 

its addressing and error-control schemes. 

 To hosts running real-time transfer applications, the services provided by 

either TCP or UDP are limited and inadequate due to their lack of timing and 

lin76248_ch05_339-416.indd   339lin76248_ch05_339-416.indd   339 24/12/10   4:15 PM24/12/10   4:15 PM



340 Computer Networks: An Open Source Approach

synchronization information between communicating hosts. Therefore, real-time 

applications most often incorporate an extra protocol layer on top of the primitive 

UDP to enhance the service quality. One pair of standard protocols for this purpose is 

 Real-Time Transport Protocol  (RTP)/ Real-Time Control Protocol ( RTCP ) . This pair 

provides services such as synchronization between audio and video streams, data 

compression and decompression information, and path quality statistics (packet loss 

rate, end-to-end latency and its variations). 

 Since the transport layer is directly coupled with the application layer, the 

Internet socket, often simply called socket, serves as an important  application 
programming interface  (API) for programmers to access the underlying services of 

the Internet Protocol suite. Nevertheless, the TCP and UDP socket interfaces are not 

only accessible by the application layer. Applications can bypass the transport layer 

and directly use the services provided by the IP or link layer. Later we will discuss 

how Linux programmers access the services from the transport layer down to the IP 

layer or even to the link layer through various socket interfaces. 

 This chapter is organized as follows: Section 5.1 identifies the end-to-end 

issues of the transport layer, and compares them with those issues of the link layer. 

Sections 5.2 and 5.3 then describe how the Internet resolves the issues of the transport 

layer. Section 5.2 illustrates the  primitive  transport protocol UDP, which provides ba-

sic process-to-process communication channels and error control. Section 5.3 focuses 

on the widely used transport protocol TCP, which equips applications with not only 

process-to-process communication channels and error control but also reliability and 

rate control. The services of the Internet Protocol suite discussed so far, including 

those in  Chapters 3 ,   4 ,  and  5 ,  can be directly accessed by application programmers 

through various socket interfaces. Section 5.4 explains the Linux approach of real-

izing the socket interfaces. However, because of the extra software layer for real-time 

applications, RTP/RTCP is often embedded as  library functions  in the applications. 

Section 5.5 describes how the application layer employs RTP/RTCP. 

 At the end of this chapter, you should be able to answer (1)  why  the transport 

layer of the Internet Protocol suite was designed into the way it is today, and (2)  how  

Linux realizes the transport-layer protocols.  

   5.1 GENERAL ISSUES  

 The transport or end-to-end protocol, as its name suggests, defines the protocol 

responsible for data transfer between the  end points  of a communication channel. Let 

us first define some terminology used throughout this chapter: An application running 

over an operating system is a process, the data transfer unit in the transport layer is 

referred to as a  segment ,   and the traffic flowing in a process-to-process channel is a 

 flow . The most apparent service of the transport layer is to provide process-to-process 

communication channels to application processes. Since there may be multiple 

processes running on a single host simultaneously, with the aid of process-to-process 

channels, any processes running on any hosts in the Internet can communicate with 

one another. The issues concerning the process-to-process channel are very similar 

to those concerning the node-to-node channel in  Chapter 3 . In general, the transport 

lin76248_ch05_339-416.indd   340lin76248_ch05_339-416.indd   340 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 341

layer addresses the  connectivity  requirement by  process-to-process communication  

plus  error control  on a per-segment basis and  reliability  control on a per-flow basis; 

it addresses the  resource sharing  requirement by imposing  rate control  on each flow. 

  5.1.1 Node-to-Node vs. End-to-End 
 For communication over the process-to-process channel, classical issues that had 

appeared in  Chapter 3  arise again, but the solutions applicable there might not 

be applicable here. As shown in  Figure 5.1 ,  the major difference between the 

 single-hop node-to-node  and the  multi-hop process-to-process  channels lies in the 

 latency distribution ;  latency is the time delay of transmission from one end host to 

the other over the channel. In  Chapter 3 ,  reliability and rate control issues are easier 

to resolve because the distribution of the latency between directly linked hosts is 

very condensed around a certain value that depends on the chosen link-layer technol-

ogy. In contrast, the latency in the process-to-process channel is large and may vary 

dramatically, so reliability and rate control algorithms in the transport layer should 

accommodate large latency and dramatic variation in latency (often called jitter).  
  Table 5.1  presents a detailed comparison between link protocols on single-hop 

channels and transport protocols on multi-hop channels. Transport protocols provide 

services on top of the IP layer, whereas link protocols provide services upon the 

physical layer. Because there may be multiple nodes attached on the link, the link 

layer defines the node address (MAC address) to identify node-to-node communica-

tion channels over a direct link. Similarly, there may be multiple processes running 

on the host of each end, thus the transport layer defines the  port number  to address 

a process on a host. 

  Addressing 

 Addressing at the transport layer is rather simple—we just need to label each process 

running on the local host with a unique identification number. Therefore, the length 

IP AP1 AP2 AP3 AP4IP

Link Link Transport Transport

Node 2 Host 1 Host 2

Condensed
latency

distributionPr
ob

.

Pr
ob

.

Node 1

10 50 100 150 20020 30
Latency (ms) Latency (ms)

Diffused latency
distribution

Node-to-node channel Process-to-process channel

: Service Access Point

Multi-hop
channel

Single-hop
channel

   FIGURE 5.1 Differences between single-hop and multi-hop channels. 

lin76248_ch05_339-416.indd   341lin76248_ch05_339-416.indd   341 24/12/10   4:15 PM24/12/10   4:15 PM



342 Computer Networks: An Open Source Approach

of the process address should be short as compared to the link-layer or network-layer 

address, and the operating system of the local host could assign the address of a pro-

cess locally. As we shall see in this chapter, the Internet solution uses a 16-bit port 

number as the address of a process. A port number for a particular application could 

be either a well-known number used by all hosts globally or any available number 

dynamically assigned by the local host.   

  5.1.2 Error Control and Reliability 
 Error control and reliability are important to end-to-end communication because the 

Internet occasionally loses, reorders, or duplicates packets. Error control focuses 

on detecting or recovering bit errors within a transferred data unit, be it a frame or 

a segment, while reliability further provides retransmission mechanisms to recover 

from what appears to be a missing or incorrectly received data unit.  Table 5.1  indicates 

that the link protocols adopt error-control methods that operate on a per-frame basis, 

while the transport protocols adopt per-segment-based error control. The error detec-

tion code used in the link protocols and in the transport protocols are usually cyclic 

redundancy check (CRC) and checksum, respectively. As stated in Subsection 3.1.3, 

CRC is more robust in detecting multiple bit errors and easier to implement in hard-

ware, while checksum in the transport protocols acts only as a double-check against 

nodal errors that occur in data processed at nodes. 

 For reliable transmission, end-to-end protocols provide per-flow reliability 

control, but most link protocols, such as Ethernet and PPP, do  not  incorporate 

retransmission in their mechanisms. They leave the burden of retransmission to 

their upper-layer protocols. However, some link protocols such as WLAN operate in 

environments where severe frame losses could occur, so these link protocols have 

built-in reliability mechanisms to improve the inefficiency resulting from  frequent  
retransmissions by upper-layer protocols. For example, after a huge outgoing segment 

from the transport layer is split into 10 packets in the IP layer and then 10 frames in 

the WLAN, the WLAN can reliably transmit each of the 10 frames without appealing 

to end-to-end retransmission of the entire huge segment. The entire frame thus has 

a lower probability of being retransmitted end-to-end in comparison with the case if 

WLAN had no built-in reliability mechanism. 

TABLE 5.1 Comparison Between Link Protocols and Transport Protocols

Link Protocol Transport Protocol

Base on what services? Physical link IP layer

Services

Addressing Node-to-node channel within a link 

(by MAC address)

Process-to-process channel 

between hosts (by port number)

Error control Per-frame Per-segment

Reliability Per-link Per-flow

Rate control Per-link Per-flow

Channel latency Condensed distribution Diffused distribution

lin76248_ch05_339-416.indd   342lin76248_ch05_339-416.indd   342 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 343

 The latency distribution also is important to reliable transmission because it 

affects the design of the  retransmission timer . As shown in  Figure 5.1 ,  the latency 

distribution of the link channel is condensed around a certain value, so it would be 

appropriate for us to set the retransmission timer of the link channel to timeout after 

a fixed period, say 10 ms. However, it is problematic to apply this technique to the 

transport layer due to the  diffused  latency distribution of the end-to-end channel. 

In  Figure 5.1 ,  for example, if we set the timeout value to 150 ms for an end-to-end 

channel, some segments would be falsely retransmitted and the network would 

contain many duplicate segments, but if we set the timeout value to 200 ms, lost 

segments would not be retransmitted until this long-waiting timer expires, resulting 

in poor performance. All these trade-offs influence the design choices of the link 

and end-to-end channels.  

  5.1.3 Rate Control: Flow Control and Congestion Control 
 Rate control, including flow control and congestion control, plays a more important 

role in transport protocols than in link protocols because the environment of wide 

area networks where the transport protocol operates is much more complex than that 

of local area networks where the link protocol runs. Flow control runs solely between 

the source and the destination, while congestion control runs between the source 

and the network. That is, congestion in the network could be alleviated by conges-

tion control but not by flow control. There is no congestion control in link protocols 

because transmitters are only one hop away from the receivers. 

 Congestion control can be accomplished by the sender or by the network. 

Network-based congestion control employs various queuing disciplines and schedul-

ing algorithms at intermediate routers to avoid network congestion. Sender-based 

congestion control relies on each sender’s self-control to avoid sending too much 

data into the network too fast. Network-based congestion control, however, is beyond 

the scope of this chapter and shall be addressed in  Chapter 7 . 

 In literature, flow control or congestion control mechanisms can be classified 

into  window-based  and  rate-based . Window-based control regulates the sending 

rate by controlling the number of  outstanding  packets that can be simultaneously in 

transit. An outstanding packet represents a packet that has been sent but its acknowl-

edgment has not returned yet. On the other hand, a rate-based controlled sender 

directly adjusts its sending rate when receiving an explicit notification of how fast it 

should send. 

  Real-Time Requirements 

 Since real-time applications require extra information to construct the play-out, 

extra supports other than those just described should be available. They might 

include synchronization between audio and video streams, data compression and 

decompression information, and path quality statistics (packet loss rate, end-to-end 

latency, and its variations). To support these extra requirements, all required extra 

information, such as timestamp, codec type, and loss rate must be carried in the 

protocol message header. Since TCP and UDP do not have these fields in their 

headers, other transport protocols are needed to meet the real-time requirements.   

lin76248_ch05_339-416.indd   343lin76248_ch05_339-416.indd   343 24/12/10   4:15 PM24/12/10   4:15 PM



344 Computer Networks: An Open Source Approach

  5.1.4 Standard Programming Interfaces 
 Networking applications often access the underlying services through the  socket 
programming interfaces . Most applications run over TCP or UDP, depending 

on whether they need reliability and rate control, and access them through the 

TCP sockets or UDP sockets, respectively. However, there are other applications that 

need to bypass the transport protocols to access the IP layer if they need to read or 

write the IP header, and some even need to access the link layer directly to read or 

write the link-layer header. Applications can access the IP layer and the link layer 

through the datagram sockets and raw sockets, respectively. 

 The BSD socket interface semantics has become the most widely used template 

in most operating systems, compared to the transport layer interface (TLI) socket and 

its standardized version X/Open TI (XTI), both of which were developed for AT&T 

Unix systems. With standardization of the socket programming interfaces, applica-

tion programs are able to run on various operating systems that support the standard. 

However, developers often find porting efforts are still required for socket applica-

tions, for example, even for an application that has been running successfully on 

Linux to run over BSD, which differs from Linux only in error-handling functions.  

  5.1.5 Transport-Layer Packet Flows 
 During packet transmission, the transport layer receives data from the application 

layer through the socket interface, encapsulates the data with a TCP or UDP header, 

and passes the resultant segment on to the IP layer. Upon packet reception, the trans-

port layer receives a segment from the IP layer, removes the TCP or UDP header, and 

passes the data to the application layer. The detailed packet flows are illustrated in 

Open Source Implementation 5.1.     

 Open Source Implementation 5.1: 
Transport-Layer Packet Flows in Call Graphs 

  Overview 
 The transport layer includes one interface with the IP layer and another with 

the application layer. As in  Chapters 3  and  4 , we examine these two interfaces 

through the reception path and the transmission path. In the reception path, 

a packet is received from the IP layer and then passed to an application layer 

protocol. In the transmission path, a packet is received from the application layer 

and then passed to the IP layer.  

  Data Structures 
 There are two data structures,  sk_buff  and  sock , involved in almost every 

function call through the flows of packet processing. The former one, as defined 

in  include/linux/skbuff.h , has been introduced in  Chapter 1 , while the 

lin76248_ch05_339-416.indd   344lin76248_ch05_339-416.indd   344 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 345

definition of the latter one can be found in  include/linux/net/sock.h . 

The  sock  structure for a TCP flow, for example, includes mainly a pointer 

to the structure  tcp_sock , which maintains most necessary variables to run 

TCP, such as  srtt  for RTT estimation or  snd_wnd  for window congestion 

control. The  sock  also includes two queue structures,  sk_receive_queue
and  sk_write_queue , to queue the packets received from the IP layer and 

the packets to be sent out, respectively. Moreover, the  sock  keeps the pointers 

to several callback functions to inform the application layer about new data 

available to be received or new memory space available to be filled.  

  Call Graphs 
 As shown in  Figure 5.2 , when the transport layer receives a packet from the IP 

layer, the packet is saved in an  skb  and passed to one of the three functions:  raw_
v4_input() ,  udp_rcv() , or  tcp_v4_rcv() , based on its protocol id in 

the IP header. Then, each protocol has its associated lookup function,  _raw_v4_
lookup() ,  udp_v4_lookup() , and  inet_lookup() , retrieve the  sock  

structure corresponding to the packet. By the information in the  sock  structure, the 

transport layer can identify which flow an incoming packet belongs to. Then, the 

received packet is inserted into the queue of the flow by  skb_queue_tail() . 

Continued
   FIGURE 5.2 The call graph for an incoming packet in the transport layer. 

raw_v4_input(skb)

raw_rcv(sk,skb)

raw_rcv_skb(sk,skb)

__skb_queue_tail(sk->sk_receive_queue, skb)

sk->sk_data_ready

udp_rcv(skb)

sk=udp_v4_lookup(skb)

udp_queue_rcv_skb(sk,skb)

socket_queue_rcv_skb(sk,skb)

udp_recvmsg (sk,buf)

skb_recvdatagram

skb=skb_dequeue

tcp_v4_do_rcv(sk,skb)

tcp_rcv_established

tcp_data_queue(sk,skb)

tcp_v4_rcv(skb)

tcp_recvmsg(sk,buf)

skb_copy_datagram_iovec

raw_recvmsg (sk,buf)

sk=__raw_v4_lookup(skb) sk=inet_lookup(skb)

sk_receive_queue

RAW UDP TCP

io_local_deliver_finish

read

sys_read

do_sock_read

sock_recvmsg

vfs_read

do_sync_read

sock_aio_read

recvfrom

sys_socketcall

sys_recvfrom

sock_recvmsg

__sock_recvmsg

sock_common_recvmsg

Application layer

Network layer

Transport layer

lin76248_ch05_339-416.indd   345lin76248_ch05_339-416.indd   345 24/12/10   4:15 PM24/12/10   4:15 PM



346 Computer Networks: An Open Source Approach

By  sk->sk_data_ready() , the application where this flow belongs is 

notified of data being available for receipt. Next, the application may call  read()
or  recvfrom()  to obtain the data from the  sock  structure. The  recvfrom()
function triggers a series of function calls, and finally  skb_dequeue()  is used 

to remove the data from the queue corresponding to the flow into an  skb  space, 

and then  skb_copy_datagram_iovec()  is called to copy the data from the 

kernel-space memory to the user-space one.  

 Next,  Figure 5.3  displays the call graph for an outgoing packet. When an 

application plans to send data into the Internet, it calls  write()  or  sendto() , 

which then calls  raw_sendmsg() ,  udp_sendmsg() , or  tcp_sendmsg()  

based on the protocol specified when the socket is created. For a raw or UDP 

socket,  ip_append_data()  is called. Then,  sock_alloc_send_skb()  

and  ip_generic_getfrag()  are called to allocate an  skb  buffer in the 

kernel-space memory and copy data from the user-space memory to the  skb  

buffer, respectively. Finally, the  skb  is inserted into  sk_write_queue  of the 

 sock  structure. On the other hand,  ip_push_pending_frame()  repeatedly 

write

sys_write

do_sock_write

sock_sendmsg

udp_sendmsg(sk,buf)raw_sendmsg(sk,buf)

tcp_sendmsg(sk,buf)

skb_queue_tail(&sk->sk_write_queue,skb)

ip_append_data(sk,buf)

skb=sock_alloc_send_skb(sk)

ip_generic_getfrag

sk_write_queue

ip_push_pending_frames

ip_queue_xmit

Transport layer

Application layer

Network layer

dst_output

skb->dst->output

ip_output

__tcp_push_pending_frames

tcp_transmit_skb

vfs_write

do_sync_write

sock_aio_write

inet_sendmsg

tcp_push

tcp_write_xmit

sendto

sys_socketcall

sys_sendto

sock_sendmsg

inet_sendmsg

skb=sock_wmalloc(sk)

udp_push_pending_frames

   FIGURE 5.3 The call graph for an outgoing packet in the transport layer. 

lin76248_ch05_339-416.indd   346lin76248_ch05_339-416.indd   346 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 347

  5.2 UNRELIABLE CONNECTIONLESS TRANSFER: UDP  

 User Datagram Protocol (UDP) is an  unreliable connectionless  transport protocol 

that does not provide reliability and rate control. It is a stateless protocol in that the 

sending or receiving of a segment is independent of that of any other segments. Al-

though error control is also provided by UDP, it is optional. Due to its simplicity and 

nonretransmission design, many real-time applications where reliability is less of an 

issue adopt RTP over UDP to transmit real-time or streaming data. In recent years, 

peer-to-peer applications use UDP to send a large volume of queries to peers and 

then use TCP to exchange data with selected peers. 

 UDP provides the simplest transport services: (1) process-to-process communi-

cation channel and (2)  per-segment  error control. 

  5.2.1 Header Format 
 The UDP header serves only two functions: addressing and error detection. It consists 

of four fields: source and destination port number, UDP length, and UDP checksum, 

as shown in  Figure 5.4 . To provide a communication channel between two applica-

tion processes that reside on different hosts in the Internet, each process should bind 

to a locally unique  port number  on its local host. Though each host handles the bind-

ing of ports to its processes independently, it proves useful to bind frequently used 

Source port number

0 15 16 31

Destination port number

UDP length UDP checksum (optional)

Data (if any)~~ ~~

8 bytes

   FIGURE 5.4 UDP datagram format. 

removes data from the queue and then forwards them to the IP layer. Similarly, 

for a TCP socket,  tcp_sendmsg()  and  skb_add_data()  are used to remove 

the tail  skb  from the queue and copy data into the kernel-space memory, respec-

tively. If the amount of written data is more than the space available to the tail  skb , 

a new skb buffer can be allocated in the kernel-space memory by  sk_stream_
alloc_page() . Finally,  ip_queue_xmit()  is called to forward data from 

the  sk_write_queue  into the IP layer via the  ip_output()  function .  

    Exercises  
   1. With the call graph shown in  Figure 5.3 , you can trace  udp_send-

msg () and  tcp_sendmsg () to figure out how exactly these functions are 

implemented.  

   2. Explain what the two big “while” loops in  tcp_sendmsg () are intended 

for. Why are such loop structures not shown in  udp_sendmsg ()?    

lin76248_ch05_339-416.indd   347lin76248_ch05_339-416.indd   347 24/12/10   4:15 PM24/12/10   4:15 PM



348 Computer Networks: An Open Source Approach

server processes (e.g., WWW) to  fixed  port numbers that are made well known to the 

public. Their services can then be accessed through the  well-known ports . The port 

numbers of the client processes, however, are randomly selected for binding and are 

not necessary to be well known. 

 The source/destination port numbers, concatenated with the source and destina-

tion IP addresses and protocol ID (indicating TCP or UDP) in the IP header, form a 

 socket pair  of  5-tuple  with a total length of 32 × 2 + 16 × 2 + 8 = 104 bits. Since the 

IP address is globally unique and the port number is locally unique, the 5-tuple thus 

uniquely identifies a  flow  of the process-to-process communication channel. In other 

words, packets of the same flow would have the same 5-tuple values. For IPv6 pack-

ets, the field “flow id” in the IP header is specifically designed for flow identification. 

Note that a socket pair is  full-duplex ,   which means data can be transmitted through 

the socket connection in both directions simultaneously. In  Figure 5.1 ,  outgoing 

packets from application process AP1 flow from its source port to the destination 

port bound to application process AP3. Any data encapsulated with the same 5-tuple 

fields by application process AP1 on host 1 can be accurately transported to applica-

tion process AP3 on host 2 without ambiguity. 

 UDP allows applications on different hosts to send data segments directly to one 

another without having to establish a connection first. A UDP port accepts segments 

from a local application process, packs them into units called datagrams of no more 

than 64K bytes, and fills the 16-bit source and destination port numbers and other 

UDP header fields of the datagrams. Each datagram is sent as a separate IP packet 

that is forwarded hop-by-hop to the destination as illustrated in  Chapter 4 . When the 

IP packets containing UDP data reach their destination, they are directed to the UDP 

port bound to the receiving application process.   

  5.2.2 Error Control: Per-Segment Checksum 
 Besides port numbers, the UDP header also provides a 16-bit checksum field 

for checking on the integrity of each datagram, as shown in  Figure 5.4 . Since the check-

sum computation for a UDP datagram is optional, it can be disabled by setting the check-

sum field to zero. The sender generates the checksum value and fills in the checksum 

field, which is to be verified by the receiver. To ensure that each received datagram is 

exactly the same as the one sent by the sender, the receiver recalculates the checksum 

with the received datagram and verifies if the result matches the value stored in the 

UDP checksum field. UDP receivers will  drop  the datagrams whose checksum field 

does not match the result they have calculated. This mechanism ensures per-segment 

data integrity but not per-segment data  reliability . 

 The UDP checksum field stores the 1’s complement of the sum of all 16-bit 

words in the header  and  payload. Its calculation is similar to IP checksum calcula-

tion discussed in  Chapter 4 . If a UDP datagram contains an odd number of octets to 

be check-summed, the last octet is  padded  at the end with zero bits to form a 16-bit 

word for checksum computation. Note that the pad is not transmitted as part of the 

datagram because the checksum verification at the receiver follows the same pad-

ding procedure. The checksum also covers a 96-bit  pseudo header ,  consisting of four 

fields in the IP header: the source IP address, the destination IP address, protocol, and 

lin76248_ch05_339-416.indd   348lin76248_ch05_339-416.indd   348 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 349

length. Checksum covering the pseudo header enables the receiver to detect the da-

tagrams with incorrect delivery, protocol, or length information. For the case that the 

checksum computation results in zero, 0xFFFF is filled into the field. Open Source 

Implementation 5.2 details the checksum calculation process. 

 UDP checksum, though optional, is highly recommended because some link 

protocols do not perform error control. When implementing UDP over IPv6, 

checksum becomes mandatory as IPv6 does not provide checksum at all. UDP 

checksum is omitted only for some real-time applications where latency and jitter 

between the application processes are more critical than error control.   

 Open Source Implementation 5.2: UDP and 
TCP Checksum 

  Overview 
 The flowchart of checksum calculation along with IP checksum in Linux 2.6 

can be learned by tracing source code from the function  tcp_v4_send_
check()  in  tcp_ipv4.c . The flowchart of UDP checksum is exactly the 

same as that of TCP.  

  Data Structures 
 A field called  csum  in the  skb  structure is to store the checksum of the ap-

plication data carried by an  sk_buff . The definition of  csum  can be found in 

 include/linux/skbuff.h . When a packet is to be sent out, the value in 

 skb->csum  would be passed with  the packet header  to the checksum function 

to calculate the final checksum of the packet.  

  Algorithm Implementation 
  Figure 5.5  lists the partial code in  tcp_v4_send_check() . The application 

data is first check-summed into  skb->csum , and then by the functional call 

 csum_partial() ,  skb->csum  is check-summed again with the transport 

layer header referenced by pointer  th . The calculated result is again check-

summed with the source and destination IP addresses in the IP header by  tcp_
v4_check() , which wraps  csum_tcpudp_magic() . The final result is 

stored in the TCP/UDP checksum field. On the other hand, the IP checksum 

is computed from the IP header independently, which could be found in  net/
ipv4/af_inet.c  by searching the term “ iph->check ”. 

     th->check = tcp _ v4 _ check( len , inet->saddr, inet->daddr, 
   csum _ partial((char *)th, 
  th->doff << 2, 
  skb->csum));  

 FIGURE 5.5 The partial code for the checksum procedure of TCP/IP.   

Continued

lin76248_ch05_339-416.indd   349lin76248_ch05_339-416.indd   349 24/12/10   4:15 PM24/12/10   4:15 PM



350 Computer Networks: An Open Source Approach

  5.2.3 Carrying Unicast/Multicast Real-Time Traffic 
 Due to its simplicity, UDP is a suitable carrier for unicast or multicast real-time 

traffic. This is because real-time traffic has the following properties: (1) it does  not
need per-flow reliability (retransmitting a lost real-time packet could be meaningless 

because the packet might not arrive in time), and (2) its bit rate (bandwidth) depends 

mainly on the selected codec and is unlikely to be flow controllable. These two 

properties simplify the transport layer for real-time traffic to offering the addressing 

service only. 

 However, besides the basic process-to-process communication service, real-

time applications also require additional services, which include synchronization 

between audio and video streams, data compression and decompression informa-

tion, and path quality statistics. These services are mostly provided by the RTP, and 

therefore, in Section 5.5 we shall investigate the design of the RTP, which is built on 

top of UDP.    

  Block Diagram 
 The flowchart of checksum calculation is plotted in  Figure 5.6  according to 

the preceding description. We can summarize several findings from the figure: 

(1) The transport-layer checksum is calculated from the checksum of application 

data; (2) the IP checksum does not cover the IP payload. In  Figure 5.6 ,  D  stands 

for the pointer to the application data,  lenD  for the length of the application 

data,  T  for the pointer to the transport layer header (TCP or UDP),  lenT  for 

the length of the transport layer header,  lenS  for the length of the segment 

(including the segment header),  iph  for the pointer to the IP header,  SA  for the 

source IP address, and  DA  for the destination IP address.   

  Exercises 
 If you look at the definition of  csum  in the  sk_buff , you may find its 4-byte 

memory space is shared with another two variables:  csum_start  and  csum_
offset . Explain the usages of these two variables and why both variables 

share with  csum  the same memory space.  

   FIGURE 5.6 Checksum calculations of TCP/IP headers in Linux 2.6. 

csum=csum_partial(D, lenD, 0)

csum_tcpudp_magic(SA, DA, lenS, Protocol, csum)

csum=csum_partial(T, lenT, csum)

ip_send_check(iph)

IP header

Pseudo header

TCP/UDP header Application data

lin76248_ch05_339-416.indd   350lin76248_ch05_339-416.indd   350 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 351

  5.3 RELIABLE CONNECTION-ORIENTED TRANSFER: TCP  

 The majority of networking applications today use Transmission Control Protocol 

(TCP) to communicate because it provides reliable, in-order data delivery. Further-

more, TCP automatically adapts its sending rate to network congestion or changes in 

the receiving capability of the receiver. 

 TCP aims to provide (1) addressing of process-to-process communication channels, 

(2) per-segment error control, (3) per-flow reliability, and (4) per-flow flow control and 

congestion control. Addressing of channels and per-segment error control in TCP are 

the same as those in UDP. Since the latter two objectives are on a per-flow basis, we 

first discuss how a TCP flow is established and released in Subsection 5.3.1, and then 

illustrate TCP’s reliability control in Subsection 5.3.2. Flow control and congestion 

control of TCP are presented in Subsection 5.3.3 and Subsection 5.3.4, respectively. 

The TCP header format is then elaborated in Subsection 5.3.5. Timer management 

issues of TCP are discussed in Subsection 5.3.6. Finally, TCP’s performance problems 

and enhancements are addressed in Subsection 5.3.7. 

  5.3.1 Connection Management 
 Connection management deals with the process of end-to-end connection establish-

ment and termination. As in UDP, a TCP connection is uniquely identified by the 

5-tuple: source/destination IP addresses, source/destination port numbers, and the 

protocol ID. Establishing and terminating a TCP connection is similar to talking 

to someone over the phone in daily life. To talk to someone over the phone, we 

pick up the phone and then choose the callee’s phone number (IP address) and 

extension number (port number) to dial. Next, we dial to the callee (issuing a 

connection request), wait for the response (connection establishment), and begin 

to speak (transferring data). Finally, we say goodbye and hand up the phone 

(disconnection). 

 Establishing a connection over the Internet is not as easy as it sounds due to 

the fact that the Internet occasionally loses, stores, and duplicates packets. In the 

Internet, packets are sent to their destination in the “store-and-forward” manner; 

that is, intermediate routers first store the received packets and then forward them to 

their destination or to the next hop. Storing packets in the Internet introduces packet 

delay and duplication that could confuse a sender or a receiver, and it is especially 

complicated to resolve the ambiguities if packets could live forever in the network. 

TCP chose to restrict the maximum lifetime of a packet to 120 seconds. Under this 

choice, TCP employs the three-way handshake protocol proposed by Tomlinson in 

1975 to resolve the ambiguities caused by  delayed duplicate  packets. 

  Connection Establishment/Termination: Three-Way Handshake Protocol 

 At connection startup, both client and server processes randomly choose their initial 

sequence number (ISN) to reduce the ambiguous effects introduced by the delayed 

duplicate packets. When a client process wants to establish a connection with a 

server process, as shown in  Figure 5.7(a) , it sends a SYN segment specifying (1) the 

lin76248_ch05_339-416.indd   351lin76248_ch05_339-416.indd   351 24/12/10   4:15 PM24/12/10   4:15 PM



352 Computer Networks: An Open Source Approach

port number of the server that the client wants to connect to and (2) the ISN of the 

data segments sent from the client. The server process responds to the SYN segment 

with an (ACK+SYN) segment to (1) acknowledge the request and also to (2) declare 

the ISN of the data segments sent from the server process. Finally, the client process 

must also acknowledge the SYN from the server process to confirm the connection 

establishment. Note that to notify the ISN of each direction, the sequence numbers 

and acknowledgment numbers must follow the semantics depicted in  Figure 5.7(a) . 

This protocol is known as the  three-way handshake protocol . 
 The TCP connection termination takes four segments rather than three. As 

shown in  Figure 5.7(b) ,  it is a two-way handshaking for each direction, which con-

sists of a FIN segment followed by an ACK of FIN segment. A TCP connection is 

 full-duplex  —data flowing from client to server or from server to client are indepen-

dent of each other. Since closing one direction with a FIN segment does not affect the 

other direction, the other direction should also be closed with another FIN segment. 

Note that it is possible to close a connection by a 3-way handshake. That is, the client 

sends a FIN, the server replies with a FIN+ACK (just combines two segments into 

one), and finally the client replies with an ACK.  

 The party that sends the first SYN to initiate a TCP connection is said to perform 

an  active open ,   while its peer that listens on the port to accept the incoming connec-

tion request is said to perform a  passive open . Similarly, the party that sends the first 

FIN to terminate a TCP connection is said to perform an  active close ,   and its peer 

performs a  passive close . The details of their differences can be illustrated by the 

TCP state transition diagram described next.  

  TCP State Transition 

 A TCP connection progresses through a series of states during its lifetime. There 

are 11 possible states for a TCP connection, which are: LISTEN, SYN-SENT, 

SYN-RECEIVED, ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, 

CLOSING, LAST-ACK, TIME-WAIT, and the fictional state CLOSED. CLOSED is 

   FIGURE 5.7 Handshake protocols for TCP connection establishment and termination. 

SYN (seq=x)

ACK of SYN (ack=x+1)

FIN

FIN

ACK of FIN

ACK of FIN

ClientClient

SYN (seq=y)

(seq=x+1)ACK of SYN (ack=y+1)

Server Server

(a) Establishment (b) Termination

lin76248_ch05_339-416.indd   352lin76248_ch05_339-416.indd   352 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 353

fictional because it represents the state where the TCP connection is terminated. The 

meanings of TCP states are:  

  � LISTEN—waiting for a connection request from any remote TCP client.  

  � SYN-SENT—waiting for a matching connection request after having sent a con-

nection request.  

  � SYN-RECEIVED—waiting for an acknowledgment of a connection request 

after having both received and sent a connection request.  

  � ESTABLISHED—an open connection; data can be sent in both directions. The 

normal state for the data transfer phase of the connection.  

  � FIN-WAIT-1—waiting for a connection termination request from the remote TCP, 

or an acknowledgment of the connection termination request previously sent.  

  � FIN-WAIT-2—waiting for a connection termination request from the remote 

TCP.  

  � CLOSE-WAIT—waiting for a connection termination request from the local 

user.  

  � CLOSING—waiting for an acknowledgment of a connection termination re-

quest from the remote TCP.  

  � LAST-ACK—waiting for an acknowledgment of the connection termination 

request previously sent to the remote TCP.  

  � TIME_WAIT—waiting for enough time before transitioning to the CLOSED 

state to ensure the remote TCP receives its last ACK.  

  As defined in RFC 793, TCP works by running a state machine as shown in  Figure 5.8 . 

Both client and server processes behave following this state transition diagram. Bold 

arrows and dashed arrows in the figure correspond to  normal  state transitions of the 

client and the server process, respectively. The entire state transition in  Figure 5.8  can 

be divided into three phases:  connection establishment ,    data transfer ,   and  connection 
termination . A TCP connection enters the  data transfer  phase when both the client 

and the server transit to the ESTABLISHED state. In the  data transfer  phase, the 

client can send a request for service to the server; once the request has been granted, 

both parties can send data to each other over the TCP connection. In case of data 

service, most often the server process acts as a TCP sender transferring requested 

data files to the client process.  

 The state transitions of normal  connection establishment  and  connection 
termination  are shown in  Figure 5.9 ,  with labels indicating the states entered by the 

client and the server. Since it is possible for two sides to send a SYN to each other 

at the same time to establish a TCP connection, even though the possibility is small, 

the state transitions are also considered for this “simultaneous open” in  Figure 5.8 . 

Figure 5.10(a) shows the state transitions in simultaneous open. Similarly, it is 

permitted in TCP for both sides to do close, which is called “simultaneous close.” 

The state transitions in this case are shown in Figure 5.10(b). 

 On the other hand, the state transitions in some abnormal cases, including 

lost SYN, lost SYN/ACK, and lost ACK during the connection establishment, 

are exhibited in  Figure 5.11 (a), (b), and (c), respectively. Lost segments trigger 

connection timeout at the client, which then returns to the CLOSED state, as seen in 

 Figure 5.11 (a) and (b). Connection timeout at the server in  Figure 5.11(b)  and (c), 

lin76248_ch05_339-416.indd   353lin76248_ch05_339-416.indd   353 24/12/10   4:15 PM24/12/10   4:15 PM



354 Computer Networks: An Open Source Approach

   FIGURE 5.9 State transitions in connection establishment and termination. 

ServerServer ClientClient
CLOSED LISTEN

ESTABLISHED

ESTABLISHED

SYN_SENT

SYN_RCVD

ESTABLISHED ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

TIME_WAIT

CLOSED

CLOSE_WAIT

LAST_ACK

CLOSED
2MSL timeout

SYN (seq=x)

ACK of FIN

ACK of FIN

FIN

FIN
ACK of SYN (ack=x+1)

SYN (seq=y)

(seq=x+1)
ACK of SYN (ack=y+1)

   FIGURE 5.8 TCP state transition diagram. 

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED CLOSE_WAIT

LAST_ACK

FIN_WAIT_1 CLOSING

TIME_WAITFIN_WAIT_2

recv: ACK
send: nothing

app: send data
send: SYN

app: active open

send: SYN

app: passive open
send: nothing

recv: SYN    se
nd: SYN,ACK

recv: RST

app: close 

or timeout
recv: SYN

send: SYN, ACK
simultaneous open

recv: ACK

send: nothing

passive close

simultaneous close

app: close
send: FIN

app: close

send: FIN

recv: SYN,ACK

send: ACK

active open

app: close
send: FIN

recv: FIN,ACK

send: nothing

recv: ACK
send: nothing

recv: FIN

send: ACK

active close

data transfer state

recv: FIN
send: ACK

recv: ACK
send: nothing

recv: FIN
send: ACK

server

client

timeout
send: RST

lin76248_ch05_339-416.indd   354lin76248_ch05_339-416.indd   354 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 355

   FIGURE 5.10 State transitions in simultaneous open and simultaneous close. 

Server ServerClient Client
CLOSED LISTEN

ESTABLISHED

ESTABLISHED

SYN_SENT

SYN_RCVD

ESTABLISHED ESTABLISHED

FIN_WAIT_1

TIME_WAIT

CLOSED

CLOSING

2MSL timeout

SYN_SENT

SYN_RCVD

FIN_WAIT_1

CLOSING

TIME_WAIT

CLOSED

2MSL timeout

(a) State transitions in simultaneous open (b) State transitions in simultaneous close

SYN (seq=x)

SYN (seq=x)

FIN

ACK of FIN

ACK of FIN

FIN

SYN (seq=y)

SYN (seq=y)

ACK of SYN (ack=x+1)

ACK of SYN (ack=y+1)

   FIGURE 5.11 State transitions with packet loss in connection establishment. 

SYN (seq=x)

Client ClientServer Server

CLOSED LISTEN

CLOSED

SYN_SENT

Timeout

SYN (seq=x)

SYN (seq=y)

ACK of SYN (ack=x+1)

CLOSED LISTEN

CLOSED

SYN_SENT

SYN_RCVD

CLOSED

Timeout

Timeout

CLOSED

SYN (seq=x)

ACK of SYN (ack=x+1)SYN (seq=y)

(seq=x+1)
ACK of SYN (ack=y+1)

ServerClient

CLOSED LISTEN

SYN_SENT

SYN_RCVD

ESTABLISHED

CLOSED

CLOSED

Timeout

LISTEN

LISTEN

(a) SYN sent by the client is lost (b) SYN sent by the server is lost

(c) ACK of SYN sent by the client is lost

RST

RST

however, results in returning to the CLOSED state and an RST segment being sent 

to reset the client’s state. 

 There are also some other abnormal cases, for example, half-open connections, 

during the connection termination. A TCP connection is referred to as  half-open  when 

the host at one end of that TCP connection has crashed. If the remaining end is idle, 

lin76248_ch05_339-416.indd   355lin76248_ch05_339-416.indd   355 24/12/10   4:15 PM24/12/10   4:15 PM



356 Computer Networks: An Open Source Approach

the connection may remain in the half-open state for an unbounded period of time. The 

keepalive timer, which shall be introduced in Subsection 5.3.6, can solve this problem.      

  5.3.2 Reliability of Data Transfers 
 TCP uses checksum for per-segment error control and uses acknowledged sequence 

numbers for per-flow reliability control. The differences in their objectives and solu-

tions are described here. 

  Per-Segment Error Control: Checksum 

 As mentioned in Section 5.2, TCP checksum calculation is exactly the same as that 

of UDP. It also covers some fields in the IP header to ensure that the packet has ar-

rived at the correct destination. While UDP checksum is optional, TCP checksum is 

 mandatory . Although both protocols provide a checksum field for data integrity, the 

checksum is a relatively weak check, as discussed in Section 3.1, compared to the 

32-bit cyclic redundancy check used in Ethernet.  

  Per-Flow Reliability: Sequence Number and Acknowledgment 

 Per-segment checksum is inadequate to guarantee  reliable  and  in-order  delivery of 

a  whole  flow of packetized data that are transferred sequentially to the destination 

over a process-to-process channel. Since the packetized data may get lost occasion-

ally in the Internet, there must be a mechanism to  retransmit  the lost ones. Moreover, 

because packets sent in sequence might be received out of order due to the stateless 

routing nature of the Internet, another mechanism must be presented to  resequence  

the out-of-order packets. These two mechanisms rely on  acknowledgments  (ACKs) 

and  sequence number ,   respectively, to provide per-flow reliability. 

 Conceptually, each octet of data is assigned a sequence number. Then, the se-

quence number of a segment represents the sequence number of its  first  data octet, 

which is stored in the 32-bit sequence number field of its TCP header. The TCP 

sender numbers and tracks its data octets that have been sent already and waits 

for their acknowledgments. On receiving a data segment, the TCP receiver replies 

with an ACK segment, which carries an  acknowledgment number  indicating (1) 

the expected sequence number of the  next  data segment and (2) that all data octets 

preceding the specified ACK number have been successfully received. For example, 

the TCP receiver may acknowledge a successfully received segment by replying an 

ACK= x ,  where  x  indicates: “All data octets preceding  x  have been received. The next 

expected segment’s sequence number is  x . Send it to me.” 

 There are two possible types of ACKs:  selective ACK  and  cumulative ACK . The 

selective ACK indicates that the receiver has received a segment whose sequence 

number is equal to the specified ACK number. The cumulative ACK indicates that all 

previous data octets preceding the specified ACK number have been received. Since 

asymmetric links are popular, such that the congestion might happen in the reverse 

path from client (the receiver end) to server (the sender end), ACKs could be lost 

more often than data. Therefore, TCP uses the cumulative ACK to compensate for 

the lost ACK with the subsequent ACKs.  

lin76248_ch05_339-416.indd   356lin76248_ch05_339-416.indd   356 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 357

  Abnormal Cases: Data Loss, ACK Loss, Delay, and Out-of-Sequence 

  Figure 5.12  illustrates four abnormal cases that could occur during a TCP transmis-

sion. In the case of data loss, the sender will perceive this loss after the retransmission 

timeout, and then will retransmit the missing segment, as illustrated in  Figure 5.12(a) . 

On the other hand, a long propagation delay may cause a premature timeout, resulting 

in unnecessary retransmissions. As we can see in  Figure 5.12(b) ,  the receiver would 

regard the retransmitted packet as duplicate data and just drop it. In this case, the 

reliability is still guaranteed, but the bandwidth would be significantly wasted if this 

happened frequently. Thus, how to estimate a proper retransmission timeout is very 

important, and this estimation is explained in Subsection 5.3.6. 

  Figure 5.12(c)  shows the benefit of using cumulative ACK in TCP. Here 

the ACK loss does not cause any unnecessary data retransmission because the 

subsequent ACK repeats the acknowledgment information in the lost ACK, i.e., 

ACK=180 repeats the information in the lost ACK=150. Using cumulative ACK also 

leads to an interesting situation when data segments are received  out-of-sequence . 

   FIGURE 5.12 TCP reliability. 

DATA (Seq=100, Len=50)

DATA (Seq=100, Len=50)

DATA (Seq=150, Len=30)

DATA (Seq=100, Len=50)

DATA (Seq=100, Len=50)

DATA (Seq=100, Len=50)

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

T
im

eo
ut

Time

Client Server

(a) Packet loss

Time

Client Server

DATA (Seq=150, Len=30) DATA (Seq=150, Len=30)

ACK (Ack=100)

ACK (A
ck=150)

ACK (Ack=180)

ACK (Ack=180)ACK (Ack=180)

(b) Delay

T
im

eo
ut

DATA (Seq=100, Len=50)

Client
Server

(d) Out-of-sequence

ACK (Ack=100)

ACK (Ack=180)

ACK (Ack=150)

Time Time

Client Server

ACK (Ack=180)

(c) ACK loss

Duplicate data
Drop it

DATA (Seq=150, Len=30)

lin76248_ch05_339-416.indd   357lin76248_ch05_339-416.indd   357 24/12/10   4:15 PM24/12/10   4:15 PM



358 Computer Networks: An Open Source Approach

The receiver replies  duplicate ACKs  upon receiving next data segments, as shown in 

 Figure 5.12(d) ,  as if there were missing segments at the receiver. From  Figure 5.12 ,  

we can understand that TCP can achieve the reliable transfer, with cumulative ACK 

and retransmission timeouts for acknowledgments.    

  5.3.3 TCP Flow Control 
 The latency distribution in the Internet is so diffused that the TCP sender needs to 

be intelligent and adaptive enough to maximize the performance while being polite 

to its receiver’s buffer space and other senders’ share of the network resources. TCP 

employs  window-based  flow control and congestion control mechanisms to deter-

mine how fast it should send in various conditions. By flow control the TCP sender 

can know how much bandwidth it can consume without overflowing its receiver’s 

buffer. Similarly, by congestion control the TCP sender avoids overburdening the 

globally shared network resources. This subsection describes TCP flow control and 

leaves TCP congestion control to the next subsection. 

  Sliding-Window Flow Control 

 The window-based flow control exercises the sliding-window mechanism for the 

purpose of increasing the data transmission throughput. The sender maintains a window 

of sequence numbers, called  sending window ,  which is described by a starting sequence 

number and an end sequence number. Only data segments with sequence numbers 

within this sending window can be sent. Data segments sent but not acknowledged are 

kept in a retransmission buffer. When the data segment with the starting sequence 

number has been acknowledged, this sending window will  slide . 

  Figure 5.13  shows the pseudocode of sliding window in the sender. Also  Figure 5.14  

shows an example of sliding window. For clarity, we assume all segments have the same 

size. In  Figure 5.14 ,  in order to send a flow of segmented byte-stream data in sequence, 

the window only slides from left to right. In order to control the amount of  outstand-
ing  segments in transit, the window augments and shrinks dynamically, as we shall 

see later. As the data segments flow toward the destination, the corresponding ACK 

    SWS: send window size.  
   n: current sequence number, i.e., the next packet to be transmitted.

  
  LAR: last acknowledgment received.

  
  if the sender has data to send   
   Transmit up to SWS packets ahead of the latest acknowledgment LAR,  
   i.e., it may transmit packet number n as long as n < LAR+SWS.  
  endif
   
  if an ACK arrives,  
   Set LAR as ack num if its ack num > LAR.   
  endif  

 FIGURE 5.13 Pseudocode of sliding window in the sender. 

lin76248_ch05_339-416.indd   358lin76248_ch05_339-416.indd   358 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 359

   FIGURE 5.14 Visualization of a TCP sliding window. 

2 3 4 5 DATA 6

DATA 7
ACK

Ack=6

slidingSending stream

Sent and ACKed TCP window size
= min (RWND, CWND)

(a) Original condition

(b) Sender receives ACK (Ack=5)

(c) Sender receives ACK (Ack=6)

(d) Sender receives ACK (Ack=7)

To be sent
when window moves

2 3

2 3 4 5 6 DATA 7

2 3 4

2 3 4 5 6 7 DATA 8

2 3 4 5

2 3 4 5 6 7 8 DATA 9

2 3 4 5 6

ACK
Ack=7

ACK
Ack=6

ACK
Ack=6

ACK
Ack=8

ACK
Ack=7

slidingSending stream

slidingSending stream

DATA 8

DATA 9

DATA 9

DATA
10

ACK
Ack=9

ACK
Ack=8

slidingSending stream

DATA
10

DATA
11

DATA 8
Network pipe

Receiver

Receiver

Receiver

Sender

Sender

Sender

Sender

lin76248_ch05_339-416.indd   359lin76248_ch05_339-416.indd   359 24/12/10   4:15 PM24/12/10   4:15 PM



360 Computer Networks: An Open Source Approach

   FIGURE 5.15 An example of TCP sliding window when data packets are out 
of sequence. 

DATA 
10

2 3 5 6DATA 4

DATA 7
ACK

Ack=4

Sending stream

Sent and ACKed TCP window size
= min (RWND, CWND) 

(a) Original condition

(b) Sender receives ACK (Ack=4) of DATA 5

(c) Sender receives ACK (Ack=4) of DATA 6

(d) Sender receives ACK (Ack=7)

To be sent
when window moves

2 3

2 3 4 5 6 DATA 7

2 3

2 3 4 5 6 7 DATA 8

2 3

2 3 4 5 6 7 8

2 3 4 5 6

ACK
Ack=7

ACK
Ack=4

ACK
Ack=4

ACK
Ack=8

ACK
Ack=7

Sending stream

Sending stream

DATA 8

ACK
Ack=9

ACK
Ack=8

slidingSending stream

DATA 9

DATA
11

DATA 8
Network pipe

Receiver

Receiver

Receiver

Sender

Sender

Sender

Sender

lin76248_ch05_339-416.indd   360lin76248_ch05_339-416.indd   360 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 361

segments flow backward to the sender to trigger the sliding of the window. Whenever 

the window covers the segments that have not been transmitted, the segments are 

sent to the network pipe. In the original case, as shown in  Figure 5.14(a) ,  the range 

of the sliding window is segment 4 to segment 8, i.e., these segments have been sent. 

The sender receives the ACK (Ack=5), representing that the receiver has successfully 

received segment 4, the first segment of the sliding window. Therefore, the sender 

slides the window by one segment, as  Figure 5.14(b)  shows. Similarly,  Figure 5.14(c)  

and (d) illustrate the sliding of the window when the sender receives ACK (Ack=6) and 

ACK (Ack=7), respectively. In the normal case, the sender slides the window by one 

segment when it receives an in-sequence ACK.  

 Now we observe the other condition where the packets arrive at the receiver 

out of sequence, as shown in  Figure 5.15 . In this case, the receiver first receives 

DATA 5, DATA 6, and then DATA 4. Since TCP uses cumulative acknowledgment, 

the sender will receive the first duplicate ACK (Ack=4) from the receiver upon 

receiving DATA 5, as seen in  Figure 5.15(b) . Now the window cannot slide. When 

the sender receives the second duplicate ACK (Ack=4) from the receiver upon 

receiving DATA 6, the window still cannot slide, as shown  Figure 5.15(c) . When the 

sender receives the ACK (Ack=7) from the receiver upon receiving delayed DATA 4, 

it slides the window by three segments.   

  Augmenting and Shrinking of Window Size 

 Another important issue in sliding-window flow control is the window size. 

The window size is determined by the minimum of two window values:  receiver 
window  (RWND) and  congestion window  (CWND), as illustrated in  Figure 5.16 . A 

TCP sender tries to simultaneously consider its receiver’s capability (RWND) and 

network capacity (CWND) by constraining its sending rate to  min (RWND,CWND). 

The RWND is  advertised  by the receiver, while CWND is  computed  by the sender as 

will be explored in Subsection 5.3.4. Note that the window size is actually counted 

in  bytes  rather than in  segments . A TCP receiver advertises the amount of bytes 

available in its buffer into the 16-bit window size in the TCP header. The advertise-

ment is used only when the segment has an acknowledgment, that is, when the ACK 

control bit is set. On the other hand, a TCP sender infers the amount of bytes allowed 

in the network in units of maximum segment size (MSS).  

3

TCP window size (= min(RWND, CWND))

2

AugmentShrinkSlide

   FIGURE 5.16 Window sizing and sliding. 

lin76248_ch05_339-416.indd   361lin76248_ch05_339-416.indd   361 24/12/10   4:15 PM24/12/10   4:15 PM



362 Computer Networks: An Open Source Approach

 Open Source Implementation 5.3: TCP 
Sliding-Window Flow Control 

  Overview 
 Linux 2.6 kernel implements the  tcp_write_xmit()  function in 

 tcp_output.c  to write packets onto the network. The function checks 

whether anything can be sent out by consulting the  tcp_snd_test()  

function, where the kernel does several tests based on the concept of sliding 

window.  

  Algorithm Implementations 
 Three check functions are called in  tcp_snd_test() :   tcp_
cwnd_test() ,  tcp_snd_wnd_test() , and  tcp_nagle_test() . 

In  tcp_cwnd_test() , by evaluating the condition  tcp_packets_
in_flight() < tp->snd_cwnd , the kernel judges whether the num-

ber of outstanding segments, including normal and retransmitted segments, 

is more than the current network capacity ( cwnd ). Secondly, in  tcp_snd_
wnd_test() , the kernel determines whether the latest sent segment has 

exceeded the limit of the receiver’s buffer by the function call  after(TCP_
SKBCB(skb))->end_seq, tp->snd_una + tp->snd_wnd) . The 

 after(x,y)  function is a Boolean function corresponding to “x>y”. If 

the latest sent segment ( end_seq ) has already been beyond the boundary of 

the unacknowledged octet ( snd_una ) plus the window size ( snd_wnd ), the 

sender should stop sending. Thirdly, in  tcp_nagle_test() , the kernel 

performs the Nagle’s test by  tcp_nagle_check()  which will be addressed 

in Subsection 5.3.7. Only if the segment passes these checks can the kernel 

call the  tcp_transmit_skb()  function to send out one more segment 

within the window. 

 Another interesting behavior we can observe from this implementation is 

that the Linux 2.6 kernel uses the finest granularity in sending out the segments 

within the window size. That is, it emits only  one  segment upon passing all the 

preceding tests and repeats all the tests for the  next  segment to be sent. If any 

window augmenting or shrinking happens during the process of sending out seg-

ments, the kernel can immediately change the number of allowable segments on 

the network. However, doing so introduces large overhead because it sends only 

one segment at a time.  

  Exercises 
 In  tcp_snd_test() , there is another function  tcp_init_tso_segs()  

called before the three check functions mentioned above. Explain what this 

function is for.  

lin76248_ch05_339-416.indd   362lin76248_ch05_339-416.indd   362 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 363

     5.3.4 TCP Congestion Control 
 A TCP sender is designed to infer network congestion by detecting loss events of 

data segments. After a loss event, the sender politely slows down its transmission 

rate to keep the data flow below the rate that would trigger loss events. This process 

is called  congestion control ,  which aims at achieving efficient resource utilization 

while avoiding network congestion. Generally speaking, the idea of TCP congestion 

control is for each TCP sender to determine the available bandwidth of the routing 

path from the sender to the receiver, so it knows how many segments can be in transit 

safely. 

  From Basic TCP, Tahoe, Reno to NewReno, SACK/FACK, and Vegas 

 The TCP protocol has evolved for over two decades, and many versions of 

TCP have been proposed to elevate transmission performance. The first version 

standardized in RFC 793 in 1981 defines the basic structure of TCP: i.e., the 

window-based flow control and a coarse-grain retransmission timer. Note that RFC 

793 does  not  define congestion control mechanisms because in those days, the tele-

type network devices in use had per-link flow control and the Internet traffic was 

much less than it is today. TCP congestion control was introduced into the Internet 

in the late 1980s by Van Jacobson, roughly eight years after the TCP/IP protocol 

suite had become operational. At that time, the Internet had begun suffering from 

 congestion collapse —hosts would send their packets into the Internet as fast as the 

receiver’s advertised window would allow, then congestion would occur at some 

routers, causing packets to be dropped, and the hosts would timeout and retransmit 

the lost packets, resulting in even more serious congestion. Thus, TCP Tahoe, the 

second version released in BSD 4.2 in 1988, added the  congestion avoidance  and 

the  fast retransmit  scheme proposed by Van Jacobson. The third version, TCP 

Reno, extended the congestion control by including  fast recovery . TCP Reno was 

standardized in RFC 2001 and generalized in RFC 2581. TCP Reno had become 

the most popular version by the year 2000, but in a recent report, TCP NewReno 

has now become more popular. 

 Several shortcomings exist in TCP Reno. The most noticeable is the  multiple-
packet-loss  (MPL) problem that Reno often causes a timeout and results in low utiliza-

tion when multiple segments are lost in a  short  interval. NewReno, SACK (Selective 

ACKnowledgment, defined in RFC 1072), and Vegas (proposed by L. Brakmo and 

L. Peterson in 1995) seek to resolve this problem with three different approaches. 

The TCP FACK (Forward ACKnowledgment) version then further improved the 

TCP SACK version. We first examine the basic versions of TCP congestion con-

trol, namely TCP Tahoe and TCP Reno. Further improvements through NewReno, 

SACK, FACK, and Vegas are left to Subsection 5.3.7.   

  TCP Tahoe Congestion Control 

 Tahoe uses a congestion window ( cwnd ) to control the amount of transmitted data 

in one round-trip time (RTT) and a maximum window ( mwnd ) to constrain the 

maximum value of  cwnd .  Tahoe estimates the amount of outstanding data,  awnd ,  

as  snd.nxt – snd.una ,  where snd.nxt and snd.una are the sequence numbers 

lin76248_ch05_339-416.indd   363lin76248_ch05_339-416.indd   363 24/12/10   4:15 PM24/12/10   4:15 PM



364 Computer Networks: An Open Source Approach

of the next unsent data and unacknowledged data, respectively. Whenever  awnd  is 

less than  cwnd ,  the sender continues sending new packets. Otherwise, the sender 

stops. The control scheme of Tahoe can be divided into four states, whose transition 

diagram is depicted in  Figure 5.17  and interpreted as follows:  

 Historical Evolution: Statistics of TCP Versions 

 TCP NewReno has gradually become the major version of TCP in the Internet. 

According to a report from the International Computer Science Institute (ICSI), 

among all the 35,242 Web servers successfully identified in the report, the 

percentage of servers using TCP NewReno increased from 35% in 2001 to 

76% in 2004. The percentage of servers supporting TCP SACK also increased 

from 40% in 2001 to 68% in 2004. Furthermore, TCP NewReno and SACK 

are enabled in several popular operating systems, including Linux, Windows 

XP, and Solaris. In contrast to the increasing usage of NewReno and SACK, 

the percentage of TCP Reno and Tahoe decreased to 5% and 2%, respectively. 

Among the reasons why TCP NewReno and SACK have been adopted quickly 

are that they provide higher throughput, a desirable property to users, and do not 

worsen network congestion, a primary concern of network administrators. 

Slow start
Congestion
avoidance

Retransmission
timeout

Fast
retransmit

timeout

all ACKed

timeout

Start

ACK
cwnd=cwnd+1

Send packet
ACK

cwnd=cwnd+ 1/cwnd
Send data packet

Send missing packet
ssth=cwnd/2
cwnd=1

cwnd=1

3 duplicate ACK
3 duplicate ACK

cwnd     ssth

   FIGURE 5.17 TCP Tahoe congestion control algorithm. 

lin76248_ch05_339-416.indd   364lin76248_ch05_339-416.indd   364 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 365

     1. Slow start:  Slow start aims at quickly probing available bandwidth within a few 

rounds of RTTs. When a connection starts or after a retransmission timeout occurs, 

the slow-start state begins by setting the initial value of  cwnd  to one packet, that is, 

MSS. The sender increases  cwnd   exponentially  by adding one packet to  cwnd  each 

time it receives an ACK. So the  cwnd  is  doubled  (1, 2, 4, 8, etc.) after each RTT if 

all ACKs are received correctly in time, as shown in  Figure 5.18 . Thus, slow start 

is  not  slow at all. A TCP sender stays in the slow-start state until its  cwnd  reaches 

the slow-start threshold  ssthresh  (or  ssth  in  Figure 5.17 ); after that, it enters 

the congestion-avoidance state. Note that when a connection starts, the  ssthresh  

is set to the maximum value of the  ssthresh  (which depends on the data type to 

store  ssthresh ) so as not to limit the bandwidth probing of the slow-start. If triple 

duplicate ACKs are received, the TCP sender enters the fast-transmit state and the 

 cwnd  is reset to 1. If no ACK is received before retransmission timeout, the  cwnd  

is reset to 1 and the TCP sender enters the retransmission-timeout state.   

    2. Congestion avoidance:  Congestion avoidance aims at  slowly  probing available 

bandwidth but  rapidly  responding to congestion events .  It follows the  Additive 
Increase Multiplicative Decrease (AIMD)  principle. Since the window size in 

the slow-start state expands exponentially, sending packets at this increasing 

speed would quickly lead to network congestion. To avoid this, the congestion-

avoidance state begins when  cwnd  exceeds  ssthresh .  In this state,  cwnd  

is added by  1/cwnd  packet upon receiving an ACK to make the window size 

grow  linearly . As such, the  cwnd  is normally incremented by one after each RTT 

(by  1/cwnd  with each received ACK), but is reset to 1 if triple duplicate ACKs 

are received to trigger the fast-transmit state. Similarly, retransmission timeout 

   FIGURE 5.18 Visualization of packets in 
transit during slow start. 

Source Destination

lin76248_ch05_339-416.indd   365lin76248_ch05_339-416.indd   365 24/12/10   4:15 PM24/12/10   4:15 PM



366 Computer Networks: An Open Source Approach

triggers the reset of the  cwnd  and the switch to the retransmission-timeout state. 

 Figure 5.19  depicts the behavior of additive increase.   

    3. Fast retransmit:  Fast retransmit targets transmitting the lost packet immediately 

without waiting for the retransmission timer to expire. As shown in Subsection 

5.3.2, the duplicate ACK is caused by a lost data packet (in  Figure 5.12[a] ), or a 

duplicate data packet (in  Figure 5.12[b] ) or an out-of-order data packet received 

at the receiver (in  Figure 5.12[c] ). In case of a data packet loss, the sender 

should retransmit. Since the sender cannot tell what caused the duplicate ACK 

for sure, fast retransmit exercises a heuristic: If three or more duplicate ACKs 

are received in a row— triple duplicate ACK  (TDA)—the TCP sender assumes 

packet loss has occurred. The sender then performs retransmission of what 

appears to be the missing packet, without waiting for a coarse-grain retransmis-

sion timer to expire. After the sender transmits the missing packet, it sets its 

 ssthresh  to  half  of the current value of  cwnd  according to AIMD and begins 

again in the slow-start state with the  cwnd  reset to 1.  

    4. Retransmission timeout:  Retransmission timeout provides the last and slowest 

resort to retransmit the lost packet. The sender maintains a retransmission timer, 

which is used to check for timeout of an acknowledgment that can advance 

the left edge of the sending window. If a timeout occurs, as in the treatments 

in the fast-retransmit state, the sender reduces  ssthresh  to  cwnd/2 ,  resets 

the  cwnd  to 1, and restarts from the slow-start state. The timeout value highly 

depends on the RTT and the variance of the RTT. The more fluctuating the RTT 

measured, the larger should the timeout value be kept so as not to retransmit an 

already arrived-segment; the more stable the RTT measured, the closer to the 

RTT the timeout value can be set to quickly retransmit the lost segment. TCP 

   FIGURE 5.19 Visualization of packets in 
transit during congestion avoidance. 

Source Destination

lin76248_ch05_339-416.indd   366lin76248_ch05_339-416.indd   366 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 367

 Open Source Implementation 5.4: TCP Slow 
Start and Congestion Avoidance 

  Overview 
 The slow start and congestion avoidance in  tcp_cong.c  of Linux 2.6 kernel 

are implemented by three functions, named  tcp_slow_start() ,  tcp_
reno_cong_avoid() , and  tcp_cong_avoid_ai() .  

  Data Structures 
 Within the three functions,  tp  is the pointer to the socket structure  tcp_sock  

whose definition can be found in  linux/include/linux/tcp.h . The  tcp_
sock  contains  snd_cwnd ,  snd_ssthresh  for storing congestion window 

and slow-start threshold,  snd_cwnd_cnt  for simplifying the congestion avoid-

ance’s implementation of adding  1/cwnd  packet on receiving each ACK, and 

 snd_cwnd_clamp  for limiting the congestion window (nonstandard).  

  Algorithm Implementations 
 The slow start and the congestion avoidance in  tcp_cong.c  of the Linux 2.6 

kernel are summarized in  Figure 5.20 . Note that in the congestion avoidance, the 

adding of  1/cwnd  on receipt of each ACK is simplified to adding a full-size 

segment (MSS bytes) upon receiving all ACKs of  cwnd  segments, as shown in 

Line 5~11.     

     Exercises 
 The current implementation in  tcp_cong.c  provides a flexible architecture that 

allows replacing the Reno’s slow-start and congestion-avoidance with others. 

    1. Explain how this allowance is achieved.  

   2. Find an example from the kernel source code that changes the Reno algo-

rithm through this architecture.    

 1: if (tp->snd_cwnd <= tp->snd_ssthresh) { /* Slow start*/ 
 2:   if (tp->snd_cwnd < tp->snd_cwnd_clamp) 
 3:      tp->snd_cwnd++; 
 4: } else { 
 5:   if (tp->snd_cwnd_cnt >= tp->snd_cwnd) { /* Congestion 
Avoidance*/ 
 6:   if (tp->snd_cwnd < tp->snd_cwnd_clamp) 
 7:      tp->snd_cwnd++; 
 8:   tp->snd_cwnd_cnt=0; 
 9:   } else { 
 10:     tp->snd_cwnd_cnt++; 
 11:   } 
 12: } 

FIGURE 5.20 TCP slow start and congestion avoidance in Linux 2.6.

lin76248_ch05_339-416.indd   367lin76248_ch05_339-416.indd   367 24/12/10   4:15 PM24/12/10   4:15 PM



368 Computer Networks: An Open Source Approach

adopts a highly dynamic algorithm proposed by Van Jacobson in 1988 that con-

stantly adjusts the timeout interval based on continuous measurements of RTT, 

which will be discussed in Subsection 5.3.6.     

  TCP Reno Congestion Control 

 TCP Reno extended the Tahoe congestion control scheme by introducing the 

 fast-recovery  state to the subsequent recovery phase following a packet loss. The 

control scheme of Reno is depicted in  Figure 5.21 . Fast recovery concentrates 

on preserving enough outstanding packets in the network pipe to retain TCP’s 

 self-clocking  behavior. The network-pipe concept and TCP’s self-clocking behavior 

shall be detailed in Section 5.3.7. When fast retransmit is performed,  ssthresh  is 

set to half of  cwnd,   and then  cwnd  is set to  ssthresh  plus 3 because of the three 

duplicate ACKs. Every received duplicate ACK represents that another data packet 

has exited the network pipe, so for three duplicate ACKs that trigger the fast retrans-

mit, a more correct thought is  awnd  minus 3 instead of  cwnd  plus 3, where  awnd  

is the number of outstanding packets in the network pipe. However, in Reno, the 

calculation of  awnd  is  snd.nxt – snd.una ,  which is fixed in this state. Hence 

Reno increases  cwnd ,  rather than reducing  awnd ,  to achieve the same purpose. 

When the ACK of the retransmitted packet is received,  cwnd  is set to  ssthresh  

and the sender re-enters the congestion-avoidance state. In other words,  cwnd  is 

reset to half of the old value of  cwnd  after fast recovery. 

   FIGURE 5.21 TCP Reno congestion control algorithm. 

Slow start
Fast

recovery

Retransmission
timeout

Fast
retransmit

timeout

Send data packet

>= 3 duplicate ACK = x

cwnd=cwnd+1/cwnd

all ACKed

cwnd     ssth cwnd=ssth
non-duplicate

ACK > x duplicate ACK

3 duplicate ACK

timeout

timeout

start

ACK
cwnd=cwnd+1

send packet
ACK

cwnd=cwnd+1send data
packet

ssth=cwnd/2
cwnd=ssth
send missing packet

cwnd=1

Congestion
avoidance

lin76248_ch05_339-416.indd   368lin76248_ch05_339-416.indd   368 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 369

   FIGURE 5.22 An example of TCP Tahoe congestion control. 

cwnd=8
awnd=8

38

31

39

39

D

D

D

D

D Sender sent segments 31–38.

Receiver replied seven duplicate ACKs
(ack num=31).

Sender received three duplicate ACKs and
cwnd is changed 1 packet. The lost
segment 31 is retransmitted. Sender exited
the fast transmit and entered the slow-start
state.

Receiver replied the ACK (ack num=39)
when it received the retransmitted
segment 31.

Sender sent segment 39.

31 31 31 31

31 31 31 31

31 31 31

37 36 35 34 33 32 31

cwnd=8
awnd=8

cwnd=1
awnd=8

S(1)

(2)

(3)

(4)

(5)

S

S

cwnd=1
awnd=8

S

cwnd=1
awnd=1

S

   FIGURE 5.23 An example of TCP Reno congestion control. 

D Sender sent segments 31–38.

D
Receiver replied seven duplicate ACKs
(ack num=31).

D

Sender received three duplicate ACKs and
cwnd is changed to (8/2)+3 packets. The
lost segment 31 is retransmitted. Sender
exited the fast transmit and entered the
fast recovery state.

D
Receiver replied the ACK (ack num=39)
when it received the retransmitted
segment 31.

D
Sender exited the fast recovery and
entered the congestion avoidance state.
Cwnd is changed to 4 segments.

38

31

39 40 41

42

39

40 41 42

31 31 31 31

31 31 31 31

31 31 31

37 36 35 34 33 32 31

(1)

(2)

(3)

(4)

(5)

cwnd=8
awnd=8

S

cwnd=8
awnd=8

S

cwnd=7
awnd=8

S

cwnd=11
awnd=8->11

S

cwnd=4
awnd=3->4

S

lin76248_ch05_339-416.indd   369lin76248_ch05_339-416.indd   369 24/12/10   4:15 PM24/12/10   4:15 PM



370 Computer Networks: An Open Source Approach

 We use an example to highlight the difference between Tahoe and Reno, which 

are shown in Figures 5.22 and 5.23, respectively. In these figures, the  ACK  of packet 

30 was received and the sender transmitted packets 31 to 38. Assume that  cwnd  is 

equal to 8 packets and packet 31 was lost during transmission. Since packets 32, 33, 

34, 35, 36, 37, and 38 were received, the receiver sent seven duplicate  ACK s. The 

Tahoe sender discerns that packet 31 was lost when it receives the third duplicate 

ACK ,  and then immediately sets  cwnd  to one packet, retransmits the lost packet, and 

returns to the slow-start state. After receiving four more duplicate  ACK s, the sender 

maintains  cwnd  as 1 and  awnd  as 8 (39–31). After receiving the  ACK  of packet 38, 

the sender can send the new packet 39. 

 On the other hand, when the Reno sender discerns that packet 31 was lost, it im-

mediately sets  cwnd  to [8/2]+3 packets, retransmits the lost packet, and enters the 

fast-recovery state. After receiving four more duplicate  ACK s, the sender continues 

to increase  cwnd  by 4 and can forward new packets 39, 40, and 41. After receiving 

the  ACK  of packet 38, the sender exits fast recovery, enters congestion avoidance, 

and sets  cwnd  to four packets, which is half of the old  cwnd  value. Since now  awnd
equals 3 (42–39), the sender can send the new packet 42. 

 Comparing Step (4) in Figures 5.22 and 5.23, Tahoe cannot send any new pack-

ets, but Reno can. Thus it is obvious that TCP Reno utilizes fast recovery to generate 

a more efficient transfer after a packet loss.    

 Although Reno had been the most popular TCP version, it suffers from the  mul-
tiple-packet-loss  problem that degrades its performance. We shall further investigate 

this problem and its solutions in Subsection 5.3.7.    

 Principle in Action: TCP Congestion Control 
Behaviors 

 Linux 2.6 is a joint implementation of various TCP versions, including NewReno, 

SACK, and FACK that will be studied in Subsection 5.3.7. However, their basic 

behavior under the one-packet-loss scenario is pretty much the same as that of 

Reno.  Figure 5.24  displays an example snapshot of TCP congestion control 

of Linux 2.6. It is generated by processing the kernel logging of the sending 

window size and the sniffed packet headers. 

 In  Figure 5.24(a)  the  cwnd  grows rapidly beyond the figure’s boundary 

in the slow-start state before congestion occurs at 1.45 second. However, note 

that the  rwnd  almost remains at 21 packets all the time so that the sending 

rate is bounded by 21 packets/RTT between 0.75 and 1.45 second, as shown in 

 Figure 5.24(b) . This is because the actual sending window size is determined 

by the minimum of the  cwnd  and  rwnd . As such, the  cwnd  from 0.75 to 1.45 

second grows with a somewhat less aggressive behavior than that from 0 to 0.75 

second, since the rate of incoming ACKs is fixed during the 0.75 to 1.45 second 

period. From 0.75 to 1.45 second, the full-duplex network pipe is constantly 

filled up with 21 packets where about half of them are ACKs if the network’s 

forward path and reverse path are symmetric. 

lin76248_ch05_339-416.indd   370lin76248_ch05_339-416.indd   370 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 371

  5.3.5 TCP Header Format 
 In this subsection we examine other fields of the TCP header in  Figure 5.25  that have 

not been mentioned so far. As indicated in Subsection 5.3.2, a TCP segment contains 

a 16-bit source port number, a 16-bit destination port number, a 32-bit sequence 

number, and a 32-bit acknowledgment number. These fields are carried in the TCP 

segment header to transmit over the network. The sequence number corresponds to 

the  first  data octet in this segment when the SYN bit is not set. If the SYN bit is set, 

the sequence number is the initial sequence number (ISN) and the first data octet is 

numbered ISN+1. If the ACK control bit is set, the acknowledgment number field 

contains the value of the  next  sequence number that the sender of the ACK segment 

 When the congestion occurs at 1.5 second, the triple duplicate ACKs trigger the 

fast retransmit to retransmit the lost segment. The TCP source hereby enters 

the fast-recovery state, resetting the  ssthresh  to  cwnd/2=10  and  cwnd  to 

 ssthresh+3 . During the fast recovery, the TCP sender increments the  cwnd  

by one MSS whenever receiving one more duplicate ACK to keep enough seg-

ments in transit. The fast-recovery state ends at 1.7 second when the lost seg-

ment is recovered. At this moment,  cwnd  is reset to  ssthresh  (previously 

set to 10) and changes to the congestion-avoidance state. After that, the  cwnd  

is incremented by one MSS when all ACKs of the sliding window are received.  

   FIGURE 5.24 Slow-start and congestion-avoidance in Linux 2.6: CWND vs. 
sequence number. 

0
5

10
15
20
25
30
35
40

C
w

nd
 (

pa
ck

et
)

0 0.5 1 1.5 2 2.5 3

Time (sec)

(a) Window variation

cwnd
rwnd
ssth

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3

se
q_

nu
m

 (
K

B
)

Time (sec)

(b) Sending bytes

Sequence number
Acknowledgment

Slow start

Congestion avoidance

Triple-duplicate ACKs 

Fast retransmit

Pipe limit 
ssth reset

Fast recovery

lin76248_ch05_339-416.indd   371lin76248_ch05_339-416.indd   371 24/12/10   4:15 PM24/12/10   4:15 PM



372 Computer Networks: An Open Source Approach

is expecting to receive. Following the acknowledgment number is a 4-bit header 

length field, which indicates the number of 32-bit words in the TCP header, including 

the TCP options. From the technical perspective, it also implies where the applica-

tion data begin. The 16-bit window size in  Figure 5.25  is used only when the segment 

is an acknowledgment with the ACK control bit set. It specifies the number of data 

octets beginning with the one indicated in the acknowledgment field the sender of 

this segment, i.e., the TCP receiver, is willing to accept. The window size depends on 

the socket buffer size and the receiving speed of the receiving end. The socket buffer 

size can be programmed using the socket API  setsockopt() .   
 The header length field is followed by the 6-bit control bits. The first bit is 

the URG bit, which is set to 1 to indicate that the 16-bit  Urgent pointer  field is in 

use. The Urgent pointer is an offset from the sequence number indicating the last 

urgent data byte. This mechanism facilitates the in-band signaling of a TCP con-

nection. For example, users can use  Ctrl+C  to trigger an urgent signal to cancel 

an operation being performed on the peer end. Next comes the ACK bit, which 

specifies that the acknowledgment number field is valid. If the ACK bit is not set, 

the acknowledgment number field is ignored. The following is the PSH bit, whose 

job is to notify the receiver of the PSH-set packet to deliver all the data in its buffer 

to the receiving application immediately without waiting for sufficient application 

data to fill the buffer. The next bit is RST, which is used to  reset  a connection. Any 

host with an RST-set packet received should immediately close the socket pair 

associated with the packet. The next bit, SYN bit, is employed to initialize a con-

nection, as shown in Subsection 5.3.1. The last bit, FIN, as illustrated in Subsection 

5.3.1, is to indicate that no more data will be sent from the sender and both sides 

can close the connection. 

 The TCP header, along with options that will be discussed next, must be a mul-

tiple of 32-bit words. Variable padding bits are appended to the TCP header to ensure 

that the TCP header ends and the TCP payload begin on a 32-bit boundary. The pad-

ding is composed of zero bits.  

   FIGURE 5.25 TCP header format. 

Source port number

Header
length 6-bit reserved Window size

Urgent pointerTCP checksum

Options (0 of more 32-bit words)~~

~~

~~

~~Data (optional)

U A P R S F

Sequence number

Acknowledgment number

0 4 15 16 31

Destination port number

20 bytes

lin76248_ch05_339-416.indd   372lin76248_ch05_339-416.indd   372 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 373

  TCP Options 

 Options may occupy space at the end of the TCP header. An option is a multiple of 

octets and may begin on any octet boundary. Currently defined options include the 

End of Option List, No Operation, Maximum Segment Size, Window Scale Factor, 

and Timestamp. Note that all options are covered in the checksum computation. 

 Figure 5.26  depicts the formats of TCP options. End of Option List and No Opera-

tion have only one octet of the option-kind field; the remaining options each contain 

3-tuple fields: one octet of option-kind, one octet of option-length, and option-data. 

The option-length counts the two octets of option-kind and option-length as well 

as the octets of option-data. Note that the list of options may be shorter than what 

the data offset field might imply because the content of the header beyond the End-

of-Option-List option must be a pad of zero bits.  

 End of Option List indicates the end of  all  options, not the end of  each  

option. End of Option List is used only if it would not otherwise coincide with the 

end of the TCP header according to the Data Offset field. No Operation may be 

used between options, for example, to align the beginning of a subsequent option 

on a word boundary. There is no guarantee that senders will use this option, so 

receivers must be prepared to process options even if they do not begin on a word 

boundary. 

 If the Maximum Segment Size (MSS) option is present, then it communicates 

the maximum receive segment size at the TCP end that sends this segment. This field 

must be sent only in the initial connection request (in segments with the SYN control 

bit set). If this option is not used, any segment size is allowed. 

 The 32-bit sequence number would be run out if the transferring size exceeded 

2 32  bytes. Normally this would not be a problem because the sequence number can 

wrap around. However, in high-speed networks the sequence number may wrap 

   FIGURE 5.26 TCP options. 

kind=0

kind=1

kind=2

kind=3 len=3

kind=8

End of option list

No operation

Maximum
segment size

Window
scale factor

Timestamp len=10 timestamp value timestamp echo reply

shift
count

len=4
Maximum

segment size
(MSS)

lin76248_ch05_339-416.indd   373lin76248_ch05_339-416.indd   373 24/12/10   4:15 PM24/12/10   4:15 PM



374 Computer Networks: An Open Source Approach

around very quickly, so the wrapped-around sequence numbers may be confusing. 

Thus, the Protection Against Wrapped Sequence number (PAWS) is required to 

avoid the side effect. With the TCP Window Scaling Factor option, a TCP receiver 

can advertise a very large window size by negotiating a shift count with the sender 

to interpret the scale of window size. In this way, the sender can send at a very high 

speed. In order to enforce PAWS, the TCP Timestamp option is used to attach a 

timestamp to each segment sent. The receiver will copy the timestamp value to its 

corresponding ACK so that the segments with wrapped-around sequence numbers 

can be recognized without confusing the RTT estimator. 

 The additional TCP SACK option is used to improve the performance in the fast 

recovery stage of TCP congestion control. The option contains two fields indicating 

the start and the end of the sequence numbers of consecutively received segments. 

TCP SACK will be studied in detail in Subsection 5.3.7.   

  5.3.6 TCP Timer Management 
 Each TCP connection keeps a set of timers to drive its state machine, shown in 

 Figure 5.8 ,  even when there is no incoming packet to trigger the transitions of states. 

 Table 5.2  summarizes the functions of these timers. In this subsection, we study two 

mandatory timers, the retransmission and persist timers, and one optional timer, the 

keepalive timer, in detail. These timers are implemented in different ways among 

operating systems due to concern about performance. 

TABLE 5.2 Functions of All Timers

Name Function

Connection timer To establish a new TCP connection, a SYN segment 

is sent. If no response to the SYN segment is 

received within connection timeout, the connection 

is aborted.

Retransmission timer TCP retransmits the data if data is not 

acknowledged and this timer expires.

Delayed ACK timer The receiver must wait until delayed ACK timeout 

to send the ACK. If during this period there is data 

to send, it sends the ACK with piggybacking.

Persist timer A deadlock problem is solved by the sender sending 

periodic probes after the persist timer expires.

Keepalive timer If the connection is idle for a few hours, the 

keepalive timeout expires and TCP sends probes. 

If no response is received, TCP thinks that the other 

end has crashed.

FIN_WAIT_2 timer This timer avoids leaving a connection in the FIN_

WAIT_2 state forever, if the other end has crashed.

TIME_WAIT timer The timer is used in the TIME_WAIT state to enter 

the CLOSED state.

lin76248_ch05_339-416.indd   374lin76248_ch05_339-416.indd   374 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 375

  (1) TCP Retransmission Timer 

 The role of the TCP retransmission timer has been introduced in Subsections 5.3.2 

and 5.3.4, and this subsection studies the internal design of the RTT estimator. To 

measure RTTs, the sender places a timestamp in each data segment using TCP 

options, and the receiver reflects these timestamps back in ACK segments. Then the 

sender can measure an accurate RTT for every ACK with a single subtraction. The 

RTT estimator adopts the exponential weighted moving average (EWMA), proposed 

by Van Jacobson in 1988, which takes 1/8 of the new RTT measure plus 7/8 of the old 

smoothed RTT value to form the new estimate of the RTT. The 8 is the exponential 

value of 2, so this operation can be done simply with a 3-bit shift instruction. The 

“moving average” indicates that this calculation is based on a recursive form of aver-

age. Similarly, the new mean deviation is calculated from 1/4 of the new measure and 

3/4 of the previous mean deviation. The 4 can be implemented with just a 2-bit shift 

instruction. The Retransmission TimeOut (RTO) is calculated as a linear function 

of measured mean RTT and mean RTT deviation, and is often formulated as RTO =
RTT + 4 × deviation (RTT). In a path with high variance of latency, the RTO would 

increase significantly. 

 One problem encountered by the dynamic estimation of RTT is what to do when 

a segment times out and is sent again. When an acknowledgment comes in, it is 

unclear whether the acknowledgment refers to the first transmission or a later one. 

A wrong guess could seriously contaminate the estimation of RTT. Phil Karn discov-

ered this problem in 1987 and proposed  not  to update RTT on any segments that have 

been retransmitted. Instead, RTO is doubled on each retransmission timeout until a 

segment gets through on the first time. This fix is known as Karn’s algorithm.   

 Open Source Implementation 5.5: TCP 
Retransmission Timer 

  Overview 
 In the literature, the default value of the clock used for the round-trip ticks is 

500 ms, i.e., the sender checks for a timeout every 500 ms. Since no packet 

will be retransmitted before the timeout, a TCP connection may take a long 

time to recover from such a situation, and TCP performance would be severely 

degraded, particularly when the Retransmission TimeOut (RTO) value is far 

smaller than 500 ms, which is quite possible under the current Internet. Now 

Linux 2.6 keeps a fine-grained timer to avoid such degradation.  

  Algorithm Implementations 
 When there is an incoming ACK from the IP layer, it is passed to the  tcp_
ack()  function in  tcp_input.c . There it updates the sending window by 

the  tcp_ack_update_window()  function, seeing if anything can be taken 

off the retransmission queue by the  tcp_clean_rtx_queue()  function and 

whether or not to adjust the  cwnd  accordingly by the  tcp_cong_avoid()  

Continued

lin76248_ch05_339-416.indd   375lin76248_ch05_339-416.indd   375 24/12/10   4:15 PM24/12/10   4:15 PM



376 Computer Networks: An Open Source Approach

  (2) TCP Persist Timer 

 The TCP persist timer is designed simply to prevent the following deadlock: 

The receiver sends an acknowledgment with a receiver window size of 0, telling the 

sender to wait. Later, the receiver updates and advertises its window size, but the 

packet with the update is lost. Now both the sender and the receiver are waiting for 

each other to do something, which is a deadlock. Thus, when the persist timer goes 

off, the sender transmits a probe to the receiver, and the response to the probe gives 

the window size. If it is still zero, the persist timer is set again and the cycle repeats. 

If it is nonzero, data can now be sent.  

function. The  tcp_clean_rtx_queue()  function updates several variables 

and invokes  tcp_ack_update_rtt()  to update the RTT measurements. 

If the Timestamp option is used, the function always calls  tcp_rtt_esti-
mator()  to calculate the smoothed RTT, as shown in  Figure 5.27 . It uses the 

smoothed RTT to update the RTO value by the  tcp_set_rto()  function. If no 

Timestamp option is present, the updates will not be executed when the incoming 

ACK is acknowledging a retransmitted segment (according to Karn’s algorithm). 

 The contents of the  tcp_rtt_estimator( ), as shown in  Figure 5.27 , 

follow Van Jacobson’s suggestion in 1988 (and his further refinement in 1990) 

to compute a smoothed RTT estimate. Note that  srtt  and  mdev  are scaled ver-

sions of RTT and mean deviation so as to calculate the result as fast as possible. 

RTO is initialized to 3 seconds as defined in RFC 1122 and will vary from 20 ms 

to 120 seconds during the connection. These values are defined in  net/tcp.h . 

 In  Figure 5.27 ,  m  stands for the current measured RTT measurement,  tp  is the 

pointer to the  tcp_sock  data structure, as seen in Open Source Implementation 

5.4,  mdev  refers to mean deviation, and  srtt  represents the smoothed RTT esti-

mate. The operation >>3 is equivalent to division by 8 while >>2 is division by 4.        

  Exercises 
  Figure 5.27  shows how to update  srtt  and  mdev  based on  m  and their previ-

ous values. Do you know where and how the initial values of  srtt  and  mdev  

are given?  

 m -= (tp->srtt >> 3);   /* m is now error in rtt est */ 
 tp->srtt += m;    /* rtt = 7/8 rtt + 1/8 new */ 
 if (m < 0) { 
      m = -m; /* m is now abs(error) */ 
      m -= (tp->mdev >> 2); /* similar update on mdev */ 
 if (m > 0) 
    m >>= 3; 
 } else { 
      m -= (tp->mdev >> 2); /* similar update on mdev */ 
 } 

FIGURE 5.27 RTT estimator in Linux 2.6.

lin76248_ch05_339-416.indd   376lin76248_ch05_339-416.indd   376 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 377

  (3) TCP Keepalive Timer (nonstandard) 

 Detecting crashed systems over TCP/IP is difficult. TCP does not require any trans-

mission over a connection if the application is not sending anything, and many of 

the media over which TCP/IP is used (e.g., Ethernet) do not provide a reliable way 

to determine whether a particular host is up. If a server does not hear from a client, 

it could be because it has nothing to say, the network between the server and client 

may be down, the server’s or client’s network interface may be disconnected, or the 

client may have crashed. Network failures are often temporary (for example, it often 

takes a few minutes for new routes to stabilize when a router goes down), and TCP 

connections should not be dropped as a result. 

 Keepalive is a feature of the socket APIs in which an empty packet is sent peri-

odically over an idle connection, which should invoke an acknowledgment from the 

remote system if it is still up, a reset by RST if it has rebooted, or a timeout if it is 

down. These are not normally sent until the connection has been idle for a few hours. 

The purpose is not to detect a crash immediately, but to keep unnecessary resources 

from being allocated forever. 

 If more rapid detection of remote failures is required, this should be imple-

mented in the application protocol. Currently most daemon programs of applications 

such as FTP and telnet detect whether the user has been idle for a period. If yes, the 

daemon closes the connection.    

 Open Source Implementation 5.6: TCP Persist 
Timer and Keepalive Timer 

  Overview 
 In the Linux 2.6 kernel, the persist timer is called the probe timer. It is maintained 

by the  tcp_probe_timer()  function in  tcp_timer.c , while the keepalive 

timer is maintained by the  tcp_keepalive_timer()  in  tcp_timer.c .  

  Data Structures 
 To call both functions on time, they should be hooked on a time list. For 

example,  tcp_keepalive_timer()  is hooked on  sk->sk_timer  by 

 inet_csk_init_xmit_timers() . The  sk_timer  is a  timer_list  

structure whose definition can be found in  include/linux/timer.h . The 

structure includes a function pointer to indicate which function would be called 

when the time is up. Also, a variable  data  is used to keep the parameter to be 

passed into the function. Herein  data  keeps a pointer to the corresponding 

socket to let  tcp_keepalive_timer()  know which socket to check.  

  Algorithm Implementations 
 The  tcp_probe_timer()  calls  tcp_send_probe0()  to send out a 

probe packet. The 0 in the function name means window size of 0 updated by 

Continued

lin76248_ch05_339-416.indd   377lin76248_ch05_339-416.indd   377 24/12/10   4:15 PM24/12/10   4:15 PM



378 Computer Networks: An Open Source Approach

  5.3.7 TCP Performance Problems and Enhancements 
 Transmission styles of TCP-based applications can be categorized into (1) interactive 

connections and (2) bulk-data transfers. Interactive applications, such as telnet and 

WWW, perform  transactions  that consist of successive request/response pairs. In 

contrast, some applications have bulk-data transfers, such as downloading/uploading 

files using FTP or P2P. These two styles of data transmission have their own perfor-

mance problems, as shown in  Table 5.3 ,  if the previously mentioned TCP versions 

are used. This subsection introduces the problems and presents their solutions. 

  (1) Performance Problem of Interactive TCP: Silly Window Syndrome 

 The performance of window-based flow control in TCP for interactive transactions 

suffers under a well-known condition called  silly window syndrome (SWS) . When 

it occurs, small packets are exchanged across the connection, instead of full-sized 

segments, which implies more packets are sent for the same amount of data. Since 

each packet has a fixed size of header overhead, transmitting in small packets 

TABLE 5.3 TCP Performance Problems and Solutions

Transmission Style Problem Solution

Interactive 

connection

Silly window 

syndrome

Nagle, Clark

Bulk-data transfer ACK compression Zhang

Reno’s MPL* 

problem

NewReno, SACK, FACK

*MPL stands for Multiple-Packet-Loss

the receiver. If the receiver has a retransmission timeout, the sender will send a 

zero-window-probe segment that contains an old sequence number to trigger the 

receiver to reply a new window update. 

 The default calling period of the keepalive timer is 75 seconds. When it 

fires, it checks every established connection for idle ones and emits new probes 

for them. The number of probes for each connection is limited to 5 by default. 

So if the other end crashes but does not reboot, the probe-sender clears the TCP 

state by the  tcp_keepopen_proc()  function; if the other end crashes and 

reboots within the 5 probes, it will reply an RST when receiving a probing 

packet. The sender of the probe can then clear the TCP state.  

  Exercises 
 Read  net/ipv4/tcp_timer.c  to figure out where and how the  tcp_
probe_timer() is hooked. Is it directly hooked on a  time_list  structure 

just as  tcp_keepalive_timer() ?  

lin76248_ch05_339-416.indd   378lin76248_ch05_339-416.indd   378 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 379

means bandwidth wastage, which is particularly severe in a WAN though insignifi-

cant in a LAN. 

 The SWS condition could be caused by either end. The sender can transmit a 

small packet without waiting for more data from the sending application to send 

a full-sized packet. Take telnet, for example: Because in telnet each keystroke 

generates a packet and an ACK, telneting across a large-RTT WAN wastes the 

globally shared WAN bandwidth. Readers might argue that packets of interactive 

applications should be sent right away regardless of how small they are. However, 

bounded delay, say tens to one hundred milliseconds, of such packets would not 

affect the perceived interactivity. 

 The receiver also could cause the SWS condition. The receiver, without waiting 

for more data to be removed from the buffer to the receiving application, can therefore 

advertise a receiver window smaller than a full-sized packet, which eventually leads 

to the SWS condition. Let us consider an example shown in  Figure 5.28 . Suppose that 

MSS=320 and the server’s initial RWND is set to this same value, 320. Also assume 

that the client always has data to send and the server is so busy that it removes only 

1 byte of data from the buffer for every 4 bytes it receives. The example goes like this: 

    1. The client’s window size is 320, so it immediately sends a 320-byte segment to 

the server.  

   FIGURE 5.28 Silly window syndrome 
caused by the receiver. 

Client Server

2. Receive Segment; Send
Ack, Reduce Window to 80

4. Receive Segment; Send
Ack, Reduce Window to 40

6. Receive Segment; Send
Ack, Reduce Window to 30

RWND = 320

RWND = 80

RWND = 40

RWND = 30

240/320

220/320

200/320

60/80

60/80
30/
40

Data (Seq=1, Len=320)

Data (Seq=321, Len=80)

Data (Seq=401, Len=40)

ACK (Ack=321, RWND=80)

ACK (Ack=401, RWND=40)

ACK (Ack=441, RWND=30)

...

lin76248_ch05_339-416.indd   379lin76248_ch05_339-416.indd   379 24/12/10   4:15 PM24/12/10   4:15 PM



380 Computer Networks: An Open Source Approach

   2. When the server receives this segment, it acknowledges this segment. Since only 

80 bytes are removed, the server reduces the window size from 320 to 80 and 

advertises RWND as 80 in the ACK.  

   3. The client receives this ACK, and knows that the window size has been reduced 

to 80, so it sends out an 80-byte segment.  

   4. When the 80-byte segment arrives, the buffer now contains 220 bytes (240 left 

from the first segment and assuming 20 extra bytes removed during the propaga-

tion delay). Then the server immediately processes one-fourth of those 80 bytes 

so that 60 bytes are added to the 220 bytes that already remain in the buffer. The 

server then sends an ACK with RWND=40.  

   5. The client receives this ACK, and knows that the window size has been reduced 

to 40, so it sends out a 40-byte segment.  

   6. The server removes 20 bytes during the propagation delay, which yields 

260 bytes left in the buffer. It receives 40 bytes from the client, removes one-

fourth, so 30 bytes are added to the buffer, which becomes 290 bytes. Thus the 

server reduces the window size to 320 − 290 = 30 bytes.     

  Solution to Silly Window Syndrome 

 To prevent the sender from initiating SWS, John Nagle in 1984 proposed a simple 

but elegant algorithm known as  Nagle’s algorithm ,  which reduces the number of 

packets being sent when the bandwidth is saturated:  Don’t send a small new segment 
unless there is no outstanding data . Instead, small segments are gathered together 

by TCP and sent in a single segment when the ACK arrives. The gathering would 

be bounded by RTT and thus would not affect the interactivity. Nagle’s algorithm is 

elegant due to its  self-clocking  behavior: If the ACK comes back fast, the bandwidth 

is likely to be large so that the data packets are sent fast; if the ACKs come back with 

a long RTT, which might mean a narrowband path, Nagle’s algorithm reduces the 

number of tiny segments by sending full-size segments. The pseudocode of Nagle’s 

algorithm is shown in  Figure 5.29 .  

 On the other hand, to prevent the receiver from initiating SWS, the solution 

proposed by David D. Clark in 1982 is used. The advertisement would be delayed 

until the receiver buffer is half empty or available to a full-size segment, which 

thus guarantees a large window advertisement to the sender. Again, the delay is 

also bounded.  

if there is new data to send 
 if window size >= MSS and available data >= MSS
  send complete MSS segment
 else
  if there is outstanding data and queued data live time <threshold
   enqueue data in the buffer until an ACK is received 
  else
   send data immediately
  endif
 endif 
endif

   FIGURE 5.29 Nagle’s algorithm. 

lin76248_ch05_339-416.indd   380lin76248_ch05_339-416.indd   380 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 381

  (2) Performance Problem of Bulk-Data Transfers 

 The performance of window-based flow control for bulk-data transfers is best un-

derstood by the  Bandwidth delay product (BDP)  or the  pipe size . In  Figure 5.30 ,  we 

can visualize a full-duplex end-to-end TCP network pipe consisting of a forward data 

channel and a reverse ACK channel. You can imagine a network pipe functioning as 

a water tube whose width and length correspond to the bandwidth and the RTT, re-

spectively. Using this analogy, the pipe size then corresponds to the amount of water 

that can go into the water tube. If the full-duplex channel is always full, we can easily 

derive the performance of such connections as

   Throughput =
Pipe Size

RTT
.    (5.1) 

 Intuitively speaking, Equation (5.1) means the amount of the data in the pipe 

deliverable in an RTT. The throughput, of course, is equal to the bandwidth of the 

pipe. However, the pipe might not always be full. When a TCP connection starts 

and encounters packet losses, TCP senders will adapt their windows to the network 

congestion. Before a TCP can fill up the pipe, its performance should be derived as

   Throughput =
outstanding bytes

RTT
=

min(CWND,RWND)

RTTT
.   (5.2)  

 Equations (5.1) and (5.2) imply that if the RTT of a TCP connection is fixed, 

the connection throughput is then bounded by the maximum of the network capacity 

(pipe size), the receiver’s buffer (RWND), and the network condition (CWND). That 

is, Equation (5.1) is the upper bound on the throughput of the connection.  
 Because better performance implies better  effective  utilization of the network 

pipe, the process of  filling the pipe  significantly affects the performance.  Figure 5.31  

illustrates the steps of filling a network pipe using TCP.  

  Figure 5.31 (1) to (6) demonstrates the first packet sent from the left party to the 

right party and an ACK replied from the receiver to the sender. After receiving the 

   FIGURE 5.30 Visualization of end-to-end full-duplex network pipes. 

Slow link

Proper
spacing

ReceiverSender

Slow link

ACKs have
proper
spacing

Sender

Data ACK

lin76248_ch05_339-416.indd   381lin76248_ch05_339-416.indd   381 24/12/10   4:15 PM24/12/10   4:15 PM



382 Computer Networks: An Open Source Approach

ACK, the sender raises its congestion window to 2 in  Figure 5.31 (7). This process 

continues as shown in the following subfigures in  Figure 5.31 . After the congestion 

window reaches 6 in  Figure 5.31 (35), the network pipe becomes full. 

 Note that the throughput of bulk data transfer using TCP can be modeled as a 

function of several parameters such as RTT and packet loss rate. Advances in this 

field target accurate prediction of a TCP source’s throughput. The major challenge 

lies in how we interpret previously sampled packet loss events to predict future per-

formance of a TCP connection. The intervals between packet losses can be indepen-

dent or correlated. An easy-to-understand model appears in Padhye’s work, which 

considers not only the packet loss recovered by the fast retransmit algorithm but also 

that recovered by RTO. 

 Next we shall study two major performance problems encountered by bulk-data 

transfers: the ACK-compression problem and the TCP Reno’s multiple-packet-loss 

problem. Suggestions or solutions are discussed therein.  

  The ACK-Compression Problem 

 In  Figure 5.32 ,  the full-duplex pipe contains only the data stream from the sender on 

the left side, so the spacing between the ACKs can define a fixed clock rate which 

triggers new data packets from the sender. However, when there is also traffic gener-

ated from the right side, as indicated in  Figure 5.32  and compared with  Figure 5.30 ,  

consecutive ACKs could have improper spacing because the ACKs in the reverse 

channel could be mixed with data traffic in the same queue. Since the transmission 

time of a large data packet is far larger than that of a 64-byte ACK, the ACKs could 

be periodically compressed into clusters and could cause the sender to emit bursty 

data traffic, resulting in rapid fluctuations in the queue length at intermediate routers. 

cwnd=1

cwnd=2

cwnd=3

cwnd=4

cwnd=5

cwnd=6

(1) (2) (3) (4) (5) (6)

(7) (8) (9) (10) (11) (12)

(13) (14) (15) (16) (17) (18)

(19) (20) (21) (22) (23) (24)

(25) (26) (27) (28) (29) (30)

(31) (32) (33) (34) (35) (36)

   FIGURE 5.31 Steps of filling the pipe using TCP. 

lin76248_ch05_339-416.indd   382lin76248_ch05_339-416.indd   382 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 383

The ACK piggybacked in the data packets may alleviate this ACK-compression 

problem. However, since the end-to-end channel is essentially a concatenation of 

hop-by-hop systems, cross traffic in the intermediate Internet routers can also cause 

this phenomenon.  

 Currently there is no obvious way to cope with the ACK-compression problem. 

Zhang, Shenker, and Clark in 1991 suggested using pacing of data packets by the 

TCP sender rather than solely relying on the ACK-clocking to alleviate the phenom-

enon. The clocking of ACKs has proven to be ineffective, as shown in  Figure 5.32 .  

  TCP Reno’s Multiple-Packet-Loss (MPL) Problem 

 In Reno, when multiple packet losses occur within one window, since the receiver 

always responds with the same duplicate  ACK,   the sender assumes at most one new 

loss per RTT. Thus, in such a case, the sender must spend numerous RTTs to handle 

all of these losses. Meanwhile, the retransmission timeout occurs more often be-

cause only a few packets, which are limited due to reduction in  cwnd  triggered by 

fast recovery, can be sent even though there are many unacknowledged packets to 

be retransmitted. Let us go through the example depicted in  Figure 5.33 ,  where the 

 ACK  of packet 30 was received and the sender transmitted packets 31 to 38. Again, 

for clarity, the acknowledgment number in the  ACK  packet is the sequence number of 

the received packet, rather than the sequence number of the next packet the receiver 

expects to receive.  

 Assume that  cwnd  is equal to 8 packets and packets 31, 33, and 34 were lost 

during transmission. Since packets 32, 35, 36, 37, and 38 were received, the receiver 

sent five duplicate  ACK s for lost packet 31. The sender discerns that packet 31 was 

lost when it receives the third duplicate  ACK  (ack num=31), and then immediately 

sets  cwnd  to [8/2]+3 packets and retransmits the lost packet. After receiving two more 

duplicate ACKs, the sender continues to increase  cwnd  by 2 and can forward a new 

packet 39. After receiving the  ACK  (ack num=33), the sender transits from fast recov-

ery to congestion avoidance, and sets  cwnd  to 4 packets. Then, the sender receives 

   FIGURE 5.32 ACK-compression phenomenon. 

Slow link

Proper
spacing

ReceiverSender

Slow link

ACKs have
proper
spacing

Queuing
causes

burstiness

Sender

Data ACK

lin76248_ch05_339-416.indd   383lin76248_ch05_339-416.indd   383 24/12/10   4:15 PM24/12/10   4:15 PM



384 Computer Networks: An Open Source Approach

one duplicate  ACK  (ack num=33). When  cwnd  equals 4 and  awnd  equals 7 (40-33), 

then the sender stops sending any packet, which results in a retransmission timeout! 

 Note that Reno does not always timeout when losing more than one segment 

within a window of data. When the multiple-loss event happens in the situation when 

 cwnd  is very large, any partial ACKs may not only bring Reno out of fast recovery, 

but may also trigger another fast retransmit because of another batch of triple du-

plicate ACKs. This is fine so far, though it will slow loss recovery. But if too many 

packets lost within the RTT cause the  cwnd  to be halved too many times in the fol-

lowing RTTs so that too few segments are outstanding in the pipe to trigger another 

fast retransmit, Reno will timeout, which prolongs the loss recovery further. 

 To alleviate the multiple-packet-loss problem, the NewReno and the SACK 

(Selective ACKnowledgment, defined in RFC 1072) versions seek to resolve this 

problem by two quite different approaches. In the former, on receiving partial ac-

knowledgment, the sender continues operating in fast recovery rather than returning 

to congestion avoidance. On the other hand, SACK modifies the receiver behavior to 

cwnd=8
awnd=8

38

31

33

33

D

D

D

D

D Sender sent segments 31–38.

Receiver replied five duplicate
ACKs (ack num=31).

Sender received three duplicate ACKs
and cwnd is changed to (8/2)+3 packets.
The lost segment 31 is retransmitted.

Receiver replied the ACK (ack num=33)
when it received the retransmitted
segment 31. This is a partial ACK.

Sender exited the fast recovery and
entered the congestion avoidance state
when receiving the partial ACK. Cwnd
is changed to 4 segments.

31 31

31 31

31 31 31

39

37 36 35 34 33 32 31

cwnd=8
awnd=8

cwnd=7
awnd=8

S(1)

(2)

(3)

(4)

(5)

S

S

cwnd=9
awnd=8->9

S

D Sender waited until timeout.(6)
cwnd=4
awnd=7

: Data segment : Lost segment : Duplicate ACK : Partial ACK

S

cwnd=4
awnd=7

S

   FIGURE 5.33 Reno’s multiple-packet-loss problem. 

lin76248_ch05_339-416.indd   384lin76248_ch05_339-416.indd   384 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 385

report to the sender the noncontiguous sets of data that have been received and queued, 

with additional SACK options attached in the duplicated acknowledgments. With the 

information in SACK options, the sender can retransmit the lost packets correctly and 

quickly. Mathis and Mahdavi then proposed Forward ACKnowledment (FACK) to 

improve the fast recovery scheme in SACK. Compared to NewReno/SACK/FACK, 

which keep on polishing the fast retransmit and fast recovery mechanisms, TCP Vegas, 

proposed in 1995, uses the fine-grain RTT to assist in the detection of packet losses and 

congestion, which thus decreases the probability of the occurrence of timeout in Reno.       

 Historical Evolution: Multiple-Packet-Loss 
Recovery in NewReno, SACK, FACK, and Vegas 

 Here we detail further how the Reno’s MPL problem is alleviated in NewReno, 

SACK, FACK, and Vegas, by using the same example as in  Figure 5.33 . 

  Solution 1 to TCP Reno’s Problem: TCP NewReno 
 NewReno, standardized in RFC 2582, modifies the fast-recovery phase of Reno 

to alleviate the multiple-packet-loss problem. It departs from the original fast 

recovery scheme only when the sender receives the  ACK  that acknowledges the 

 latest  transmitted packet before detecting the  first  lost packet. Within NewReno, 

this exited time is defined as “the end point of fast recovery” and any nondupli-

cate  ACK  prior to that time is deemed a partial  ACK . 

 Reno considers a partial  ACK  as a successful retransmission of the lost 

packet, so the sender returns to congestion avoidance to transmit new packets. In 

contrast, NewReno considers it as a signal of further packet losses, and thus the 

sender retransmits the lost packet immediately. When a partial  ACK  is received, 

the sender adjusts  cwnd  by deflating the amount of new data acknowledged and 

adding one packet for the retransmitted data. The sender remains in fast recovery 

until the end point of fast recovery. Thus, when multiple packets are lost within one 

window of data, NewReno may recover them without a retransmission timeout. 

 For the same example illustrated in  Figure 5.33 , the partial  ACK  (ack 

num=33) is transmitted when the retransmitted packet 31 in step 4 is received. 

 Figure 5.34  illustrates the NewReno modification. When the sender receives the 

partial  ACK  (ack num=33), it immediately retransmits the lost packet 33 and sets 

 cwnd  to (9−2+1) where 2 is the amount of new data acknowledged (packets 31 

and 32) and 1 represents the retransmitted packet that has exited the pipe. Simi-

larly, when the sender receives the partial  ACK  (ack num=34), it immediately 

retransmits the lost packet 34. The sender exits fast recovery successfully until 

the  ACK  of packet 40 is received, without any timeout occurring.  

  Solution 2 to TCP Reno’s Problem: TCP SACK 
 Although NewReno alleviates the multiple-packet-loss problem, the sender only 

learns of one new loss within one RTT. However, the SACK option, proposed in 

Continued

lin76248_ch05_339-416.indd   385lin76248_ch05_339-416.indd   385 24/12/10   4:15 PM24/12/10   4:15 PM



386 Computer Networks: An Open Source Approach

   FIGURE 5.34 Solution 1 to TCP Reno’s problem: NewReno. 

43 42 34

D

Upon receiving the duplicate ACK
(ack num=34), cwnd was advanced
by one. Since awnd was smaller than
cwnd, two new segments were sent.

34

cwnd=10
awnd=9->10

(8) S

44 43 42 34

D

On receiving the duplicate ACK
(ack num=34), cwnd was advanced
by one and thus segment 44 was
triggered out.

cwnd=11
awnd=10->11

(9) S

45444342

D
Receiver replied ACKs
(ack num=42, 43, 44, and 45).(10)

cwnd=11
awnd=10->11

S

: Data segment : Lost segment : Duplicate ACK : Partial ACK

43 44 45

D
Sender exited fast recovery upon
receiving the ACK (ack num=42).
Cwnd and awnd were reset to 4.

(11)
cwnd=4
awnd=4

S

cwnd=9
awnd=9->8

34

D

The partial ACK triggered the sender
to retransmit segment 34 and shrink
the awnd to 8 (41-33). Receiver
replied an ACK (ack num=34) upon
receiving segment 41.

S(7)

3434

cwnd=8
awnd=8

38

D Sender sent segments 31–38.

37 36 35 34 33 32 31

S(1)

D
Receiver replied five duplicate
ACKs (ack num=31).

31 31 31 31 31

cwnd=8
awnd=8

(2) S

31

D

Sender received three duplicate
ACKs and cwnd is changed to
(8/2)+3 packets. The lost segment
31 is retransmitted.

31 31

cwnd=7
awnd=8

(3) S

33

D

Receiver replied the ACK
(ack num=33) when it received
the retransmitted segment 31.
This is a partial ACK.

39

(4)
cwnd=9
awnd=8->9

S

41

3434

D

Sender received a duplicate ACK
and added cwnd by 1, thus segment
41 is kicked out. Receiver replied a
partial ACK and one duplicate ACK
(ack num=34).

(6)
cwnd=9
awnd=8->9

S

40 33

33

D

Sender received this partial ACK
(ack num=33) and immediately
retransmitted the lost segment 33.
Cwnd is changed to 9–2+1.

(5)
cwnd=8
awnd=7->8

S

lin76248_ch05_339-416.indd   386lin76248_ch05_339-416.indd   386 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 387

Continued

RFC 1072, resolves this drawback. The receiver responds to the out-of-order packets 

by delivering the duplicate  ACK s coupled with SACK options. RFC 2018 refines the 

SACK option and describes the behaviors of both the sender and receiver exactly. 

 One SACK option is applied to reporting one noncontiguous block of data, 

which the receiver successfully receives, via the two sequence numbers of the 

first and last packets in each block. Owing to the length limitation of the TCP 

option, there are a maximum number of SACK options allowed within one du-

plicate  ACK . The first SACK option must report the latest block received, which 

contains the packet that triggers this  ACK . 

 SACK adjusts  awnd  directly rather than  cwnd . Thus, upon entering fast 

recovery,  cwnd  is halved and fixed during this period. When the sender either 

sends a new packet or retransmits an old one,  awnd  is incremented by 1. However, 

when the sender receives a duplicate ACK with a SACK option indicating that 

new data has been received,  awnd  is decreased by 1. Also, the SACK sender treats 

partial ACKs in a particular manner. That is, the sender decreases  awnd  by 2 rather 

than 1 because a partial ACK represents two packets that have left the network 

pipe: the original packet (assumed to have been lost) and the retransmitted packet.  

  Figure 5.35  illustrates an example of the SACK algorithm. Each duplicate 

 ACK  contains the information of the data blocks that were successfully received. 

When the sender received three duplicate  ACK s, it knew that packets 31, 33, and 

34 were lost. Therefore, if allowed, the sender could retransmit the lost packets 

immediately.   

  Solution 3 to TCP Reno’s Problem: TCP FACK 
 FACK was proposed to be an auxiliary for SACK. In FACK, the sender uses the 

SACK options to determine the forwardmost packet that was received, where 

the forwardmost packet means the correctly received packet with the highest 

sequence number. FACK, for improved accuracy, estimates  awnd  as ( snd.
nxt – snd.fack + retran_data ), where  snd.fack  is the forwardmost 

packet reported in the SACK options plus 1 and  retran_data  is the number of 

retransmitted packets after the previous partial  ACK . Since the sender may have 

a long wait for three duplicate  ACK s, FACK enters fast-retransmit earlier. That 

is, when  (snd.fack – snd.una)  is larger than 3, the sender enters fast 

retransmit without waiting for three duplicate  ACK s. 

  Figure 5.36  depicts the FACK modification. The sender initiates retransmis-

sion after receiving the second duplicate ACK because  (snd.fack – snd.
una) , (36 − 31), is larger than 3. The lost packets can be retransmitted in FACK 

sooner than they can be in SACK since the former calculates  awnd  correctly. Thus, 

in  Figure 5.36 , it is evident that the number of outstanding packets stabilizes at four.   

  Solution 4 to TCP Reno’s Problem: TCP Vegas 
 Vegas first revises Reno in its opportunity to trigger fast retransmit. Once a du-

plicate ACK is received, Vegas determines whether to trigger fast retransmit by 

Continued

lin76248_ch05_339-416.indd   387lin76248_ch05_339-416.indd   387 24/12/10   4:15 PM24/12/10   4:15 PM



388 Computer Networks: An Open Source Approach

examining whether the difference between the current time and the sending time 

of the relevant packet plus the minimum RTT is greater than the timeout value. If 

yes, Vegas triggers fast retransmit without waiting for more duplicate ACKs. This 

modification can avert a situation in which the sender never receives triple dupli-

cate ACKs, and therefore must rely on the coarse-grain retransmission timeout. 

 After a retransmission, the sender determines whether there is a multiple 

packet loss by checking the fine-grain timeout of unacknowledged packets. If 

any timeout occurs, the sender immediately retransmits the packet without wait-

ing for any duplicate ACK. 

   FIGURE 5.35 Solution 2 to TCP Reno’s problem: TCP SACK option. 

cwnd=4
awnd=4

42 41 40 39

D
Sender exited fast recovery after
receiving ACK (ack num=39).

S(7)

: Data segment : Lost segment : Duplicate ACK : Partial ACK

cwnd=8
awnd=8

38

31

34 33

33

3934

D

D

D

D

D
Sender received ACK of segment
30 and sent segments 31–38.

Receiver sent five duplicate ACKs
(ack num=31) with SACK options.

Sender received duplicate ACKs and
began retransmitting the lost segments
reported in the SACK options. Awnd
was set to 8–3+1 (three duplicate ACKs
and one retransmitted segment).

Receiver replied partial ACKs for
received retransmitted segments.

Sender received partial ACKs, reduced
awnd by 2, and thus retransmitted
two lost segments.

31 31

31 31

31 31 31

37 36 35 34 33 32 31

cwnd=8
awnd=8

cwnd=4
awnd=6

S(1)

(2)

(3)

(4)

(5)

S

S

cwnd=4
awnd=4

S

D
Receiver replied ACKs for received
retransmitted segments.(6)

cwnd=4
awnd=4

S

cwnd=4
awnd=2->4

S

1

2

3

4

5

1 2 3 4 5

4 5

(32, 32;

(35, 35;

(35, 36;

(35, 37;

(35, 38;

SACK options: 0,

32,

32,

32,

32,

0;

32;

32;

32;

32;

0, 0)

0, 0)

0, 0)

0, 0)

0, 0)

lin76248_ch05_339-416.indd   388lin76248_ch05_339-416.indd   388 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 389

 Actually, TCP Vegas also uses the fine-grain RTT to improve the congestion 

control mechanisms. Compared to Reno, which reacts to packet losses and then 

decreases the sending rate to alleviate the congestion, Vegas tries to anticipate 

the congestion and then decrease the sending rate early to avoid congestion 

and packet losses. To anticipate the congestion, during the connection Vegas 

tracks the minimum RTT and saves it in a variable named  BaseRTT . Then, by 

dividing  cwnd  by  BaseRTT , Vegas learns the expected sending rate, denoted as 

 Expected , which the connection can use without causing any packets queued in 

the path. Next, Vegas compares  Expected  with the current actual sending rate, 

denoted as  Actual , and adjusts  cwnd  accordingly. Let  Diff  =  Expected  –  Actual  
and give two thresholds,  a < b , defined in terms of KB/s. Then,  cwnd  in Vegas is 

increased by 1 per RTT when  Diff  < a , decreased by 1 if  Diff  >b, and fixed if  Diff  
is between  a  and  b . 

   FIGURE 5.36 Solution 3 to TCP Reno’s problem: TCP FACK modification. 

: Data segment : Lost segment : Duplicate ACK : Partial ACK

cwnd=8
awnd=8

38

31

40

3439 33

4243 41

33

403934

41

D

D

D

D

D
Sender received ACK of segment
30 and sent segments 31–38.

Receiver sent five duplicate ACKs
(ack num=31) with SACK options.

Sender received two duplicate ACKs
and began retransmitting the lost
segments reported in the SACK options.

Sender calculated awnd for received
duplicate ACKs and kept sending
packets allowed.

Receiver replied ACKs.

31 31

31 31

31 31 31

37 36 35 34 33 32 31

cwnd=8
awnd=8

cwnd=4
awnd=4

S(1)

(2)

(3)

(4)

(5)

S

S

cwnd=4
awnd=4

S

D
Sender exited fast recovery after
receiving ACK (ack num=39).(6)

cwnd=4
awnd=4

S

cwnd=4
awnd=4

S

1

2

3

4

5

1 2 3 4 5

3

31

4 5

(32, 32;

(35, 35;

(35, 36;

(35, 37;

(35, 38;

SACK options: 0,

32,

32,

32,

32,

0;

32;

32;

32;

32;

0, 0)

0, 0)

0, 0)

0, 0)

0, 0)

Continued

lin76248_ch05_339-416.indd   389lin76248_ch05_339-416.indd   389 24/12/10   4:15 PM24/12/10   4:15 PM



390 Computer Networks: An Open Source Approach

 Principle in Action: TCP for the Networks with 
Large Bandwidth-Delay Product 

 As the network techniques continue to progress, the link capacity increases, 

resulting in a network path with a large  bandwidth-delay product , which refers 

to the product of the bandwidth of the path and its RTT. An example of this net-

work is that of satellite connections, where RTT is very large and link bandwidth 

may also be high. 

 Conventional TCP performs poorly in this type of network because it is un-

able to fully utilize the available bandwidth. The protocol can only achieve opti-

mum throughput if a sender sends sufficiently large outstanding data exceeding 

the bandwidth-delay product. If the quantity of data sent is insufficient, then the 

path is not being kept busy, and the protocol is operating below peak efficiency 

for the path. However, in the network with a large bandwidth-delay product, 

this insufficient condition is likely to appear. Some new TCP congestion control 

schemes, BIC, CUBIC, FastTCP, and HighSpeed TCP (HSTCP), try to solve 

this problem. They are more  aggressive  about  increasing  the transmission speed, 

backing off when encountering losses but quickly resuming an aggressive in-

crease in the transmission speed. 

 The most important component used in BIC is  binary  search increase. When a 

packet loss event happens, BIC reduces its window. The window size just before the 

reduction is set to the maximum and just after the reduction is set to the minimum. 

Then, BIC performs a binary search by jumping to the target, that is, the “ midpoint ” 

between the maximum and the minimum. The minimum or the maximum is 

undated according to whether a packet loss occurs. Binary search increase allows 

BIC to be aggressive when the difference between the current window size and the 

target window size is large. When the difference between the two window sizes 

shrinks, it forces the protocol to be less aggressive for TCP  fairness . 
 CUBIC uses a simpler function, a  cubic  function whose shape is similar to the 

BIC window curve, to achieve the same goal. This function grows much more slowly 

than binary search increase near the target window size. Fast TCP measures  queu-
ing delay , instead of loss probability, to determine congestion in the network. By 

measuring this factor, it can increase the congestion window more quickly than TCP. 

HS-TCP is aggressive about increasing the congestion window after it reaches a 

window  threshold , therefore more quickly responding to changes in available band-

width. It uses a  table  to determine by what factor to increase the congestion window. 

 Adjusting the sending rate to keep  Diff  between  a  and  b  represents that the 

network buffer occupied by a Vegas connection on average would be at least  a  

bytes per second to well utilize the bandwidth, and at most  b  bytes per second to 

avoid overloading the network. At the suggestion of Vegas’s authors,  a  and  b  are 

assigned to 1 and 3 times MSS/ BaseRTT , respectively.  

lin76248_ch05_339-416.indd   390lin76248_ch05_339-416.indd   390 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 391

  5.4 SOCKET PROGRAMMING INTERFACES  

 Networking applications use services provided by underlying protocols to perform 

special-purpose networking jobs. For example, applications such as  telnet  and 

 ftp  use services provided by the transport protocol;  ping ,   traceroute ,  and 

 arp  directly use services provided by the IP layer; packet capturing applications 

running directly on link protocols may be configured to capture the entire packet, in-

cluding the link protocol header. In this section, we shall see how Linux implements 

the socket interfaces for programming the preceding applications. 

  5.4.1 Socket 
 A  socket  is an abstraction of the end point of a communication channel. As its name 

suggests, the “end-to-end” protocol layer controls the data communications between 

the two end points of a channel. The end points are created by networking applica-

tions using socket APIs of an appropriate type. Networking applications can then 

perform a series of operations on that socket. The operations that can be performed 

on a socket include  control  operations (such as associating a port number with the 

socket, initiating or accepting a connection on the socket, or releasing the socket), 

 data transfer  operations (such as writing data through the socket to some peer ap-

plication, or reading data from some peer application through the socket), and  status  

operations (such as finding the IP address associated with the socket). The complete 

set of operations that can be performed on a socket constitutes the socket APIs. 

 To open a socket, an application program first calls the  socket()  function to 

initialize an end-to-end channel. The standard socket call,  sk=socket(domain, 
type, protocol) ,  requires three parameters. The first parameter specifies the 

domain or address family. Commonly used families are  AF_UNIX  for communica-

tions bounded on the local machine, and  AF_INET  for communications based on 

IPv4 protocols. The second parameter specifies the type of socket. Common values 

for socket type, when dealing with the  AF_INET  family, include  SOCK_STREAM  

(typically associated with TCP) and  SOCK_DGRAM  (associated with UDP). Socket 

type influences how packets are handled by the kernel before being passed up to the 

application. The last parameter specifies the  protocol  that handles the packets flow-

ing through the socket. The  socket  function returns a file descriptor through which 

operations on the socket can be applied. 

 The values of the socket parameters depend on what underlying protocols are 

used. In the next two subsections we investigate three types of socket APIs. They cor-

respond to accessing the transport layer, the IP layer, and the link layer, respectively, 

as we can see in their open source implementations.  

  5.4.2 Binding Applications through UDP and TCP 
 The services most widely used by networking applications are those provided 

by transport protocols such as UDP and TCP. A socket file descriptor is returned 

from the  socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)  function and 

lin76248_ch05_339-416.indd   391lin76248_ch05_339-416.indd   391 24/12/10   4:15 PM24/12/10   4:15 PM



392 Computer Networks: An Open Source Approach

initialized as a UDP socket, where  AF_INET  indicates Internet address family, 

 SOCK_DGRAM  stands for datagram service, and  IPPROTO_UDP  indicates the UDP 

protocol. A series of operations can be performed on the descriptor, such as those 

functions in  Figure 5.37 . 

 In  Figure 5.37 ,  before the connection is established, the UDP server as well as 

the client creates a socket and uses the  bind()  system call to assign an IP address 

and a port number to the socket. Note that  bind()  is optional and is usually not 

called at the client. When  bind()  is not called, the kernel selects the default IP ad-

dress and a port number for the client. Then, after a UDP server binds to a port, it is 

ready to receive requests from the UDP client. The UDP client may loop through the 

 sendto()  and  recvfrom()  functions to do some useful work until it finishes 

its job. The UDP server continues accepting requests, processing the requests, and 

feedbacking the results using  sendto()  and  recvfrom() . Normally, a UDP cli-

ent does not need to call  bind()  as it does not need to use well-known ports. The 

kernel dynamically assigns an unused port to the client when it calls  sendto() .  

 Similarly, a socket file descriptor returned from  socket(AF_INET, SOCK_
STREAM, IPPROTO_TCP)  is initialized as a TCP socket, where  AF_INET  indicates 

Internet address family,  SOCK_STREAM  stands for the reliable byte-stream service, 

and  IPPROTO_TCP  means the TCP protocol. The functions to be performed on the 

descriptor are depicted in  Figure 5.38 . Here by default  bind()  is not called at the client.  

 The flowchart of the simple TCP client-server programs is a little bit complex due 

to the connection-oriented property of TCP. It contains connection establishment, data 

transfer, and connection termination stages. Besides  bind() ,  the server calls  listen()  

to allocate the connection queue to the socket and waits for connection requests from 

clients. The  listen()  system call expresses the willingness of the server to start ac-

cepting incoming connection requests. Each listening socket contains two queues: (1) 

   FIGURE 5.37 Socket functions for simple UDP client-server programs. 

socket()Obtain a descriptor

UDP Client

bind()

sendto()

socket() Obtain a descriptor

Assign IP and port
to the socket

UDP Server

bind()

recvfrom()

Blocks until connection
from client

Process request

Sendto()

recvfrom()
Data (reply)

Data (request)

close()

lin76248_ch05_339-416.indd   392lin76248_ch05_339-416.indd   392 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 393

partially established request queue and (2) fully established request queue. A request 

would first stay in the partially established queue during the three-way handshake. 

After the connection is established with the three-way handshake finished, the request 

would be moved to the fully established request queue. 

 The partially established request queue in most operating systems has a maxi-

mum queue length, e.g., 5, even if the user specifies a value larger than that. Thus, 

the partially established request queue could be the target of a denial of service (DoS) 

attack. If a hacker continuously sends SYN requests without finishing the three-way 

handshake, the request queue will be saturated and cannot accept new connection 

requests from well-behaving clients.  

 The  listen()  system call is commonly followed by the  accept()  system 

call, whose job is to de-queue the first request from the fully-established request 

queue, initialize a new socket pair and return the file descriptor of the new socket 

created for the client. That is, the  accept()  system call provided by the BSD 

socket results in the automatic creation of a new socket, largely different from that in 

the TLI sockets where an application must explicitly create a new socket for the new 

connection. Note that the original listening socket is still listening on the well-known 

port for new connection requests. Of course the new socket pair contains the IP 

   FIGURE 5.38 Socket functions for simple TCP client-server programs. 

socket()Obtain a descriptor

Initiate three-way
handshake

TCP Client

connect()

write()

write()

socket() Obtain a descriptor

Assign IP and port
to the socket

1. Switch to passive socket
2. Create connection queue

Enter ESTABLISHED state

TCP Server

bind()

listen()

accept()

Process request

read()

read()

read()

Data (reply)

Data (request)

End-of-life notification
close()

close()

Blocks until connection
from client

Connection establishment
(TCP three-way handshake)

lin76248_ch05_339-416.indd   393lin76248_ch05_339-416.indd   393 24/12/10   4:15 PM24/12/10   4:15 PM



394 Computer Networks: An Open Source Approach

address and port number of the client. The server program can then decide whether 

or not to accept the client’s connection request. 

 The TCP client uses  connect()  to invoke the three-way handshaking process 

to establish the connection. After that, the client and the server can perform byte-

stream transfers between them.    

 Principle in Action: SYN Flooding and Cookies 

 Using the three-way handshake protocol might cause a  SYN flooding attack , in 

which an attacker sends many successive SYN requests to a victim’s system. It 

works as a server allocates resources after receiving a SYN but never receives an 

ACK. When these  half-open  connections exhaust all resources on the server, no 

new legitimate connections can be established, causing denial of service (DoS). 

There are two main methods to operate a SYN flooding attack: purposely not 

sending the last ACK, or spoofing the source IP address in the SYN, which 

causes the server to send the SYN+ACK to the falsified IP address, and thus 

never receive the ACK. 

  SYN cookies  can be used to guard against SYN flooding attacks. SYN 

cookies are defined as “particular choices of initial TCP sequence numbers by 

TCP servers.” A server using SYN cookies does not have to drop connections 

when its SYN queue, which stores the arriving SYNs, is full. Instead, it sends 

back a SYN+ACK with a particularly designed initial sequence number, that is, 

a SYN cookie. When the server receives a subsequent ACK from the client, it 

first checks this sequence number and then reconstructs the  pseudo  SYN queue 

entry, as if a SYN were stored in its SYN queue, using information  encoded  in 

this sequence number. That is, when SYN cookies are issued, the server does 

not rely on the SYN queue to keep track of the three-way handshake. Instead, 

it relies on the encoded SYN cookies. Thus, even if its SYN queue is full, the 

server is still capable of accepting real connections that finish the three-way 

handshake. As we shall see in  Chapter 6 , a similar cookie idea is also used for 

the stateless HyperText Transfer Protocol (HTTP) to keep track of long-term 

session states. 

 Open Source Implementation 5.7: Socket 
Read/Write Inside Out 

  Overview 
  Figure 5.39  displays the relative location of each mentioned part of the Linux 

2.6 kernel. General socket APIs and their subsequent function calls reside in 

the  net  directory. IPv4-specific source codes are put separately in the  ipv4  

directory, as is the case for IPv6. The BSD socket is just an interface to its 

underlying protocols such as IPX and INET. The currently widely used IPv4 

lin76248_ch05_339-416.indd   394lin76248_ch05_339-416.indd   394 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 395

protocol corresponds to the INET socket if the socket address family is specified 

as  AF_INET . The dominant link-level technology, Ethernet, has its header built 

within the  net/ethernet/eth.c . After that, the Ethernet frame is moved 

from the main memory to the network interface card by the Ethernet driver that 

resides in the  drivers/net/  directory. Drivers in this directory are hardware 

dependent, as many vendors have Ethernet card products with different internal 

designs. Similar structures also apply to WLAN and other links.   

  Algorithm Implementations 
 The internals of the socket APIs used by simple TCP client-server programs 

in Linux are illustrated in  Figure 5.40 . Programming APIs invoked from the 

BSD socket

INET socket

TCP/UDP

IP

Ethernet NIC driver

Ethernet-header builder
ARP

ICMP … 

Socket library

Application

Kernel space

User space 

Socket interface

drivers/net/*.{c,h}

net/ethernet/eth.c

net/ipv4/{ip*,icmp*}

net/ipv4/{tcp*,udp*}

net/ipv4/af_inet.c

net/socket.c

   FIGURE 5.39 Protocol stack and programming interfaces in Linux 2.6. 

User space 

Server Client
Server socket creation Send data Client socket creation Send data

socket() socket()bind() listen() write()accept() connect() read()

sys_listen

inet_listen

sys_write

do_sock_
write

sock_ 
sendmsg

inet_
sendmsg

tcp_
sendmsg

tcp_
write_xmit

sys_socket

sock_create

inet_create

sys_bind

inet_bind

sys_accept

inet_accept

tcp_accept

wait_for_
connection

Kernel space 

sys_socket

sock_create

inet_create

sys_read

do_sock_read

sock_
recvmsg

sock_comm
on_recvmsg 

tcp_
recvmsg

memcpy_
toiovec

sys_connect

inet_stream
_connect

tcp_v4_
getport

tcp_v4_
connect

inet_wait
_connect

Internet 

sys_socketcallsys_socketcall

   FIGURE 5.40 Socket read/write in Linux: Kernel space vs. user space. 
Continued

lin76248_ch05_339-416.indd   395lin76248_ch05_339-416.indd   395 24/12/10   4:15 PM24/12/10   4:15 PM



396 Computer Networks: An Open Source Approach

user-space programs are translated into the  sys_socketcall()  kernel 

call and are then dispatched to their corresponding  sys_*()  calls. The 

 sys_socket()  (in  net/socket.c ) calls  sock_create()  to allocate 

the socket and then calls  inet_create()  to initialize the  sock  structure 

according to the given parameters. The other  sys_*()  functions call their 

corresponding  inet_*()  functions because the  sock  structure is initial-

ized to Internet address family ( AF_INET ). Since  read()  and  write()  

in  Figure 5.40  are not socket-specific APIs but are commonly used by file I/O 

operations, their call flows follow their  inode  operations in the file system to 

find that the given file descriptor is actually related to a  sock  structure. Sub-

sequently they are translated into the corresponding  do_sock_read()  and 

 do_sock_write()  functions, and so on, which are socket-aware.  

 In most UNIX systems the  read()/write()  functions are integrated 

into the Virtual File System (VFS). VFS is the software layer in the kernel that 

provides the file system interface to user space programs. It also provides an 

abstraction within the kernel which allows different file system implementations 

to coexist.  

  Data Structures 
 In Linux 2.6, the kernel data structures, used by the functions of a TCP 

connection as displayed in  Figure 5.40 , are illustrated in  Figure 5.41 . After 

the sender initializes the socket and gets the file descriptor (assumed to be 

in  fd[1]  in the open file table), when the user-space program operates on 

that descriptor, it follows the arrow link to point to the  file  structure, where 

it contains a directory entry  f_dentry  pointing to an  inode  structure. 

The  inode  structure can be initialized to one of various file system types 

supported by Linux, including the  socket  structure type. The  socket  

structure contains a  sock  structure, which keeps network-related information 

and data structures from the transport layer down to the link layer. When the 

socket is initialized as a byte-stream, reliable, connection-oriented TCP socket, 

the transport layer protocol information  tp_pinfo  is then initialized as the 

 tcp_opt  structure, where many TCP-related variables and data structures, 

such as congestion window  snd_cwnd , are stored. The  proto  pointer of 

the  sock  structure links to the  proto  structure that contains the operation 

primitives of the protocol. Each member of the  proto  structure is a function 

pointer. For TCP, the function pointers are initialized to point to the function 

list contained in the  tcp_func  structure. Anyone who wants to write his or 

her own transport protocol in Linux should follow the interface defined by the 

 proto  structure.   

  Exercises 
 As shown in  Figure 5.41 , the structure  proto  in the structure  sock  provides a 

list of function pointers that link to the necessary operations of a socket, such as 

lin76248_ch05_339-416.indd   396lin76248_ch05_339-416.indd   396 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 397

 Performance Matters: Interrupt and Memory 
Copy at Socket 

 Receiving segments at a socket actually invokes two processing flows, as shown 

in the call graph of  Figure 5.42 . The first flow starts from the system call, 

 read() , later waits on the  tcp_recvmsg()  (for the case of TCP), which 

needs to be triggered by  sk_data_ready() , and ends at the return to the user 

space. Thus, the time spent on this flow presents the user-perceived latency. The 

second flow starts from  tcp_v4_rcv()  (for the case of TCP) called by the IP 

layer with an incoming packet and ends at calling  sk_data_ready()  to trig-

ger the resumption of first flow.  Figure 5.42  shows the time spent on receiving 

Continued

 connect ,  sendmsg , and  recvmsg . By linking different sets of functions to 

the list, a socket can send or receive data over different protocols. Find out and 

read the function sets of other protocols such as UDP.  

   FIGURE 5.41 Kernel data structures used by the socket APIs. 

linux/sched.h
struct files_struct
count
file_lock
max_fds
max_fdset
next_fd
fd[0]
fd[1]

fd[255]

Opened linux socket

......

......

linux/fs.h
struct file

ipv4/tcp_ipv4.c
struct tcp_func
tcp_close
tcp_v4_connect
tcp_disconnect
tcp_accept
tcp_ioctl
tcp_v4_init_sock
tcp_v4_destory_sock
tcp_shutdown
tcp_setsockopt
tcp_getsockopt
tcp_sendmsg
tcp_recvmsg

f_list
f_dentry
max_fds
f_vfsmnt
f_op

linux/dentry.h
struct dentry

linux/fs.h

union u
struct socket

inode
file
sk

struct inode
d_count
d_flags
d_inode
d_parent

f_count
f_flags
f_mode
f_pos

......

......

net/sock.h
struct proto
close
connect
disconnect
accept
ioctl
init
destory
shutdown
setsockopt
getsockopt

struct tcp_opt

snd_cwnd

sendmsg
recvmsg

net/sock.h
struct sock
d_addr
s_addr
dport
sport
bound_dev_if

......
receive_queue
write_queue

......
proto

......

......

......

......

sk_filter

......

......

union tp_pinfo

socket

......

......

......

......

......
......

lin76248_ch05_339-416.indd   397lin76248_ch05_339-416.indd   397 24/12/10   4:15 PM24/12/10   4:15 PM



398 Computer Networks: An Open Source Approach

TCP segments in the transport layer.  tcp_recvmsg()  takes the responsibility 

to copy data from the kernel structure into the user buffer, and therefore con-

sumes the most time (2.6 μs). The system call,  read() , spends time on mode 

switching between user and kernel modes. Besides, it also spends time on sys-

tem table lookup. Therefore,  read()  spends significant time (2.4 μs). Finally, 

in the second flow, time spent on  tcp_data_queue()  and  tcp_v4_rcv()  

are to queue and validate segments, respectively.  

  Figure 5.43  shows the time spent in transmitting TCP segments. The top 

two most time-consuming functions are functionally similar to the ones in the 

receiving case. They are  tcp_sendmsg() , which copies data from the user 

buffer to the kernel structure, and the system call  write() , switching between 

user and kernel modes. After examining the time of both TCP segment transmis-

sion and reception, we can conclude that the bottlenecks of the TCP layer occur 

at two places: memory copy between the user buffer and the kernel structure, 

and switching between user and kernel modes.  

   FIGURE 5.43 Latency in transmitting TCP segments in the TCP layer. 

0.00%

5.00%

10.00%

15.00%

tcp
_s

en
dm

sg
writ

e

vf
s_

writ
e

tcp
_tr

an
sm

it_
sk

b

tcp
_w

rit
e_

xm
it

20.00%

25.00%

2.77 µs
2.35 µs

1.63 µs
1.22 µs 1.16 µs

   FIGURE 5.42 Latency in receiving TCP segments in the TCP layer. 

0.00

0.50

1.00

1.50

E
xe

cu
tio

n 
tim

e 
(µ

s)

2.00

tcp
_r

ec
vm

sg
rea

d

vf
s_

rea
d

tcp
_d

ata
_q

ue
ue

tcp
_v

4_
rcv

2.50

3.00

lin76248_ch05_339-416.indd   398lin76248_ch05_339-416.indd   398 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 399

  5.4.3 Bypassing UDP and TCP 
 Sometimes applications do not want to use the services provided by the transport 

layer. Tools such as  ping  and  traceroute  send packets directly without opening 

a UDP or TCP socket; they just use the services provided by the IP layer. Some appli-

cations even bypass the IP services and directly communicate over the link channel. 

For example, packet-sniffing applications, such as  tcpdump  and  wireshark ,
capture raw packets directly on the wire. Such applications need to open a com-

pletely different socket compared with those of UDP or TCP. This subsection aims at 

exploring the programming method in Linux that can achieve these objectives. Next 

we go through three open source implementations that do the trick.  

 Open Source Implementation 5.8: Bypassing 
the Transport Layer 

  Overview 
 Since the arrival of Linux 2.0, a new protocol family called Linux packet socket 

( AF_PACKET ) has been introduced to allow an application to send and receive 

packets that deal directly with the network card driver rather than the usual TCP/

IP or UDP/IP protocol stack handling. Any packet sent through the socket can 

be passed directly to the Ethernet interface, and any packet received through the 

interface will be passed directly to the application.  

  Algorithm Implementations 
 The  AF_PACKET  family supports two slightly different socket types, 

 SOCK_DGRAM  and  SOCK_RAW . The former leaves the burden of adding 

and removing Ethernet level headers to the kernel, while the latter gives the 

application complete control over the Ethernet header. Their implementations 

are in  net/packet/af_packet.c . By checking the structure variable 

 packet_ops , you can locate the main operation functions corresponding 

to the family, such as  packet_bind() ,  packet_sendmsg() , and 

 packet_recvmsg() . 

 The code in  packet_recvmsg()  is easy to understand. First,  skb_
recv_datagram()  is called to get a packet via the  skb  buffer. Then, the 

packet data is copied by  skb_copy_datagram_iovec()  into the user 

space, which later will be passed to the user-space program. Finally, the  skb  is 

released by  skb_free_datagram() . 

 Compared with  packet_recvmsg() ,  packet_sendmsg()  has a 

more complicated procedure. It first checks whether the link-layer source 

address has been assigned by the upper-space program. If not, it will set the 

address based on the information kept in the data structure of the output device. 

Then a  skb  buffer is allocated by  sock_alloc_send_skb() , and user-

space data will be copied into the  skb  buffer by  memcpy_fromiovec() . 

Continued

lin76248_ch05_339-416.indd   399lin76248_ch05_339-416.indd   399 24/12/10   4:15 PM24/12/10   4:15 PM



400 Computer Networks: An Open Source Approach

If the socket is opened in the  SOCK_DGRAM  type,  dev_hard_header()  

is called to handle the Ethernet-level header. Finally, the packet will be 

sent out by  dev_queue_xmit()  and the  skb  buffer will be released by 

 kfree_skb() .  

  Usage Example 
 To open a socket the of  AF_PACKET  family, the protocol field given in the 

 socket()  call must match one of the Ethernet protocol identifiers defined 

in  /usr/include/linux/if_ether.h , which represents the registered 

protocols that can be shipped in an Ethernet frame. Unless dealing with very 

specific protocols, you typically use  ETH_P_IP , which encompasses all of the 

IP-suite protocols (TCP, UDP, ICMP, raw IP, and so on). However, if you want to 

capture all packets,  ETH_P_ALL  instead of  ETH_P_IP  will be used, as shown 

in the following example: 

  #include “stdio.h” 
 #include “unistd.h” 
 #include “sys/socket.h” 
 #include “sys/types.h” 
 #include “sys/ioctl.h” 
 #include “net/if.h” 
 #include “arpa/inet.h” 
 #include “netdb.h” 
 #include “netinet/in.h” 
 #include “linux/if_ether.h” 

 int main() 
 { 
   int n; 
   int fd; 
   char buf[2048]; 
   if((fd = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_
ALL))) == -1) 
   { 
       printf(“fail to open socket\n”); 
       return(1); 
 } 
 while(1) 
 { 
    n = recvfrom(fd, buf, sizeof(buf),0,0,0); 
    if(n>0) 
       printf(“recv %d bytes\n”, n); 
 } 
 return 0; 

 }  

lin76248_ch05_339-416.indd   400lin76248_ch05_339-416.indd   400 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 401

  Packet Capturing: Promiscuous Mode vs. Non-Promiscuous Mode 

 Packets in wired or wireless media can be captured by anyone who can directly 

access the transmission media. Applications that do such things are called  packet 
sniffers ,  which are usually used for debugging network applications to check whether 

a packet is sent out with correct header and payload. The  AF_PACKET  family allows 

an application to retrieve data packets as they are received at the network-card 

level, but it still does not allow an application to read packets that are not addressed 

to its host. As we have seen before, this is because the network card discards all 

the packets that do not contain its own MAC address—an operation mode called 

non-promiscuous, where each network interface card minds its own business and 

reads only the frames directed to it. There are three exceptions to this rule:  

1. A frame whose destination MAC address is the special broadcast address 

(FF:FF:FF:FF:FF:FF) will be picked up by any card.  

2. A frame whose destination MAC address is a multicast address will be picked up 

by the cards that have multicast reception enabled.  

3. A card that has been set in the promiscuous mode will pick up all the frames it 

senses.     

 Open Source Implementation 5.9: Making 
Myself Promiscuous 

  Overview 
 The last of the above three exceptions is, of course, the most interesting one for 

our purposes. To set a network card to the promiscuous mode, all we have to do 

is issue a particular  ioctl()  call to an open socket on that card. Since this is a 

potentially security-threatening operation, the call is only allowed for users with 

root privilege. If the “ sock ’’ contains an already-open socket, the following 

instructions will do the trick: 

  strncpy(ethreq.ifr_name,”eth0”,IFNAMSIZ); 
 ioctl(sock, SIOCGIFFLAGS, &ethreq); 

Continued

 Since the sockets of the  AF_PACKET  family suffer from serious security 

vulnerabilities—for example, you can forge an Ethernet frame with a spoofed MAC 

address, they can be used only by users with the  root  privilege for the machine.  

  Exercises 
 Modify and compile the preceding example to dump the fields of the MAC 

header into a file and identify the transport protocol for each received packet. 

Note that you need to have the root privilege for the machine to run this.  

lin76248_ch05_339-416.indd   401lin76248_ch05_339-416.indd   401 24/12/10   4:15 PM24/12/10   4:15 PM



402 Computer Networks: An Open Source Approach

  In-Kernel Packet Capturing and Filtering 

 Being an application and running as a process in the user space, a packet sniffer 

process may not be scheduled immediately by the kernel when a packet comes; thus 

the kernel should  buffer  it in the kernel socket buffer until the packet sniffer process 

is scheduled. Besides, users may specify  packet filters  to the sniffer for capturing 

only the packets of interest. The performance of packet capturing may degrade when 

packets are filtered at the user space because a huge amount of uninterested packets 

have to be transferred across the kernel-user space boundary. If sniffing at a busy net-

work, such sniffers may not capture the packets in time before the packets overflow 

the socket buffer. Shifting the packet filters to the kernel would efficiently improve 

the performance.      

 ethreq.ifr_flags |= IFF_PROMISC; 
 ioctl(sock, SIOCSIFFLAGS, &ethreq);  

 The  ethreq  is an  ifreq  structure defined in  /usr/include/net/
if.h . The first  ioctl  reads the current value of the Ethernet card flags; the 

flags are then ORed with  IFF_PROMISC , which enables the promiscuous 

mode and are written back to the card with the second  ioctl . You can easily 

check it out by executing the  ifconfig  command and observing the third 

line in the output.  

  Algorithm Implementations 
 Then, what happens to make your network card promiscuous after you 

invoke the system call  ioctl() ? Whenever an application-level 

program calls an  ioctl() , the kernel calls  dev_ioctl()  to handle 

all network-type I/O control requests. Then, depending on the passing-in 

parameter, different functions will be called to handle the corresponding 

tasks. For example,  dev_ifsioc  would be called to set the interface 

flag corresponding to the sock when  SIOCSIFFLAGS  is given. Next, 

 _dev_set_promiscuity()  will be called to change the flag of the 

device via  ndo_change_rx_flags()  and  ndo_set_rx_mode() , 

which are callback functions provided by the network device driver. The 

former function allows a device receiver to make changes to configuration 

when multicast or promiscuous is enabled, while the latter one informs the 

device receiver about the change of address list filtering.  

  Exercises 
 Read about network device drivers to figure out how  ndo_change_rx_
flags()  and  ndo_set_rx_mode()  are implemented. If you cannot find 

out their implementations, then where is the related code in the driver to enable 

the promiscuous mode?  

lin76248_ch05_339-416.indd   402lin76248_ch05_339-416.indd   402 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 403

 Open Source Implementation 5.10: Linux 
Socket Filter 

  Overview 
 The  tcpdump  program accepts its user’s filter request through the command 

line parameters to capture an interesting set of packets. Then  tcpdump  calls 

the  libpcap  (portable packet capturing library) to access the appropriate 

kernel-level packet filters. In the BSD systems, the Berkeley Packet Filter (BPF) 

performs the packet filtering in the kernel. Linux was not equipped with kernel 

packet filtering until the Linux Socket Filter (LSF) appeared in Linux 2.0.36. 

BPF and LSF are very much the same except for some minor differences such as 

user privilege to access the service.  

  Block Diagram 
  Figure 5.44  presents a layered model for packet capturing and filtering. The 

incoming packets are cloned from the normal protocol stack to the BPF, which 

then filters packets within the kernel level according the BPF instructions 

installed by the corresponding applications. Since only the packets passing 

through BPF will be directed to the user-space programs, the overhead of the 

data exchange between user and kernel spaces can be significantly reduced.  

 To employ a Linux socket filter with a socket, the BPF instruction can be 

passed to the kernel by using the  setsockopt()  function implemented in 

 socket.c , and setting the parameter  optname  to  SO_ATTACH_FILTER . 

The function will assign the BPF instruction to the  sock->sk_filter  

illustrated in  Figure 5.41 . The BPF packet-filtering engine was written in a 

specific pseudo-machine code language inspired by Steve McCanne and Van 

Jacobson. BPF actually looks like a real assembly language with a couple of 

registers and a few instructions to load and store values and perform arithmetic 

operations and conditionally branch. 

 The filter code examines each packet on the attached socket. The result of 

the filter processing is an integer that indicates how many bytes of the packet 

(if any) the socket should pass to the application level. This contributes to 

a further advantage that since often for the purpose of packet capturing and 

filtering we are interested in just the first few bytes of a packet, we can save 

processing time by not copying the excess bytes.  

  Exercises 
 If you read the main page of  tcpdump , you will find that  tcpdump  can 

generate the BPF code in the style of a human readable or C program fragment, 

according to your given filtering conditions: e.g.,  tcpdump –d host 
192.168.1.1 . Figure out the generated BPF code first. Then, write a pro-

gram to open a raw socket (see Open Source Implementation 5.8), turn on the 

promiscuous mode (see Open Source Implementation 5.9), use  setsockopt  

Continued

lin76248_ch05_339-416.indd   403lin76248_ch05_339-416.indd   403 24/12/10   4:15 PM24/12/10   4:15 PM



404 Computer Networks: An Open Source Approach

  5.5 TRANSPORT PROTOCOLS FOR REAL-TIME TRAFFIC  

 The transport protocols mentioned so far are not designed to accommodate the 

requirements of real-time traffic. Some other fine mechanisms are necessary to 

carry real-time traffic over the Internet. This section first highlights the requirements 

imposed by real-time traffic. 

 So far TCP can satisfy all requirements imposed by the non-real-time data traffic, 

including error control, reliability, flow control, and congestion control. Nevertheless, 

real-time traffic cannot be satisfied by either TCP or UDP, so several other transport 

protocols were developed for this very reason. The most popular one is RTP with its 

companion protocol RTCP. Since these transport protocols might not be mature enough 

for wide deployment, they are not implemented in the kernel but are often implemented 

as a library of functions to be called by application programs. Many real-time applica-

tions, such as Skype and Internet Radio, thus call these library functions, which then 

transmit their data over UDP. Since the resolved requirements are actually transport-

layer issues, we addressed them in this chapter instead of in  Chapter 6 . 

  5.5.1 Real-Time Requirements 
 Real-time traffic often has multiple streams, such as video, audio, and text, to transfer 

within a  session ,  which is a group of connections to transmit these streams. Thus, the 

first new requirement is the need to  synchronize  multiple streams within a session. 

Synchronization is also needed between the sender and the receiver in transferring 

and playing out the streams. Both kinds of synchronization require  timing  information 

passed between the sender and the receiver. Also, real-time traffic is more sensitive 

to inject the BPF code into BPF, and then observe whether you indeed receive 

from the socket only the packets matching the given filter.  

   FIGURE 5.44 Toward efficient packet filtering: layered model. 

Network
 monitor

Network
 monitor

rarpd

Buffer
Protocol

stack

User

Kernel

Link-level
driver 

Link-level
driver 

Link-level
driver 

Network

Kernel

Buffer Buffer

Filter

BPF

Filter Filter

lin76248_ch05_339-416.indd   404lin76248_ch05_339-416.indd   404 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 405

to the interrupt that may result from the  mobility  across different networks. Thus, 

supporting  service continuity  under mobility becomes the second new requirement. 

 Real-time traffic is continuous, and thus requires a stable, or smooth, available rate 

for transmission without lag. But it still needs to be smoothly congestion controlled to 

keep the Internet healthy and friendly to the self-regulating TCP traffic. This puts  smooth-
ness  and  TCP-friendliness  as the third requirement. Some real-time traffic is so adaptive 

that it even changes the media coding rate, i.e., the average number of bits needed to 

encode one second of content, when the available rate fluctuates. This of course imposes 

the fourth requirement of gathering data for a  path quality  report for the sender. 

 Unfortunately, none of the popular transport protocols meet all of these four 

real-time requirements. As we shall see next, each of them meets some of the 

requirements. RTP and RTCP meet the first and the fourth ones and appear to be the 

most popular real-time transport protocols. 

  Multi-Streaming and Multi-Homing 

 Another transport protocol, Stream Control Transmission Protocol (SCTP), was 

introduced by R. Stewart and C. Metz in RFC 3286 and defined in RFC 4960. 

Like TCP, it provides a reliable channel for data transmission and uses the same 

congestion control algorithms. However, as the term “stream” appears in SCTP, 

SCTP provides two additional properties favorable to the streaming applications, 

which are the supports for multi-homing and multi-streaming. 

 The support for multi-streaming means that multiple streams, such as audio and 

video, can be transmitted concurrently through a session. That is, SCTP can support 

ordered reception individually for each stream and avoid the head-of-line (HOL) blocking 

that can occur with TCP. In TCP, control or some critical messages are often blocked 

because of a cloud of data packets queued ahead in the sender or receiver buffer. 

 The support for multi-homing means that even when a mobile user moves 

from one network to another, the user would not perceive any interrupt on its 

received stream. To support the multi-homing property, a session of the SCTP can be 

constructed concurrently by multiple connections through different network adapters, 

e.g., one from Ethernet and one from wireless LAN. Also, there is a heartbeat message 

for each connection to ensure its connectivity. Therefore, when one of the connections 

fails, SCTP can transmit the traffic through other connections immediately. 

 SCTP also revises the establishment and close procedures of a TCP connection. 

For example, a four-way handshake mechanism was proposed for connection estab-

lishment to overcome the security problem of TCP.  

  Smooth Rate Control and TCP-Friendliness 

 While TCP traffic still dominates the Internet, research indicates that the congestion 

control mechanism used in most versions of TCP may cause the transmission rate 

to oscillate too much to carry real-time traffic with low jitter requirements. Since 

TCP might not be suitable for real-time applications, developers tend to underdesign 

their congestion control or even to avoid using congestion control. Such an approach 

causes concern in the Internet community because the bandwidth in the Internet is 

publicly shared, and there is no control mechanism to decide how much bandwidth 

a flow should use in the Internet, which in the past has been self-controlled by TCP. 

lin76248_ch05_339-416.indd   405lin76248_ch05_339-416.indd   405 24/12/10   4:15 PM24/12/10   4:15 PM



406 Computer Networks: An Open Source Approach

 In 1998, a concept called TCP-friendly was proposed in RFC 2309. The concept 

held that a flow should respond to the congestion at the transit state and use no more 

bandwidth than a TCP flow at the steady state when both confront the same network 

conditions, such as packet loss ratio and RTT. Such a concept asks any Internet 

flow to use congestion control and use no more bandwidth than other TCP connec-

tions. Unfortunately, there is no answer to what is the best congestion control in this 

regard. Thus, a new transport protocol named Datagram Congestion Control Protocol 

(DCCP) was proposed in RFC 4340 by E. Kohler  et al . DCCP allows free selection 

of a congestion control scheme. The protocol currently includes only two schemes, 

TCP-like and TCP-friendly rate control (TFRC). TFRC was first proposed in 2000 and 

defined as a protocol in RFC 3448 to detail what information should be exchanged 

between two end hosts to adjust the rate of a connection to meet TCP-friendliness.   

  Playback Reconstruction and Path Quality Report 

 As the Internet is a shared datagram network, packets sent on the Internet have 

unpredictable latency and jitter. However, real-time applications, such as Voice over IP 

 Principle in Action: Streaming: TCP or UDP? 

 Why is TCP not suitable for streaming? First, the loss retransmission mechanism 

is tightly embedded in TCP, which may not be necessary for streaming and even 

increases the latency and jitter for the received data. Next, continuous rate fluctua-

tion may not be favored for streaming. That is, although the estimation on available 

bandwidth may be necessary for streaming to select a coding rate, streaming 

would not favor an oscillatory transmission rate, particularly the drastic response 

to packet losses, which was originally designed to avoid potential successive 

losses. Streaming applications may  accept  and  give up  losses. Since some mecha-

nisms in TCP are not suitable for streaming, people turn to streaming over UDP. 

Unfortunately, UDP is too simple, providing no mechanism to estimate the current 

available rate. Besides, for security reasons UDP packets are sometimes dropped 

by the current intermediate network devices. 

 Although TCP and UDP are not suitable for streaming, they are still the only 

two mature transport protocols in today’s Internet. Thus, most streaming data are 

indeed carried by the two protocols. UDP is used to carry pure  audio  streaming, like 

audio and VoIP. These streaming transmissions can simply be sent at a constant bit 

rate without much congestion control, because their required bandwidth is usually 

lower than the available bandwidth. On the other hand, TCP is used for streaming 

transmissions that require a bandwidth that is not always satisfied by the Internet—

for example, the mix of video and audio. Then, to alleviate the oscillatory rate of 

TCP (the side effect of its bandwidth detection mechanism), a large buffer is used 

at the  receiver , which  prolongs  the latency. Although the latency is tolerable for a 

one-way application, like watching clips from YouTube, it is  not  for an interactive 

application like a video conference. That is why researchers need to develop the 

smooth rate control introduced above. 

lin76248_ch05_339-416.indd   406lin76248_ch05_339-416.indd   406 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 407

(VoIP) and video conferencing, require appropriate timing information to reconstruct 

the playback at the receiver. The reconstruction at the receiver requires the  codec type  

to choose the right decoder to decompress the payload, the  timestamp  to reconstruct the 

original timing in order to play out the data at the correct rate, and  sequence numbers  

to place the incoming data packets in the correct order and to be used for packet loss 

detection. On the other hand, the senders of real-time applications also require  path 
quality feedbacks  from the receivers to react to network congestion. Additionally, in 

a multicast environment, the  membership  information needs to be managed. These 

control-plane mechanisms should be built into the standard protocol. 

 In summary, the data plane of real-time applications needs to address the 

codec, sequence number, and timestamp; in the control plane the focus is on the 

feedback report of the end-to-end latency/jitter/loss and membership management. 

To satisfy these requirements, RTP and RTCP have been proposed, as introduced 

in the next two subsections. Note that RTP and RTCP are often implemented 

by the applications themselves instead of by the operating system. Thus the 

applications can have full control over each RTP packet in such areas as defining 

the RTP header options.   

  5.5.2 Standard Data-Plane Protocol: RTP 
 RFC 1889 outlines a standard data-plane protocol: Real-time Transport Protocol 

(RTP). It is the protocol used to carry the voice/video traffic back and forth across 

a network. RTP does not have a well-known port because it operates with different 

applications that are themselves identified with ports. Therefore it operates on a UDP 

port, with 5004 designated as the default port. RTP is designed to work in conjunc-

tion with the auxiliary control protocol RTCP to get feedback on quality of data 

transmission and information about participants in the ongoing session. 

  How RTP Works 

 RTP messages consist of the header and payload.  Figure 5.45  shows the RTP 

header format. The real-time traffic is carried in the payload of the RTP packet. 

Note that RTP itself does not address resource management and reservation and 

does not guarantee quality-of-service for real-time services. RTP assumes that these 

properties, if available, are provided by the underlying network. Since the Internet 

occasionally loses and reorders packets or delays them by a variable amount of time, 

to cope with these impairments, the RTP header contains  timestamp  information and 

a  sequence number  that allow the receivers to reconstruct the timing produced by the 

source. With these two fields the RTP can ensure that the packets are in sequence, 

determine if any packets are lost, and synchronize the traffic flows. The sequence 

number increments by 1 for each RTP data packet sent. The timestamp reflects the 

sampling instant of the first octet in the RTP data packet. The sampling instant must 

be derived from the clock that increments monotonically and linearly in time to 

allow synchronization and jitter calculations. Notably, when a video frame is split 

into multiple RTP packets, all of them have the same timestamp, which is why the 

timestamp is inadequate to resequence the packets.  

lin76248_ch05_339-416.indd   407lin76248_ch05_339-416.indd   407 24/12/10   4:15 PM24/12/10   4:15 PM



408 Computer Networks: An Open Source Approach

 One of the fields included in the RTP header is the 32-bit  Synchronization Source 
Identifier (SSRC),   which is able to distinguish synchronization sources within the 

same RTP session. Since multiple voice/video flows can use the same RTP session, 

the SSRC field identifies the transmitter of the message for synchronization purposes 

at the receiving application. It is a randomly chosen number to ensure that no two syn-

chronization sources use the same number within an RTP session. For example, branch 

offices may use a VoIP gateway to establish an RTP session between them. However, 

many phones are installed on each side, so the RTP session may simultaneously contain 

many call connections. These call connections can be multiplexed by the SSRC field.  

  Codec Encapsulation 

 To reconstruct the real-time traffic at the receiver, the receiver must know how to inter-

pret the received packets. The payload type identifier specifies the payload format as 

well as the encoding/compression schemes. Payload types include, among others, PCM, 

MPEG1/MPEG2 audio and video, JPEG video, and H.261 video streams. At any given 

time of transmission, an RTP sender can send only one type of payload, although the pay-

load type may change during transmission, for example, to adjust to network congestion.   

  5.5.3 Standard Control-Plane Protocol: RTCP 
 RTCP is the control protocol designed to work in conjunction with RTP. It is stan-

dardized in RFC 1889 and 1890. In an RTP session, participants periodically emit 

RTCP packets to convey feedback on quality of data delivery and information about 

membership. RFC 1889 defines five RTCP packet types:    

    1. RR:   Receiver report. Receiver reports are sent by participants that are not active 

senders within the RTP session. They contain reception quality feedback about 

data delivery, including the  highest packet number received ,  the  number of packets 
lost ,   inter-arrival jitter ,  and  timestamps  to calculate the round-trip delay between 

the sender and the receiver. The information can be useful for adaptive encodings. 

For example, if the quality of the RTP session is found to worsen as time goes by, 

   FIGURE 5.45 RTP header format. 

0 8 16 24 31 

Ver

4

CSRC
count

Type of
service

Sequence number

Data

Timestamp

SSRC

CSRC[0..15]

2

P X M

9

lin76248_ch05_339-416.indd   408lin76248_ch05_339-416.indd   408 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 409

the sender may decide to switch to a low-bitrate encoding so that users may get a 

smoother feeling about the real-time transport. On the other hand, network admin-

istrators can evaluate the network performance by monitoring RTCP packets.  

2. SR :  Sender report. Sender reports are generated by active senders. Besides the 

reception quality feedback as in RR, SR contains a sender information section, 

providing information on inter-media synchronization, cumulative packet coun-

ters, and number of bytes sent.  

3. SDES :  Source description items to describe the sources. In RTP data packets, 

sources are identified by randomly generated 32-bit identifiers. These identifiers 

are not convenient for human users. RTCP SDESs contain globally unique iden-

tifiers of the session participants. They may include user’s name, e-mail address, 

or other information.  

4. BYE :  Indicates the end of participation.  

5. APP :  Application-specific functions. APP is intended for experimental use 

when new applications or features are developed.   

 Since a participant may join or leave a session at any time, it is important to know 

who is participating and how good their received quality is. For this, the nonactive 

participants should periodically send the RR packets and send BYE when they plan 

to leave. On the other hand, the active sender should send the SR packets, which not 

only provide the same function as the RR packets but also ensure that each partici-

pant knows how to replay the received media data. Finally, to help the participants 

to get more information about others, the participants should periodically send the 

SDES packets with their identifier numbers to introduce their contact information.      

 Historical Evolution: RTP Implementation 
Resources 

 RTP is an open protocol that does not provide preimplemented system calls. 

Implementation is tightly coupled to the application itself. Application develop-

ers have to add the complete functionality in the application layer by themselves. 

However, it is always more efficient to share and reuse code rather than starting 

from scratch. The RFC 1889 specification itself contains numerous code segments 

that can be borrowed directly for the applications. Here we provide some imple-

mentations with source code available. Many modules in the source code can be 

usable with minor modifications. The following is a list of useful resources:  

   � self-contained sample code in RFC1889.   
   � vat  (http://www-nrg.ee.lbl.gov/vat/)  

   � tptools  (ftp://ftp.cs.columbia.edu/pub/schulzrinne/rtptools/)  

   � NeVoT  (http://www.cs.columbia.edu/~hgs/rtp/nevot.html)  

   � RTP Library  (http://www.iasi.rm.cnr.it/iasi/netlab/gettingSoftware.html) 

by E.A. Mastromartino offers convenient ways to incorporate RTP func-

tionality into C++ Internet applications.   

lin76248_ch05_339-416.indd   409lin76248_ch05_339-416.indd   409 24/12/10   4:15 PM24/12/10   4:15 PM

http://www-nrg.ee.lbl.gov/vat/
ftp://ftp.cs.columbia.edu/pub/schulzrinne/rtptools/
http://www.cs.columbia.edu/~hgs/rtp/nevot.html
http://www.iasi.rm.cnr.it/iasi/netlab/gettingSoftware.html


410 Computer Networks: An Open Source Approach

 In this chapter we first learned three key features 

considered in the transport layer to provide a 

process-to-process channel across the Internet: (1) 

port-level addressing, (2) reliable packet delivery, 

and (3) flow rate control. Then we learned about 

the unreliable connectionless transport protocol 

UDP and the widely used transport protocol TCP. 

Compared to UDP, which only adds the feature of 

port-level addressing on top of the IP layer, TCP 

is like a  total solution  with several well-proven 

techniques, including (1) the three-way handshake 

protocol for connection establishment/termina-

tion, (2) the acknowledgment and retransmission 

mechanism to ensure the receiver error-free recep-

tion of data from the source, which might be located 

thousands of miles away from the receiver, (3) the 

sliding-window flow control and evolving conges-

tion control algorithm to elevate the transmission 

throughput and decrease the packet loss ratio. We 

illustrated various TCP versions and compared their 

behaviors in retransmitting  potentially  lost packets. 

Finally, we looked at the requirements and issues 

of a transport layer protocol for real-time streaming 

traffic, including multi-streaming, multi-homing, 

smooth rate control, TCP-friendliness, playback 

reconstruction, and path quality reporting. 

 Besides protocols, this chapter also explained 

the Linux approach to realizing the socket interfaces 

and described their function calls. The socket in-

terfaces are the boundary between the kernel-space 

network protocols and the user-space applications. 

Therefore, with the socket interfaces, the application 

developers simply focus on what they want to send 

or receive over the Internet without dealing with the 

complicated four layers of network protocols and 

kernel issues, which greatly lowers the development 

barrier. In  Chapter 6  we shall see various kinds of 

interesting and daily used applications, including 

e-mail, file transfer, WWW, instant text/voice 

communication, online audio/video streaming, and 

peer-to-peer applications. They ride on top of UDP, 

TCP, or both.   

   5.6 SUMMARY  

 if (cwnd < ssthresh){ 
    cwnd = cwnd + MSS; 
 else { 
    cwnd = cwnd + (MSS*MSS)/cwnd 
 } 

  Window Size: Packet-Count Mode vs. 
Byte-Count Mode 

  COMMON PITFALLS  

 Different implementations could have different interpre-

tations of the TCP standard. Readers may get confused 

about window size in packet-count mode and byte-count 

mode. Although  rwnd  reported by the receiver is in 

bytes, previous illustrations about  cwnd  have been in 

units of packets and then have been translated into bytes 

by multiplying the MSS in order to select the window size 

from  min(cwnd, rwnd) . Some operating systems may 

directly use the byte-count mode  cwnd ,  so the algorithm 

should be adjusted as follows:  

  That is, in the slow start phase, rather than increment-

ing  cwnd  by 1 in the packet-count mode, we increment 

it by  MSS  in the byte-count mode every time an ACK is 

received. In the congestion-avoidance phase, rather than 

incrementing  cwnd  by  1/cwnd  in the packet-count mode, 

we increment it by a fraction of  MSS ,  i.e.,  MSS/cwnd ,  

every time an ACK is received.  

  RSVP, RTP, RTCP, and RTSP 
 This chapter discusses the RTP and RTCP protocols for 

real-time traffic in the Internet. However, their differences 

from other related protocols, such as RSVP and RTSP, 

need to be clarified:    

  • RSVP is the signaling protocol that notifies the network 

element along the path to reserve adequate resources, 

such as bandwidth, computing power, or queuing space, 

lin76248_ch05_339-416.indd   410lin76248_ch05_339-416.indd   410 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 411

for real-time applications. It does not deliver the data. 

RSVP shall be studied in  Chapter 6 .  

  • RTP is the transport protocol for real-time data. It pro-

vides timestamp, sequence number, and other means to 

handle the timing issues in real-time data transport. It 

relies on RSVP, if supported, for resource reservation 

to provide quality of service.  

  • RTCP is the control protocol with RTP that helps with 

quality of service and membership management.  

  • RTSP is a control protocol that initiates and directs de-

livery of streaming multimedia data from media serv-

ers. It is the “Internet VCR remote control protocol.” 

Its role is to provide the remote control. The actual data 

delivery is done separately, most likely by RTP.      

  FURTHER READINGS  

  TCP Standard 
 The headers and state diagram of TCP were first defined by 

Postel in RFC 793, but its congestion control technique was 

later proposed and revised by Jacobson because congestion 

was not an issue in the beginning of the Internet. Observa-

tions on the congestion control of TCP were given in the 

work by Zhang, Shenker, and Clark, while requirements 

for host system implementations and some corrections for 

TCP were given in RFC 1122. Stevens and Paxson stan-

dardized the four key behaviors of the congestion control 

in TCP. SACK and FACK were defined in RFC 2018 and 

the SIGCOMM’96 paper by Mathis and Mahdavi, respec-

tively. Nagle’s algorithm and Clark’s approach to solve 

the silly window syndrome were described in Nagle’s 

SIGCOMM’84 paper and RFC 813, respectively.  

  • J. Postel, “Transmission Control Protocol,” RFC 793, 

Sept. 1981.  

  • V. Jacobson, “Congestion Avoidance and Control,”  ACM 
SIGCOMM ,  pp. 273–288, Stanford, CA, Aug. 1988.  

  • V. Jacobson, “Modified TCP Congestion Avoidance 

Algorithm,” mailing list, end2end-interest, 30 Apr. 1990.  

  • L. Zhang, S. Shenker, and D.D. Clark, “Observations 

on the Dynamics of a Congestion Control Algorithm: 

The Effects of Two-Way Traffic,”  ACM SIGCOMM,   
Sept. 1991.  

  • R. Braden, “Requirements for Internet Hosts—Communi-

cation Layers,” STD3, RFC 1122, Oct. 1989.  

  • W. Stevens, “TCP Slow Start, Congestion Avoidance, 

Fast Retransmit, and Fast Recovery Algorithms,” RFC 

2001, Jan. 1997.  

  • V. Paxson, “TCP Congestion Control,” RFC 2581, Apr. 

1999.  

  • M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, 

“TCP Selective Acknowledgment Options,” RFC 2018, 

Oct. 1996.  

  • M. Mathis and J. Mahdavi, “Forward Acknowledg-

ment: Refining TCP Congestion Control,”  ACM SIG-
COMM ,  pp. 281–291, Stanford, CA, Aug. 1996.  

  • J. Nagle, “Congestion Control in IP/TCP Internet-

works,”  ACM SIGCOMM ,  pp. 11–17, Oct. 1984.  

  • D. D. Clark, “Window and Acknowledgment Strategy 

in TCP,” RFC 813, July 1982.    

  On TCP Versions 
 The first two papers compare different versions of TCP. 

The third paper introduces TCP Vegas, while the final two 

papers study and provide the solution to the application of 

congestion control in networks of high bandwidth-delay 

product.  

  • K. Fall and S. Floyd, “Simulation-Based Comparisons 

of Tahoe, Reno, and SACK TCP,” ACM Computer Com-
munication Review, Vol. 26, No. 3, pp. 5–21, Jul. 1996.  

  • J. Padhye and S. Floyd, “On Inferring TCP Behavior,” 

in  Proceedings of ACM SIGCOMM ,  pp. 287–298, San 

Diego, CA, Aug. 2001.  

  • L. Brakmo and L. Peterson, “TCP Vegas: End to End 

Congestion Avoidance on a Global Internet,”  IEEE 
Journal on Selected Areas in Communications , Vol. 13, 

No. 8, pp. 1465–1480, Oct. 1995.  

  • D. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: 

Motivation, Architecture, Algorithms, Performance,” 

 IEEE/ACM Transactions on Networking ,  Vol. 14, No. 6, 

pp. 1246–1259, Dec. 2006.  

  • D. Katabi, M. Handley, and C. Rohrs, “Congestion 

Control for High Bandwidth-Delay Product Net-

works,” in Proceedings of ACM SIGCOMM, pp. 89–

102, Aug. 2002.    

  Modeling TCP Throughput 
 Two widely referred TCP throughput formulas were pro-

posed in the following two papers. By giving packet loss 

ratio, RTT, and RTO, these formulas will return the mean 

throughput of a TCP connection.  

lin76248_ch05_339-416.indd   411lin76248_ch05_339-416.indd   411 24/12/10   4:15 PM24/12/10   4:15 PM



412 Computer Networks: An Open Source Approach

  • J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Mod-

eling TCP Throughput: A Simple Model and its Empir-

ical Validation,”  ACM SIGCOMM ,  Vancouver, British 

Columbia, Sept. 1998.  

  • E. Altman, K. Avrachenkov, and C. Barakat, “A Stochas-

tic Model of TCP/IP with Stationary Random Losses,” 

 IEEE/ACM Transactions on Networking ,  Vol. 13, No. 2, 

pp. 356–369, April 2005.    

  Berkeley Packet Filter 
 Here is the origin of the BSD packet filter.  

  • S. McCanne and V. Jacobson, “The BSD Packet Filter: 

A New Architecture for User-Level Packet Capture,” 

Proceedings of the Winter 1993 USENIX Conference, 
pp. 259–269, Jan. 1993.    

  Transport Protocol for Real-time Traffic 
 The first two references present protocols for stream-

ing traffic while the last two are classical TCP-friendly 

congestion control algorithms to control the throughput of 

streaming traffic over the Internet.  

  • R. Stewart and C. Metz, “SCTP: New Transport 

Protocol for TCP/IP,”  IEEE Internet Computing ,  
Vol. 5, No. 6, pp. 64–69, Nov/Dec 2001.  

  • S. Floyd, M. Handley, J. Padhye, and J. 

Widmer, “Equation-Based Congestion Control for 

Unicast Applications,”  ACM SIGCOMM ,  Aug. 2000.  

  • Y. Yang and S. Lam, “General AIMD Congestion 

Control,”  Proceedings of the IEEE ICNP 2000 ,  
pp. 187–98, Nov. 2000.  

  • E. Kohler, M. Handley, and S. Floyd, 

“Designing DCCP: Congestion Control Without Re-

liability,”  ACM SIGCOMM Computer Communica-
tion Review ,  Vol. 36, No. 4, Sept. 2006.    

  NS2 Simulator 
 NS2 is a network simulator widely used by the Internet 

research community.  

  • K. Fall and S. Floyd, ns–Network Simulator, http://

www.isi.edu/nsnam/ns/.  

  • M. Greis, “Tutorial for the Network Simulator ns,” 

http://www.isi.edu/nsnam/ns/tutorial/index.html.      

  FREQUENTLY ASKED QUESTIONS  

    1. Layer-2 channel vs. Layer-4 channel? (Compare their 

channel length, error, and latency distribution.) 

   Answer:  

   Channel length: link vs. path 

   Channel error: link vs. link and node 

   Channel latency distribution: condensed vs. dispersed  

   2. TCP vs. UDP? (Compare their connection manage-

ment, error control, and fl ow control.) 

   Answer:  

   Connection management: yes on TCP but no on UDP 

   Error control:  

   -  UDP: optional checksum, no ack, no retransmission 

   -  TCP: checksum, ack, sequence number, retransmission 

   Flow control:  

   - UDP: none 

   -  TCP: dynamic window size to control outstanding 

bytes in transit, subject to network condition and 

receiver buffer occupancy.  

   3. Why does most real-time traffi c run over UDP? 

   Answer:  

   Most real-time traffi c can tolerate some loss but does 

not need delayed retransmissions. Its bit rate depends 

on the codec at the sender and should not be affected 

by the fl ow control mechanism.  

   4. What mechanisms are needed to support error control 

in TCP? 

   Answer:  

   Checksum, ack, sequence number, and retransmission.  

   5. Why does TCP need three-way handshake, instead of 

two-way, in connection setup? 

   Answer:  

   Both sides need to notify and ack the starting se-

quence number from each side. The fi rst ack has been 

combined with the second notifi cation. Thus, we still 

have three segments: fi rst notifi cation, fi rst ack (sec-

ond notifi cation), and second ack.  

   6. When is a lost TCP segment retransmitted? 

   Answer:  

   Triple duplicate ack (quick) or RTO (retransmission 

timeout) (slow)  

   7. What factors are considered in deciding the TCP 

window size? 

   Answer:  

   Minimum (congestion window size, receiver window 

size) where the congestion window size runs AIMD 

(additive increase and multiplicative decrease) and 

the receiver window size is the advertised available 

buffer space of the receiver. The former is about the 

lin76248_ch05_339-416.indd   412lin76248_ch05_339-416.indd   412 24/12/10   4:15 PM24/12/10   4:15 PM

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/tutorial/index.html


 Chapter 5 Transport Layer 413

network condition, while the latter is about the receiver 

condition.  

   8. How does the window grow in slow start and conges-

tion avoidance? 

   Answer:  

   Slow start: exponential growth from 1 to 2, 4, 8, 

16, etc. 

   Congestion avoidance: linear growth from, say, 32 to 

33, 34, 35, etc.  

   9. Why are fast retransmit and fast recovery added to 

TCP? What major change does New Reno make? 

   Answer:  

   Fast retransmission: Retransmit if triple duplicate 

ack, i.e., earlier than RTO. 

   Fast recovery: Maintain the self-clocking behavior 

(by having enough window size to send new segment) 

during the loss recovery. 

   NewReno: Extend the fast recovery phase (which 

has large enough window size) until all segments 

sent before detecting triple duplicate ack are acked, 

which speed up the recovery of multiple packet 

losses.  

   10. How is the socket implemented in Linux? (Briefl y 

describe the processing fl ow of socket functions and 

the data structures of sockets.) 

   Answer:  

   Processing fl ow: Socket functions called in a client 

or a server are system calls that generate software 

interrupts, which force the system to enter into the 

kernel mode and execute registered kernel functions 

to handle the interrupts. These kernel functions move 

data between kernel space buffer, i.e.,  sk_buff ,  

and user space buffer. 

   Data structures: Special inode structure in the fi le 

system.  

   11. What are the available kernel-space and the user-

space programs of Linux to fi lter and capture packets? 

   Answer:  

   Kernel space: Linux socket fi lter 

   User space library: libpcap 

   User space tool: tcpdump, wireshark, etc.  

   12. What extra support can be done over RTP and RTCP 

that cannot be done over UDP? 

   Answer:  

   RTP: codec encapsulation, timestamp for delay 

measurement, sequence number for loss detection, 

and synchronization. 

   RTCP: report delay, jitter, loss to the sender for codec 

bit rate adjustment.     

  EXERCISES 

   Hands-On Exercises 
    1. Ns-2 is the most popular simulator for TCP research. 

It includes a package called NAM that can visually 

replay the whole simulation in all timescales. Many 

Web sites that introduce ns-2 can be found on the 

Internet. Use NAM to observe a TCP running from 

a source to its destination, with and without buffer 

overfl ow at one intermediate router.

    • Step 1: Search the ns-2 Web site and download a 

suitable version for your target platform.  

   • Step 2: Follow the installation instructions to 

install all the packages.  

   • Step 3: Build a scenario consisting of three 

cascaded nodes, one for the Reno TCP source, 

one for an intermediate gateway, and one for 

the destination. The links to connect them are 

full-duplex 1 Mbps.  

   • Step 4: Confi gure the gateway to have a large 

buffer. Run a TCP source toward the destination.  

   • Step 5: Confi gure the gateway as to have a small 

buffer. Run a TCP source towards the destination.  

     For all the Reno TCP states that the Reno TCP source 

in the preceding two tests enters, screen dump them 

and indicate which state the TCP source is in. The 

fi gures should be  correlated . For example, to repre-

sent the slow start behavior you may display it with 

two fi gures: (1) an ACK is coming back; (2) the ACK 

triggers out two new data segments. Carefully orga-

nize the fi gures so that the result of this exercise is 

no more than one A4 page. Only display necessary 

information in the screen dumps. Pre-process the fi g-

ures so that no window decorations (window border, 

NAM buttons) are displayed.  

   2. Exponential Weighted Moving Average (EWMA) is 

commonly used when the control needs to smooth 

out rapidly fl uctuating values. Typical applications 

are smoothing the measured round-trip time,  or 

lin76248_ch05_339-416.indd   413lin76248_ch05_339-416.indd   413 24/12/10   4:15 PM24/12/10   4:15 PM



414 Computer Networks: An Open Source Approach

computing the average queue length in Random 

Early Detection (RED) queues. In this exercise, you 

are expected to run and observe the result of an 

EWMA program. Tune the network delay parameter 

to observe how the EWMA value evolves.  

   3. Reproduce  Figure 5.24 .  

   • Step 1: Patching kernel: Logging time-stamped 

CWND/SeqNum  

   • Step 2: Recompiling  

   • Step 3: Installing new kernel and reboot    

   4. Linux Packet Socket is a useful tool when you want to 

generate arbitrary types of packets. Find and modify 

an example program to generate a packet and sniff the 

packet with the same program.  

   5. Dig out the retransmit timer management in Free-

BSD 8.X Stable. How does it manage the timer? 

Use a compact table to compare it with that of Linux 

2.6. Hint: You can begin the exercise by reading 

and tracking the calling path of the function  tcp_
timer_rexmt()  in  netinet/tcp_timer.c  

of FreeBSD and  tcp_retransmit_timer()  in 

 net/ipv4/tcp_timer.c  of Linux.  

   6. How does Linux integrate NewReno, SACK, and 

FACK in one box? Identify the key differences in 

variables mentioned in Subsection 5.3.8 and fi nd out 

how Linux resolves the confl ict.  

   7. What transport protocols are used in Skype, MSN, or 

other communication software? Please use wireshark 

to observe their traffi c and fi nd out the answer.  

   8. What transport protocols are used in MS Media 

Player or RealMedia? Please use wireshark to observe 

and fi nd out the answer.  

   9. Write a client/server program with the socket inter-

face. The client program may send out the words to 

the server once the user presses Enter, and the server 

will respond to these words with any meaningless 

terms. However, the server will close the connection 

once it receives the word bye. Also, once someone 

keys in “GiveMeYourVideo,” the server will immedi-

ately send out a 50 MB data fi le with message size of 

500 bytes.  

   10. Write a client/server program or modify the client 

program in Problem 9 to calculate and record the data 

transmission rate every 0.1 second for a 50 MB data 

transmission with message size of 500 bytes. Use 

xgraph or gnuplot to display the results.  

   11. Continue the work done in Problem 9. Modify the 

client program to use a socket embedded with a 

socket fi lter to fi lter out all packets that include the 

term “the_packet_is_infected”. Then, compare the 

average transmission rate provided by the sockets for 

the data transmission of 50 MB with that done by a 

client program that simply discards these messages 

at the user layer. Hint: Open Source Implementation 

5.10 provides information about how to embed a 

socket fi lter into your socket.  

   12. Modify the programs written in Problem 9 to cre-

ate a socket based on SCTP to demonstrate that the 

voice talk can continue without any blocking due to 

the transmission of the large fi le, i.e., to demonstrate 

the benefi t of multi-streaming from SCTP. Hint: You 

can fi nd a demo code from the Internet by typing the 

keywords “SCTP multi-streaming demo code” into a 

search engine.    

  Written Exercises  
   1. Compare the role of error control between the data 

link layer, IP layer, and end-to-end layer. Of the link-

layer technologies, choose Ethernet as the topic to 

discuss. Use a   table with  keywords  to compare the 

objective, covered fi elds, algorithm, fi eld length, and 

any other same/different properties. Why should there 

be so many error controls throughout a packet’s life? 

List your reasons.  

   2. Compare the role of addressing between the data 

link layer, IP layer, end-to-end layer, and real-time 

transport layer. Of the link-layer technologies, choose 

Ethernet to discuss. Among the real-time transport 

protocols, choose RTP to discuss. Compare the 

objective, uniqueness, distribution/hierarchy, and 

other properties using a table fi lled with keywords.  

   3. Compare the role of fl ow control between the data 

link layer and end-to-end layer. Of the link-layer tech-

nologies, choose Fast Ethernet to discuss. Compare 

the objective, fl ow control algorithms, congestion 

control algorithms, retransmission timer/algorithms, 

and other important properties using a table fi lled 

with keywords. Further explanations should also be 

given to nontrivial table entries.  

   4. A mobile TCP receiver is receiving data from its 

TCP sender. What will the RTT and the RTO evolve 

when the receiver gets farther away and then nearer? 

Assume the moving speed is very fast so that the 

propagation delay ranges from 100 ms to 300 ms 

within 1 second.  

   5. A connection running TCP transmits packets across 

a path with 500 ms propagation delay without being 

bottlenecked by any intermediate gateways. What is 

lin76248_ch05_339-416.indd   414lin76248_ch05_339-416.indd   414 24/12/10   4:15 PM24/12/10   4:15 PM



 Chapter 5 Transport Layer 415

the maximum throughput when the window scaling 

option is not used? What is the maximum throughput 

when the window scaling option is used?  

   6. Given that the throughput of a TCP connection is 

inversely proportional to its RTT, connections 

with heterogeneous RTTs sharing the same queue 

will get different bandwidth shares. What will be 

the eventual proportion of the bandwidth sharing 

among three connections if their propagation delays 

are 10 ms, 100 ms, and 150 ms, and the service 

rate of the shared queue is 200 kbps? Assume that 

the queue size is infi nite without buffer overfl ow 

(no packet loss), and the maximum window of the 

TCP sender is 20 packets, with each packet having 

1500 bytes.  

   7. What is the answer in Question 6 if the service rate of 

the shared queue is 300 kbps?  

   8. If the smoothed RTT kept by the TCP sender is cur-

rently 30 ms and the following measured RTTs are 

26, 32, and 24 ms, respectively, what is the new RTT 

estimate?  

   9. TCP provides a reliable byte stream, but it is up to 

the application developer to “frame” the data sent 

between client and server. The maximum payload of 

a TCP segment is 65,495 bytes if it is carried over an 

IP datagram. Why would such a strange number be 

chosen? Also, why do most TCP senders emit only 

packets with packet size smaller than 1460 bytes? For 

example, even though a client might send 3000 bytes 

via write( ), the server might read only 1460 bytes.  

   10. In most UNIX systems it is essential to have root 

privilege to execute programs that have direct access 

to the internetworking layer or link layer. However, 

some common tools, such as  ping  and  trace-
route ,  can access the internetworking layer using a 

normal user account. What is the implication behind 

this paradox? How do you make your own programs 

that can access the internetworking layer similar to 

such tools? Briefl y propose two solutions.  

   11. Use a table to compare and explain all socket do-

mains, types, and protocols that are supported by 

Linux 2.6.  

   12. The RTP incorporates a sequence number fi eld in ad-

dition to the timestamp fi eld. Can RTP be designed to 

eliminate the sequence number fi eld and use the time-

stamp fi eld to resequence the out-of-order received 

packets? (Yes/No, why?)  

   13. Suppose you are going to design a real-time stream-

ing application over the Internet that employs RTP on 

top of TCP instead of UDP. What situations will the 

sender and the receiver encounter in each TCP con-

gestion control state shown in  Figure 5.21 ? Compare 

your expected situations with those designed on top 

of UDP in a table format.  

   14. Recall from  Figure 5.1  that it is the delay distribution 

that requires different solutions to the same issues in 

single-hop and multi-hop environments. How will the 

delay distribution evolve if the transmission chan-

nel is of one-hop, two-hop, and 10-hop? Draw three 

 co-related  delay distribution fi gures as in  Figure 5.1  

to best illustrate the outstanding steps of increasing 

the hop count (e.g., 1-, 2-, and 10-hop).  

   15. When adding a per-segment checksum to a segment, 

TCP and UDP all include some fi elds in the IP layer 

before the segment has been passed to its underlying 

layer, the IP layer. How could TCP and UDP know 

the values in the IP header?  

   16. The text goes into some detail introducing the differ-

ent versions of TCP. Find  three  more TCP versions. 

Itemize them and highlight their contributions within 

three lines of words for each TCP version.  

   17. As shown in  Figure 5.41 ,  many parts in Linux 2.6 

are not specifi c for TCP/IP, such as read/write func-

tions and socket structure. From the viewpoint of a 

C programmer, analyze how Linux 2.6 organizes 

its  functions  and  data structures  to be easily initial-

ized into different protocols. Briefl y indicate the 

basic C programming mechanisms to achieve the 

goals.  

   18. As described in Section 5.5, many protocols and 

algorithms are proposed to handle the challenges 

to carrying streaming through the Internet. Please 

fi nd open solutions that support the transmission of 

media streaming over the Internet. Then, observe 

these solutions to see whether and how they handle 

the issues addressed in Section 5.5. Do these solu-

tions implement the protocols and algorithms intro-

duced herein?  

   19. Compared with loss-driven congestion controls like 

that used in NewReno and SACK, TCP Vegas is an 

RTT-driven congestion control, which actually is a 

novel idea. However, is TCP Vegas popularly used in 

the Internet? Are there any problems when the fl ows 

of TCP Vegas compete with those of the loss-driven 

controls against a network bottleneck?  

   20. Are there any other RTT-driven congestion controls 

besides TCP Vegas? Or, can you fi nd any congestion 

controls that concurrently consider packet losses and 

RTT to avoid the congestion and control the rate? Are 

they robust and safe to deploy in the Internet?  

lin76248_ch05_339-416.indd   415lin76248_ch05_339-416.indd   415 24/12/10   4:15 PM24/12/10   4:15 PM



416 Computer Networks: An Open Source Approach

   21. As introduced in Subsection 5.4.1, when you intend 

to open a socket for a connection between processes 

or hosts, you need to assign the  domain  argument as 

AF_UNIX and AF_INET, respectively. Below the 

socket layer, how are different data fl ows and function 

calls implemented for sockets with different domain 

arguments? Are there other widely used options for 

the domain argument? In what kind of condition will 

you need to add a new option to the argument?  

   22. Besides AF_UNIX and AF_INET, are there other 

widely used options for the domain argument? What 

are their functions?        

lin76248_ch05_339-416.indd   416lin76248_ch05_339-416.indd   416 24/12/10   4:15 PM24/12/10   4:15 PM



C h aa p t e rr 6

 417

 Application Layer  

 With the underlying TCP/IP protocol stack, what useful and interesting 

 application services  can we offer on the Internet? Starting from the 

early 1970s, several Internet applications were developed to enable users 

to transfer information over the Internet. In 1971, RFC 172 unveiled the  File 
Transfer Protocol (FTP),  which allowed users to list files on  remote  servers and 

transfer files back and forth between the local host and the remote server. In 

1972, the first  electronic mail (e-mail)  software (SNDMSG and READMAIL) 

was developed, with its protocol later being standardized as  Simple Mail Transfer 
Protocol (SMTP)  in RFC 821 in 1982. SMTP allows e-mails to be sent between 

computers, and it gradually became the most popular network application. The 

first  Telnet  specification, RFC 318, was published in the same year. Telnet allowed 

users to log onto  remote  server machines as if they were sitting in front of those 

computers. In 1979,  USENET,  a consortium of UNIX companies and users, 

was established. USENET users formed thousands of newsgroups that operated 

on bulletin board-like systems where users could read and post messages. The 

messages transferring between news servers were later standardized as  Network 
News Transfer Protocol (NNTP)  in RFC 977 in 1986. 

 In the 1980s, a new type of Internet service began to emerge. Different from 

the preceding systems, which were typically accessible only to authorized users, 

many of the new Internet services were  open  to virtually anyone having appropri-

ate client software.  Archie  was the first Internet search engine that allowed users to 

search in the database of selected anonymous FTP sites for files.  Gopher  servers 

provided a menu-driven interface to search the Internet for keywords in the title 

or abstract of files. The Gopher protocol was later standardized in RFC 1436 in 

1993. The  Wide-Area Information Server (WAIS),  defined in RFC 1625 in 1994, 

harnessed multiple gophers to search the Internet and had the search results ranked 

by relevance. The  World Wide Web (WWW)  originated in 1989 at the European 

Laboratory for Particle Physics (CERN). Later specified as  HyperText Transfer 
Protocol (HTTP)  in RFC 1945 in 1996, it allowed access to documents in the 

format of Hypertext Markup Language (HTML) that integrated text, graphics, 

sounds, video, and animation. 

 As new Internet applications keep emerging, one interesting question arises: 

What are the driving forces to create new applications? Alongside the above-

mentioned evolution of Internet services, it is easy to conclude that  human-machine

lin76248_ch06_417-545.indd   417lin76248_ch06_417-545.indd   417 24/12/10   4:25 PM24/12/10   4:25 PM



418 Computer Networks: An Open Source Approach

and  human-human  communications have been two major driving forces that push 

forward the development of new Internet applications. Generally speaking, the 

human-machine communication is for accessing data and computing resources 

on the Internet. For example, telnet provides a way to use resources on remote 

machines; FTP facilitates data sharing; Gopher, WAIS, and WWW are capable of 

searching and fetching documents; and the list continues.  Domain Name System 
(DNS),  specified in RFC 1035 in 1987, solves the problems of host addressing 

and naming by abstracting a host’s IP address as an understandable host name. 

 Simple Network Management Protocol (SNMP),  specified in RFC 1157 in 1990, 

can be used by administrators for remote network management and monitoring. 

On the other hand, human-human communication is for message exchange. To 

name a few examples, e-mail provides an  asynchronous  way to exchange messages 

between users;  voice over IP (VoIP),  with a protocol defined as  Session Initiation 
Protocol (SIP)  in RFC 2543 in 1999, is a  synchronous  method of human-human 

communication. VoIP enables people to use the Internet as the transmission me-

dium for telephone calls. Meanwhile,  machine-machine  communications such 

as peer-to-peer  (P2P)  applications are emerging. P2P is considered the future of 

message and data exchange because it allows users to exchange files with peers 

without going through centralized servers. BitTorrent (BT) is an example of P2P 

applications. Though IETF does  not  have protocols standardized for P2P, JXTA 

(Juxtapose), a P2P protocol specification begun by Sun Microsystems in 2001, aims 

to improve the interoperability of P2P applications. 

 Before designing a new Internet application, one needs to resolve some general 

and application-specific issues first. The general issues range from how to design the 

protocol messages for client requests and server responses—whether these messages 

should be presented as  fixed-length binary  strings as the lower-layer protocols or as 

 variable-length ASCII  codes—to how clients locate servers or how servers make 

themselves accessible to the clients, whether the client/server should run over TCP 

or UDP, and whether servers should serve clients  concurrently  or  iteratively.  The 

application-specific issues, however, depend on the functions and characteristics 

of the application. In Section 6.1, we discuss these general issues. The application-

specific issues are left to sections on individual applications. 

 First, DNS, a  hierarchical naming  service, is presented in Section 6.2. We 

introduce key concepts of DNS, such as domain hierarchy, name servers, and 

name resolution, as well as its classic open source package,  Berkeley Internet 
Name Domain (BIND).  Next, e-mail is addressed in Section 6.3. We focus on mes-

sage formats and three e-mail protocols, with  qmail  explained as the example open 

source implementation. WWW is introduced in Section 6.4, which covers Web 

naming and addressing. Also discussed are Web data formats, HTTP, its proxy 

mechanism, and the well-known  Apache  as its open source example. Section 6.5 

examines FTP with its file transfer services, operation models, and open source 

example  Wu-ftp.  Network management is explained in Section 6.6. We examine 

SNMP, including its architecture framework, data structures for information 

management, and  net-snmp  as its open source implementation. Then we 

discuss two Internet multimedia applications, VoIP and streaming, in Section 6.7 

and Section 6.8, respectively, where  Asterisk  and  Darwin  are their open source 

lin76248_ch06_417-545.indd   418lin76248_ch06_417-545.indd   418 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 419

 Historical Evolution: Mobile Applications 

 In contrast to desktop applications, mobile applications are designed to run on 

handheld devices with high  mobility,  such as smart phones and cellular phones. 

These devices are usually pocket-sized computing devices equipped with some 

degree of computing and Internet-connection capabilities and limited storage 

and battery power. On smart phones with large screen display, multi-touch 

interface, accelerated graphics, accelerometer, and location-based technology, 

mobile applications help users stay organized, find nearby resources, work 

outside workplaces, and synchronize data with their online accounts or personal 

computers. There are several mobile device platforms and many applications de-

veloped for them.  Table 6.1  lists six mobile application marketplace providers. 

Application Marketplace is a popular online service that allows users to browse 

and download all kinds of applications, ranging from business to game and from 

entertainment to educational. 

 As desktop applications are mature but still evolving, a new spectrum 

of mobile applications is on the horizon. Let us look at four popular mobile 

applications for the iPhone. With  Evernote,  users can keep captured notes, 

photos, and audio files  synchronized  across multiple platforms with an online 

account accessible from any browser. As a GPS/3G-enabled location-based 

service,  AroundMe  lists  by proximity  services such as restaurants and parking 

lots around users.  Associated Press Mobile News Network  is a location-based 

personalized news service that delivers local and interesting news to users. 

 Wikipanion  is the Wikipedia browsing application that searches and renders the 

Web pages automatically while users type in keywords. 

TABLE 6.1 Six Mobile Application Marketplace Providers

Name Provider
Available 
Applications

Operating 
System

Development 
Environment

Android Market Google 15,000 Android Android SDK

App Catalog Palm 250 webOS Mojo SDK

App Store Apple 100,000 iPhone OS iPhone SDK

App World RIM 2000 BlackBerry 

OS

BlackBerry 

SDK

Ovi Store Nokia 2500 Symbian Symbian 

SDK

Marketplace for 

Mobile

Microsoft 376 Windows 

Mobile

Windows 

Mobile SDK

examples. Finally, Section 6.9 addresses peer-to-peer applications with  BitTorrent 
(BT)  as the example implementation. 

lin76248_ch06_417-545.indd   419lin76248_ch06_417-545.indd   419 24/12/10   4:25 PM24/12/10   4:25 PM



420 Computer Networks: An Open Source Approach

     6.1 GENERAL ISSUES 

  Since a variety of applications need to coexist on the Internet, how clients and serv-

ers identify each other is the first technical issue. We address this by revisiting the 

concept of  port  introduced in  Chapter 5 . Before providing a service on the Internet, 

a server must start its  daemon  process first; a daemon refers to a software program 

running in the background to provide services. Thus the second issue is how serv-

ers get started. The way to start a daemon process can be  direct  or  indirect;  that is, 

a daemon can run either standalone or under the control of a super daemon. Internet 

applications can be categorized as  interactive,   file transfer,  or  real-time,  each plac-

ing different requirements on  latency, jitter,   throughput,  or  loss.  Some applications 

pumping real-time traffic are strict to low-latency requirements but could tolerate 

some data loss. Other applications generate  short interactive  or  long file transfer  

traffic; the former demands low latency and the latter usually could accommodate 

longer latency, but both prioritize reliable transfer without loss. These requirements 

need to be handled by the servers, thus making classification of Internet servers our 

third issue. Finally, though all lower-layer protocol messages are fixed-length binary 

strings, the same style could not be applied to application-level protocols because 

their request and response messages are so  diverse  and often contain  variable  and 

 long  parameters. Thus, this is our fourth general issue. 

  6.1.1 How Ports Work 
 Every server machine on the Internet offers its service through TCP or UDP port(s), 

as explained in Section 5.1. Ports are used to name the end points of logical connec-

tions that carry long-term or short-term conversations. According to the port number 

assignment by the Internet Assigned Numbers Authority (IANA), the port numbers 

are divided into three categories as follows: 

    1. The Well Known Ports from 0 to 1023.  

   2. The Registered Ports from 1024 to 49151.  

   3. The Dynamic and/or Private Ports from 49152 through 65535.   

 The Well Known Ports can only be used by system (or root) processes or by 

programs executed by privileged users. The Registered Ports can be used by ordinary 

user processes. The Dynamic Ports are free for anyone to use. 

 To show how ports work, we illustrate a practical example in  Figure 6.1 . The 

server machine is running four daemons to provide different services. Each daemon 

is listening to inbound client arrivals and client requests on its own unique port. In 

 Figure 6.1 , the FTP daemon, for example, is listening to port 21 and waiting for cli-

ent requests to arrive. When an FTP client originates an outbound connection, it is 

assigned by the kernel an unused port above 1023 as its source port, which is 2880 

in our example. The FTP client specifies in the connection request its own IP address 

and source port as well as the server machine’s IP address and server port, i.e., 21. 

Then the connection request is sent to the server machine. Immediately upon receiv-

ing the client’s connection request, the FTP daemon creates a copy of itself, called 

lin76248_ch06_417-545.indd   420lin76248_ch06_417-545.indd   420 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 421

 forking  a child process. The child process then has the connection established with 

the FTP client and handles subsequent requests from that client while the parent 

process goes back to listen to other client arrivals.   

  6.1.2 How Servers Start 
 On most UNIX/Linux platforms, server processes can run either standalone or under 

the control of a super daemon called  (x)inetd . When running, the  (x)inetd  

listens on all service ports by binding sockets to the ports, for the services listed in its 

configuration file. When a client arrival is found on one of its ports, the (x)inetd  

looks up what service the port corresponds to, invokes the corresponding server 

program to serve the client, and continues to listen on the ports. 

 Getting server programs started by the  (x)inetd  has some advantages. 

First, when the configuration file of a server program is changed, the change can 

take effect immediately since the  (x)inetd  restarts the server program to read the 

configuration file  every time  when a client arrives. On the other hand, standalone 

servers require an explicit restart before changes in the configuration can take effect. 

Second, when a server crashes, the  (x)inetd  spawns a new server process, 

whereas a crashed standalone server may stay unnoticed so that the service becomes 

unavailable. Although the  (x)inetd  has the aforementioned advantages, it has 

two shortcomings leading to performance degradation. One is that it must fork and 

execute a server program for each client arrival. The other is that the server program 

must build its executable image and read the configuration file for each client. In 

general, using the standalone scheme is recommended for heavily loaded servers.  

  6.1.3 Classification of Servers 
 Internet servers can be classified from two perspectives. One is how a server handles 

requests, either  concurrently  or  iteratively.  The other way of classification depends 

on the underlying transport protocol. A  connection-oriented  server can be imple-

mented with TCP, while a  connectionless  server can be implemented with UDP. The 

combination of these perspectives yields four types of Internet servers. 

   FIGURE 6.1 An example of how ports work. 

FTP Daemon

Mail Daemon

Telnet Daemon

HTTP Daemon

21

Listening
Ports

23

25

80

Server Daemons

Server MachineClient 1 Machine

FTP Client

Web Browser

2880

8752

User Agent
Outbound

Port

User Agent
Outbound

Port

Client 2 Machine

lin76248_ch06_417-545.indd   421lin76248_ch06_417-545.indd   421 24/12/10   4:25 PM24/12/10   4:25 PM



422 Computer Networks: An Open Source Approach

  Concurrent Server vs. Iterative Server 

 Most Internet services are based on the client-server model, whose aim is to en-

able user processes to share network resources; that is, several clients may reach 

one server concurrently. Servers respond to this design principle with two schemes: 

A concurrent server handles multiple clients simultaneously, whereas an iterative 

server handles clients one by one. 

 A concurrent server processes multiple clients at a time with concurrency. When 

the server accepts a client, it creates a copy of itself, be it a  child process  or a  thread.  
For simplicity, here we assume a child process is created. Each child process is an 

instance of the server program, and it inherits the socket  descriptors,  described in 

Subsection 5.4.2, and other variables from the parent process. The child process 

serves the client and frees the parent process so it can accept new clients. Since the 

parent process simply handles new client arrivals, it would not be  blocked  by heavy 

workload from clients. Similarly, since each client is handled by a child process and 

all processes can be scheduled to run by the processor, concurrency between chil-

dren, and hence between existing clients, can be achieved. 

 In contrast to the concurrent server, an iterative server processes only one client at 

a time. When multiple clients arrive, instead of forking any child processes, the server 

 queues  clients and handles them in a sequential order. If too many clients are present 

or some clients have requests with long service times, iterative processing may cause 

blocking, which prolongs the response time to clients. Therefore, an iterative server is 

only suitable in the scenarios where clients have  few  requests with  short  service times.  

  Connection-Oriented Server vs. Connectionless Server 

 Another way of classifying servers is by whether they are connection-oriented or 

connectionless. A connection-oriented server uses TCP as its underlying transport 

protocol, whereas a connectionless server adopts UDP. Here we discuss differences 

between these two. 

 First, for each packet sent, a connection-oriented server has 20 bytes of TCP 

header overhead, while a connectionless server has only 8 bytes of UDP header 

overhead. Second, a connection-oriented server must establish a connection with 

the client before sending data, and must terminate the connection afterward. The 

connectionless server, however, simply transmits the data to the client without a 

connection setup. Because a connectionless server does not maintain any connection 

state, it can dynamically support more  short-lived  clients. Finally, when one or more 

links between the client and the server become congested, the connection-oriented 

server throttles the client by TCP’s congestion control, as illustrated in Subsection 

5.3.4. On the other hand, the connectionless client and server have an unregulated 

data sending rate, which is constrained only by the application itself or the bandwidth 

limit of the access links. Thus, excessive loss due to persistent congestion could 

happen to the connectionless Internet service, and it costs the client or server extra 

efforts to retransmit the lost data if needed. 

 We list popular Internet applications and their corresponding application 

protocols and transport protocols in  Table 6.2 . The table shows that e-mail, remote 

terminal access, file transfer, and Web applications use TCP as the underlying 

lin76248_ch06_417-545.indd   422lin76248_ch06_417-545.indd   422 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 423

transport protocol to convey the application-level data because the proper operation 

of these applications depends on reliable data delivery. On the other hand, name 

resolution applications like DNS run over UDP rather than TCP to avoid connection 

establishment delay. Network management applications employ UDP to carry man-

agement messages across the Internet since they are transaction-based and must run 

even under a bad network condition. UDP is preferred to TCP in RIP because updates 

on the RIP routing table are periodically exchanged between neighboring routers so 

that lost updates can be recuperated by more recent updates. However, TCP is used 

in BGP for BGP routers to maintain a keepalive mechanism with  remote  peer BGP 

routers. Internet telephony and audio/video streaming applications typically run over 

UDP. These applications could tolerate a small fraction of packet loss, so reliable 

data transfer is not critical to their operation. In addition, most multicast applications 

run over UDP simply because TCP cannot work with multicasting. One interesting 

thing about P2P applications is that they run over UDP to send voluminous search 

queries to peers and then use TCP to do the actual data transfer with selected peers. 

   Four Types of Servers 

 Servers introduced so far can be categorized into the following four combinations: 

    1. Iterative connectionless servers  

   2. Iterative connection-oriented servers  

   3. Concurrent connectionless servers  

   4. Concurrent connection-oriented servers   

TABLE 6.2 Application Layer Protocols and Underlying Protocols

Application Application Layer Protocol Underlying Protocol

Electronic mail SMTP, POP3, IMAP4 TCP

Remote terminal 

access

Telnet TCP

File transfer FTP TCP

Web HTTP TCP

Web caching ICP Typically UDP

Name resolution DNS Typically UDP

Network file system NFS Typically UDP

Network management SNMP Typically UDP

Routing protocol RIP, BGP, OSPF UDP (RIP), TCP (BGP), IP (OSPF)

Internet telephony SIP, RTP, RTCP, or proprietary 

(e.g., Skype)

Typically UDP

Streaming multimedia RTSP or proprietary (e.g., RealNetworks) Typically UDP, sometimes TCP

P2P Proprietary (e.g., BitTorrent, eDonkey) UDP for queries and TCP for data transfer

lin76248_ch06_417-545.indd   423lin76248_ch06_417-545.indd   423 24/12/10   4:25 PM24/12/10   4:25 PM



424 Computer Networks: An Open Source Approach

 Iterative connectionless servers are common and trivial to implement.  Figure 6.2  

shows the corresponding work flow between the iterative connectionless client and 

server. First, a server creates a socket bound to the well-known port for the offered 

service. Afterward, the server simply repeatedly calls the  readfrom()  function to 

read client requests from the socket, where client requests are served one after another 

from the request  queue.  The server sends the responses by calling  sendto().  Due 

to the simplicity of this architecture, iterative connectionless servers are good enough 

for  short-lived  or  non-critical  services.  

 An iterative connection-oriented server is a single process that handles client 

connections one at a time. As before, the server first creates a socket bound to a port. 

Then the server puts the socket in the passive mode to listen for the first connection 

arrival. Once accepting a client connection, it repeatedly receives requests from the 

client and formulates the responses. When the client finishes, the server closes the 

connection and returns to the wait-to-accept stage for the next connection arrival. 

New connection arrivals during the service time, if any, are  queued.  For short-lived 

connections, the iterative connection-oriented mode works well, but the server 

could have less overhead if running in the iterative connectionless mode instead. 

For long-lived connections, this mode would result in poor concurrency and latency. 

Thus, it is seldom used. 

socket

Clients socket

Server

bind

recvfrom

process

sendto

requests

responses

sendtorecvfrom

repeat as
needed repeat

infinitely

close

   FIGURE 6.2 Iterative connectionless clients and server. 

lin76248_ch06_417-545.indd   424lin76248_ch06_417-545.indd   424 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 425

 Concurrent connectionless servers are suitable for services which have a high 

request volume but yet still need a quick turnaround time. DNS and Network File 

System (NFS) are two examples. A concurrent connectionless server first creates a 

socket bound to a port but leaves the socket  unconnected,  i.e., usable to talk to any 

clients. The server then begins to receive requests from clients and handles them by 

forking child processes (or threads), which exit immediately upon completion. 

 Concurrent connection-oriented servers, whose processing flow is depicted 

in  Figure 6.3 , are embraced widely. Basically they work similarly to the concur-

rent connectionless servers but differ in the connection setup, which involves an 

   FIGURE 6.3 Concurrent connection-oriented client and server. 

socket

bind

listen

accept

fork

socket

connect

repeat
infinitely

connection request

Client

Server

close
(accepting)

close
(listening)

read

process

write

close
(accepting)

write

read

close

repeat as
needed

repeat as
needed

request

reply

Child process

Server process

lin76248_ch06_417-545.indd   425lin76248_ch06_417-545.indd   425 24/12/10   4:25 PM24/12/10   4:25 PM



426 Computer Networks: An Open Source Approach

additional TCP three-way handshake. There are two kinds of sockets used by the 

server program: the  listening  socket used by the parent process and the  connected
or  accepting  sockets used by the child processes. After the server creates a socket 

bound to a port and puts it into the listening mode, the server process blocks on 

the  accept()  function until a client connection request arrives. Upon returning 

from  accept()  with a new file descriptor for the connected socket, it forks a child 

process that inherits both sockets. The child process closes the listening socket and 

communicates with the client through the connected socket. The parent process then 

closes the connected socket and comes back to block on  accept() .     

  6.1.4 Characteristics of Application Layer Protocols 
 Internet servers and clients run on end hosts and communicate via application-layer 

protocols. An application-layer protocol specifies both the syntax and semantics 

of the messages exchanged between the client and the server. The syntax defines 

the format of the messages, whereas the semantics specify how clients and servers 

should interpret the messages and respond to the peers. In comparison with the un-

derlying transport protocols and Internet Protocol, application-layer protocols have 

many different characteristics, as described below. 

  Variable Message Format and Length 

 Unlike Layer-2 to Layer-4 protocols, whose messages have fixed format and length, 

either request commands or response replies of application-layer protocols can have 

 Historical Evolution: Cloud Computing 

 Traditionally an organization tends to own the network infrastructure, server 

platform, and application software and operate its own computing environment. 

Another paradigm, called  cloud computing,  is to outsource the computing envi-

ronment to a  centralized  service provider whose infrastructure might be distrib-

uted or centralized. The National Institute of Standards and Technology (NIST) 

defines cloud computing as a model for enabling convenient on-demand access 

to a shared pool of configurable computing resources that can be rapidly provi-

sioned and released with minimal management efforts. Evolved from  network 
computing  with the simple  thin-client heavy-server  concept, cloud computing 

goes one step further to outsource those heavy servers to service providers with 

three service provisioning models—software as a service (SaaS), platform as a 

service (PaaS), and infrastructure as a service (IaaS). 

 Google Apps ( http://google.com/a/ ) and Apps.Gov ( http://apps.gov ) are two 

early cloud service providers. Eventually there may be a very limited number of 

public B2C (business-to-consumer) clouds operated by companies like Google, 

Microsoft, and Amazon, but many public B2B (business-to-business) clouds by, 

say, IBM, and even more private clouds by vendors and manufacturers. Here 

“public” or “private” means whether or not the cloud offers services to the public. 

lin76248_ch06_417-545.indd   426lin76248_ch06_417-545.indd   426 24/12/10   4:25 PM24/12/10   4:25 PM

http://google.com/a/
http://apps.gov


 Chapter 6 Application Layer 427

variable format and length. This is due to various options, parameters, or contents of 

different sizes to be carried in the commands or replies. For example, while sending 

an HTTP request, a client can add some fields to the request to indicate what browser 

and language the client is using. Similarly, an HTTP response varies its format and 

length according to different types of contents.  

  Various Data Types 

 Application-layer protocols have various data types, by which we mean both com-

mands and replies can be transmitted in textual or nontextual format. For example, 

telnet clients and servers send commands in binary format starting with a special 

octet (111111), while SMTP clients and servers communicate in U.S. 7-bit ASCII 

code. An FTP server transfers data in ASCII or binary form. A Web server replies 

textual Web pages and binary images.  

  Statefulness 

 Most application layer protocols are  stateful.  That is, the server retains information 

about the session with the client. For instance, an FTP server remembers the client’s 

current working directory and current transfer type (ASCII or binary). An SMTP 

server remembers information about the sender and the recipients of an e-mail 

message while waiting for the DATA command to transmit the message’s content. 

However, for efficiency and scalability, HTTP is designed to be a stateless protocol, 

though some  add-on  states beyond the original protocol design could be maintained 

by clients and servers. Another stateless example is SNMP, which also has to deal 

with efficiency and scalability issues. DNS could be stateless or stateful, depending 

on how it operates, as we shall see next.     

  6.2 DOMAIN NAME SYSTEM (DNS)  

 The Domain Name System (DNS) is a hierarchical, distributed database system used 

to map between host names and IP addresses for various Internet applications. It is 

designed to provide practical and scalable name-to-address (sometimes address-to-

name) translation service. In this section, we address three aspects about DNS: (1) 

the name space’s architecture under which DNS works, (2) the structure of  resource 
record s (RR) that define the name-to-address mappings, and (3) operation models 

between name servers and resolvers. Lastly, we shall introduce an open source 

implementation,  BIND , in hope of offering readers a practical view of DNS. 

  6.2.1 Introduction 
 Computer hosts connected to the network need a way to recognize each other. In 

addition to the binary IP address, each host may also register an ASCII string as its 

host name. Just like the address in the postal system, which contains a series of let-

ters specifying the country, province, city, and street information, the ASCII string 

uniquely identifies the location of the host and is also easier to remember than the 

IP address. 

lin76248_ch06_417-545.indd   427lin76248_ch06_417-545.indd   427 24/12/10   4:25 PM24/12/10   4:25 PM



428 Computer Networks: An Open Source Approach

 Years back, in the age of ARPANET, a file  HOST.TXT  was used by the au-

thoritative organization called the  Network Information Center (NIC)  to store ASCII 

names and corresponding IP addresses of all hosts in a region. Administrators of 

hosts under ARPANET periodically fetched from the NIC the latest  HOST.TXT,  

and sent their changes to the NIC. Whenever a host wanted to connect to another, it 

translated the destination host’s name into the IP address according to the  HOST.
TXT . This approach works just fine for a small network. However, when it comes to 

a large-scale network, scalability and management problems arise. 

 RFC 882 and 883, later obsoleted by RFC 1034 and 1035, proposed the concept 

and specifications of a hierarchically distributed DNS that provides scalable Internet 

host addressing and mail forwarding support as well as protocols and servers 

used to implement domain name facilities. Hosts under the DNS have a unique 

 domain name.  Each DNS  name server  of a  domain  maintains its own database of 

name-to-address mappings so that other systems (clients) across the Internet can 

query the name server through the DNS protocol messages. But how can we divide 

the domain name space into domains? The next subsection answers this question.  

  6.2.2 Domain Name Space 
  Top-Level Domains 

 For better regulation and scalability of domain name translation in a large network, 

the domain name space is divided into several categories of top-level domains, as 

shown in  Table 6.3 . Each domain represents a particular service or meaning, and 

can extend down to various sub-domains and again to sub-sub-domains to form a 

hierarchical domain tree. A host in a domain tree inherits the purposes of successive 

domains on the backward path to the root. For example, the host  www.w3.org  is 

intended to serve as the official site of the WWW consortium, which is a nonprofit 

organization as indicated by its top level domain org. 

 With hierarchical division of the domain name space, the location of a host 

(or domain) in a domain tree can be easily identified and therefore allows us to infer 

the structure of DNS.  Figure 6.4  gives us an example of how the cs.nctu.edu.tw 

domain is recognized. Note that domain names are case insensitive, which means the 

uppercase “CS” is the same as the lowercase “cs.” 

 Except for the top-level domains, which are already standardized, a domain 

has full authority on its successive domains. The administrator of a domain can 

arbitrarily divide it into sub-domains and assign them to other organizations, either 

by following the form of the top-level ones (such as com under tw) or by creating 

new domain names (such as co under uk). This process is called  domain delegation,  
which greatly reduces the management burden on upper-level domains.   

  Zones and Name Servers 

 It is important to have clear differentiation between domain and  zone  before getting 

into this section. A domain is usually a superset of zones. Taking  Figure 6.4 , for 

example, the tw domain contains four zones: org, com, edu, and tw itself (you may 

want to try  http://www.tw ). To be specific, the tw zone contains domain names of 

lin76248_ch06_417-545.indd   428lin76248_ch06_417-545.indd   428 24/12/10   4:25 PM24/12/10   4:25 PM

www.w3.org
http://www.tw


 Chapter 6 Application Layer 429

TABLE 6.3 Top-Level domains

Domain Description

com Commercial organizations such as Intel (intel.com).

org Nonprofit organizations such as WWW consortium 

(w3.org).

gov U.S. government organizations such as National Science 

Foundation (nsf.gov).

edu Educational organizations such as UCLA (ucla.edu).

net Networking organizations such as Internet Assigned 

Numbers Authority, which maintains the DNS root 

servers (gtld-servers.net).

int Organizations established by international treaties 

between governments. For example, International 

Telecommunication Union (itu.int).

mil Reserved exclusively for the United States Military. For 

example, Networking Information Center, Department of 

Defense (nic.mil).

Two-letter country code The two-letter country code top level domains (ccTLDs) 

are based on the ISO 3166-1 two-letter country codes. 

Examples are tw (Taiwan) and uk (United Kingdom).

arpa Mostly unused now, except for the in-addr.arpa domain, 

which is used to maintain a database for reverse DNS 

queries.

Others Such as .bi (business), .idv (for individuals), and .info 

(similar to .com).

   FIGURE 6.4 Locating the cs.nctu.edu.tw domain in the name space. 

Root domain

tw

org com

nthu nctu

cs

cs.nctu.edu.tw

ee

nsysu

edu co

edu com uk

lin76248_ch06_417-545.indd   429lin76248_ch06_417-545.indd   429 24/12/10   4:25 PM24/12/10   4:25 PM



430 Computer Networks: An Open Source Approach

the form *.tw, excluding *.org.tw, *.com.tw and *.edu.tw. Hosts of the .tw zone are 

usually for the purpose of administering the delegated sub-domains. 

 Name servers, usually running on port 53, are hosts that contain a database built 

with zone data files and a resolution program to answer DNS queries. In a name 

server, a zone is a basic management unit whose information is stored in a  zone data 
file.  Upon receiving a DNS query, which gives a domain name and requests its corre-

sponding IP address, the name server looks up its database for the answer. The server 

replies to the client if there is a lookup match; otherwise, it performs further lookups 

in other name servers. A name server may be authoritative for multiple zones, which 

means its database may cover more than one zone and hence more than one zone 

data file, as depicted in  Figure 6.5 . In the figure, squares and ellipses represent name 

servers and zones, respectively; the name server in the middle covers both zone A 

and zone B. 

 For availability and load balancing concerns, a zone may also be supervised 

by multiple name servers to avoid possible breakdown caused by a high request 

rate overwhelming a single server. Servers that serve the same zone can be divided 

into a single master and many slaves. A master name server has authority to insert/

delete hosts into/from a zone, whereas the slaves can only obtain the zone infor-

mation from their master through a process referred to as  zone transfer.   Figure 6.5  

illustrates that the master name server of zone A could be a slave name server of 

zone B.    

  6.2.3 Resource Records 
 A zone data file comprises several  resource records (RRs)  describing DNS settings 

of the zone. An RR typically contains a five tuple: the owner (the domain name that 

indexes the RR), TTL (Time-To-Live, a limit on the time period for which resolvers 

can cache this RR), class (IN is usually adopted, standing for the Internet system), 

type, and RDATA (a variable-length string of octets that describes the resource). Six 

types of RRs are commonly used in describing various aspects of a domain name: 

   FIGURE 6.5 Relation between master-slave name servers. (df: zone data file) 

- Name server 

- Zone 

MasterMaster (A) | Slave (B)

zone
transfer

Slave

df of Bdf of A

Clients Clients

Zone A Zone B

df of A
and B

zone
transfer

lin76248_ch06_417-545.indd   430lin76248_ch06_417-545.indd   430 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 431

    Start of Authority (SOA):  An SOA marks the beginning of a DNS zone data 

file and identifies the authority of that zone. That is, when we want to know 

the authoritative name server of a zone, we issue a query for its SOA. An 

example is given below:

  cs.nctu.edu.tw. 86400 IN SOA csserv.cs.nctu.edu.tw. 
help.cs.nctu.edu.tw. 

  ( 
   2009112101 ; Serial number 
   86400     ; Refresh after 1 day (86400 seconds) 
   3600      ;  If no response from master, retry after

 1 hour 
   1728000  ;  If still no update, the data expires 

 after 20 days 
   86400   ; TTL of RRs if cached in other name servers 

  )    

 It would be more readable with a forward interpretation that “the cs.nctu.

edu.tw domain has an authoritative name server csserv.cs.nctu.edu.tw.” This 

interpretation is applicable to the rest of the RRs. The domain name help.

cs.nctu.edu.tw following the authoritative server specifies the mailbox of the 

administrator responsible for the zone, as defined in RFC 1035. However, 

help.cs.nctu.edu.tw will be translated to help@cs.nctu.edu.tw automatically 

by DNS applications. The serial number is used by a slave name server to 

trigger updates on the zone data file that occur only when the slave’s copy 

has a serial number smaller than the master’s copy. For this reason, the 

serial number is usually set as the date of modification.  

   Address (A):  This is the most important and the most frequently used RR for 

matching domain names to IP addresses as requested by the  forward query.  
Since multi-homed hosts have multiple network interface cards and therefore 

multiple IP addresses, it is allowed to have multiple A RRs pertaining to the 

same domain name. An example for a multi-homed host would be:

  linux.cs.nctu.edu.tw  86400 IN A 140.113.168.127 
                       86400 IN A 140.113.207.127    

 It means queries for linux.cs.nctu.edu.tw will be returned with these two IP 

addresses.  

   Canonical Name (CNAME):  A CNAME creates an alias with a domain 

name that points to the canonical domain name of an IP address, which is 

especially useful for running multiple services from a single IP address. 

In the following example, cache.cs.nctu.edu.tw is originally used for Web 

caching service at IP address 140.113.166.122 and is thus the  canonical 
name  of this IP address. However, at the same time, it also acts as a Web 

server, so an alias of  www.cs.nctu.edu.tw  is created:

  www.cs.nctu.edu.tw.    86400 IN CNAME cache.cs.nctu.edu.tw. 
 cache.cs.nctu.edu.tw. 86400 IN A   140.113.166.122    

lin76248_ch06_417-545.indd   431lin76248_ch06_417-545.indd   431 24/12/10   4:25 PM24/12/10   4:25 PM

www.cs.nctu.edu.tw


432 Computer Networks: An Open Source Approach

 In this way, when an alias name is queried, the name server first looks for 

the corresponding canonical name and then the IP address of the canonical 

name, and finally returns both results.  

   Pointer (PTR):  The PTR RRs, as opposed to the A RRs, point to domain 

names from their corresponding IP addresses. The so-called  reverse query,  
querying with an IP address for the domain name, adopts this scheme. For 

example, the RR 

  10.23.113.140.in-addr.arpa. 86400 IN PTR laser0.cs.nctu.edu.tw.   

  provides the reverse mapping from the IP address 140.113.23.10 to the 

domain name laser0.cs.nctu.edu.tw, where the IP address is represented as 

a sub-domain under the in-addr.arpa domain for reverse DNS lookup. Note 

that the PTR stores an IP address as a sequence of bytes in reverse order, 

since a domain name gets less specific from left to right. In other words, 

the IP address 140.113.23.10 is stored as the domain name 10.23.113.140.

in-addr.arpa pointing back to its canonical name.  

   Name Server (NS):  An NS RR marks the beginning of a DNS zone data 

file and supplies the domain name of a name server for that zone. It often 

appears as following an SOA RR to provide additional name servers for 

 request referral  described in the next subsection. For example, an NS entry 

for the CS name server in the NCTU’s name server mDNS.nctu.edu.tw 

can be:

  cs.nctu.edu.tw. 86400 IN NS csserv.cs.nctu.edu.tw.   

  which enables the name server to refer queries for hosts under the cs.nctu.

edu.tw domain to the authoritative host, cisserv.cs.nctu.edu.tw. Notice that 

the name server defined in the SOA RR always has an NS RR and that the 

corresponding A-type RR must accompany the NS RR for an in-zone name 

server in the zone data file.  

   Mail Exchanger (MX):  An MX RR publishes the name of the mail server for 

a domain name. This is used to implement mail forwarding. For example, 

a mailer trying to send e-mails to help@cs.nctu.edu.tw might ask the name 

server for mailing information about cs.nctu.edu.tw. With the following 

MX RRs,

  cs.nctu.edu.tw 86400 IN MX 0 mail.cs.nctu.edu.tw. 
 cs.nctu.edu.tw 86400 IN MX 10 mail1.cs.nctu.edu.tw.   

  the mailer knows to forward the e-mail to the mail exchanger, mail.

cs.nctu.edu.tw. The number before the mail-exchanger field represents its 

preference value when there are multiple exchangers to choose from. In this 

example, the mailer would choose the first one, which has a better (lower) 

preference value for mail forwarding. The second one would not be selected 

unless the first goes down.    

lin76248_ch06_417-545.indd   432lin76248_ch06_417-545.indd   432 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 433

  6.2.4 Name Resolution 
 Another important component in DNS is the resolver program. It usually consists 

of library routines used by applications such as Web browsers to translate ASCII 

strings of URLs into valid IP addresses. A resolver generates DNS queries to name 

servers listening on either UDP or TCP port 53, and interprets the responses from 

the servers. The name resolution involves a querying resolver and a queried local 

name server, sometimes including name servers of other zones as well. 

  Multiple Iterative Queries 

 In the best scenario, a query from a resolver would be answered right away by the 

local name server if the server finds an answer in its database. If not, the server con-

ducts  multiple   iterative queries  rather than simply bouncing the unanswered query 

back to the resolver. As depicted in  Figure 6.6 , after the local name server receives 

a query for “ www.dti.gov.uk ”, it starts multiple iterative queries by asking a name 

server in the root domain instead of name server(s) just one level above because they 

probably do not know the answer or whom to refer to. If the answer is not found, the 

root server responds by referring to the name server in the domain name hierarchy 

that is closest to the one containing the destination host. There might be multiple 

candidates suitable for referrals, but only one of them is chosen, in a round-robin man-

ner. The local server then repeats its query to the referred name server, say the “uk” 

name server, which may again reply with another referral, say “gov.uk” name server, 

and so on, until the query reaches a name server for the domain where the destination 

host resides. In our example, the query ends at “dti.gov.uk” name server. This name 

server then provides the IP address of the host to the local name server, which then 

relays the answer back to the resolver and completes the name resolution process. 

   FIGURE 6.6 Multiple iterative resolution for  www.dti.gov.uk . 

Client
(resolver)

Local
name
server

Query for
“www.dti.gov.uk”

Root
name server

1

2

3

4

6

5

“uk”
name server

“gov.uk”
name server

Other candidate
name servers

“dti.gov.uk”
name server

7

8

www.dti.gov.uk.  5M IN A  164.36.253.20
www.dti.gov.uk.  5M IN A  164.36.164.20

lin76248_ch06_417-545.indd   433lin76248_ch06_417-545.indd   433 24/12/10   4:25 PM24/12/10   4:25 PM

www.dti.gov.uk
www.dti.gov.uk
www.dti.gov.uk
www.dti.gov.uk
www.dti.gov.uk


434 Computer Networks: An Open Source Approach

 Notably the resolver here is said to undergo a  recursive query,  whereas a 

recursion-capable  local name server keeps states to resolve the recursive query 

by  multiple iterative queries.  If the local name server is not recursion-capable, the 

resolver has to send  iterative  queries to other known name servers. Fortunately, most 

local name servers are recursion-capable. 

 Let us take the reverse DNS lookup as another example, where a recursive query 

for the domain name corresponding to IP address 164.36.164.20 is resolved by mul-

tiple iterative queries. That is, we are looking for the RR:

   20.164.36.164.in-addr.arpa. 86400  IN   PTR www.dti.gov.uk.  

 Whenever the local name server cannot find the corresponding RR in its database, 

it asks the root name server that is authoritative for the .arpa domain. The root name 

server, though probably not having the required RR either, may provide some RRs as 

referral information, for example:

   164.in-addr.arpa.       86400  IN  NS  ARROWROOT.ARIN.NET. 

 ARROWROOT.ARIN.NET.  86400  IN  A   198.133.199.110  

 which states that the 164.*.*.* domain is under the authority of the name server 

ARROWROOT.ARIN.NET. with IP address 198.133.199.110, which again may 

refer the query to a better name server according to its local RRs:

   36.164.in-addr.arpa.  86400  IN  NS  NS2.JA.NET. 
 NS2.JA.NET.          86400  IN  A   193.63.105.17  

 Finally, the required RR is found in the name server NS2.JA.NET. 

 As we can see in these two examples, all name servers except the local one only 

provide  referrals  when they do not have the desired RR, instead of issuing queries 

on behalf of the local name server. The latter approach would not be scalable for the 

nonlocal name servers keeping the states of all queries in process. Thus, only the 

recursion-capable local name servers are  stateful,  while other nonlocal name servers 

run in a  stateless  mode.    

 Historical Evolution: Root DNS Servers 
Worldwide 

 A root DNS server answers queries for the DNS  root zone  in the hierarchi-

cal domain name space. The root zone means the top-level domains (TLDs) 

that are the highest level of domain names of the Internet, including  generic  

top-level domains (gTLDs) like .com, and  country code  top-level domains 

(ccTLDs) such as .tw. As of the early 2010s, there are 20 generic TLDs and 

248 ccTLDs in the root zone. The root DNS servers are very important to the 

Internet because they are the very  first  line in translating domain names into IP 

addresses worldwide. 

lin76248_ch06_417-545.indd   434lin76248_ch06_417-545.indd   434 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 435

 There are 13 root name servers (see  http://www.root-servers.org/ ) that 

implement the root DNS zone. Each of the 13 root name servers is labeled with 

an identifier letter from A to M. While only 13 identifier letters are used, each 

identifier’s operator can use  redundant  physical server machines to provide 

high-performance DNS lookup and great fault tolerance.  Table 6.4  shows root 

TABLE 6.4 Root DNS Servers

Letter IP Addresses Operator Location Sites
A IPv4:198.41.0.4 

IPv6:2001:503:BA3E::2:30
VeriSign, Inc. Los Angeles, CA, US; 

New York, NY, US; 
Palo Alto, CA, US; 
Ashburn, VA, US

Global: 4

B IPv4:192.228.79.201
IPv6:2001:478:65::53

USC-ISI Marina del Rey, 
California, US

Local: 1

C IPv4:192.33.4.12 Cogent 
Communications

Herndon, VA, US; Los 
Angeles, CA, US; New 
York, NY, US; Chicago, 
IL, US; Frankfurt, DE; 
Madrid, ES

Local: 6

D IPv4:128.8.10.90 University of 
Maryland

College Park, MD, US Global: 1

E IPv4:192.203.230.10 NASA Ames 
Research Center

Mountain View, CA, US Global: 1

F IPv4:192.5.5.241 
IPv6:2001:500:2f::f

Internet Systems 
Consortium, Inc.

Global: Palo Alto, CA, 
US; San Francisco, 
CA, US 
Local: 47 worldwide

Global: 2 
Local: 47

G IPv4:192.112.36.4 U.S. DOD 
Network 
Information 
Center

Columbus, OH, US; 
San Antonio, TX, US; 
Honolulu, HI, US; Fussa, 
JP; Stuttgart-Vaihingen, 
DE; Naples, IT

Global: 6

H IPv4:128.63.2.53 
IPv6:2001:500:1::803f:235

U.S. Army 
Research Lab

Aberdeen Proving 
Ground, MD, US

Global: 1

I IPv4:192.36.148.17 Autonomica 34 worldwide Local: 34

J IPv4:192.58.128.30 
IPv6:2001:503:C27::2:30

VeriSign, Inc. Global: 55 worldwide 
Local: Dulles, VA, 
US; Seattle, WA, 
US; Chicago, IL, 
US; Mountain View, 
CA, US; Beijing, CN; 
Nairobi, KE; Cairo, EG

Global: 55 
Local: 5

K IPv4:193.0.14.129 
IPv6:2001:7fd::1

RIPE NCC Global: London, UK; 
Amsterdam, NL; 
Frankfurt, DE; Tokyo, 
JP; Miami, FL, US; 
Delhi, IN 
Local: 12 worldwide

Global: 6 
Local: 12

L IPv4:199.7.83.42
IPv6:2001:500:3::42

ICANN Los Angeles, CA, 
US; Miami, FL, US; 
Prague, CZ

Global: 3

M IPv4:202.12.27.33 
IPv6:2001:dc3::35

WIDE Project Global: Tokyo, JP 
(3 sites); Paris, FR; San 
Francisco, CA, US;
Local: Seoul, KR

Global: 5 
Local: 1

Continued

lin76248_ch06_417-545.indd   435lin76248_ch06_417-545.indd   435 24/12/10   4:25 PM24/12/10   4:25 PM

http://www.root-servers.org/


436 Computer Networks: An Open Source Approach

   FIGURE 6.7 Inside a DNS message. 

Q
R

A
A

T
C

R
D

R
A

Opcode

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 bit

Reserved

QDCOUNT

ID

ANCOUNT

NSCOUNT

ARCOUNT

Question

Answer

Authority

Additional

Rcode

Header

  Protocol Message Format 

 The message used in the DNS protocol contains the following five sections, as shown 

in  Figure 6.7 . 

  Header  section: This includes the control information about the query. The ID 

is a unique number identifying a message, and is used to match replies to 

outstanding queries. The second row contains some flags indicating the type 

(query or response specified in QR), operation (forward or reverse query 

specified in OPCODE), recursive query desired (RD) or available (RA), 

and error codes (RCODE) of the message. Other fields give the number of 

entries in the sections after Header. 

  Question  section: This is used to carry the question in a query. The QDCOUNT in 

the Header section specifies the number of entries in this section (usually 1). 

  Answer,   Authority,  and  Additional  sections: Each of these contains a number 

of RRs where the  owner  information stored in ASCII format is of  variable  

length, with the count of the RRs specified in ANCOUNT, NSCOUNT, and 

ARCOUNT in the Header section. The first two sections tell the answer 

to the query and the corresponding authoritative name server, while the 

Additional section provides useful information related to the query but not 

DNS server information with the IP address of the  representative  servers shown 

in the second column. In the name resolution process, a query that cannot be 

answered by a local name server is first forwarded to one out of the 13  preconfig-
ured  representative root name servers, in a random or round-robin fashion. The 

representative server then  redirects  the local name server to one of its redundant 

servers, which then replies with the address of the next-level authoritative name 

server. In  Table 6.4 , the difference between global and local sites lies in the con-

cern of load balancing for global or local queries. 

lin76248_ch06_417-545.indd   436lin76248_ch06_417-545.indd   436 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 437

 Open Source Implementation 6.1: BIND 

  Overview 
 The Berkeley Internet Name Domain (BIND), maintained by Internet Software 

Consortium (ISC), implements a domain name server for BSD-derived operating 

systems. The BIND consists of a multithreaded (OS dependent) daemon called 

 named  and a resolver library. The resolver is a set of routines in a system library that 

provides the interface through which applications access the domain name services. 

Some advanced features and security add-ons are also included in BIND. BIND is 

by far the most common software used to provide the DNS service on the Internet 

today. It runs on most UNIX-like operating systems including FreeBSD and Linux. 

 We can summarize BIND as a concurrent multithreaded implementation of 

DNS. BIND supports both connection-oriented and connectionless services on 

port 53, though the latter is frequently preferred for fast response. The default 

query resolution is recursive to the resolver, but is carried out by multiple iterative 

queries. Recall that all DNS servers except the local DNS server remain stateless.  

  Block Diagram 
 The  named  daemon by default runs as the root. For security concerns,  named  

can also run as non-root by the  chroot()  system call (called the “least 

privilege” mechanism). Normally it listens for requests on port 53 over TCP 

or UDP. Conventionally we choose UDP to transport ordinary messages for 

reasons of performance, but TCP must be used for zone transfers to avoid the 

possible dropping of zone data files. 

 With the multithread support, three main manager threads are created: 

the  task manager,   timer manager,  and  socket manager,  which are shown in 

 Figure 6.8  and described in the paragraphs that follow. In  Figure 6.8 , each task is 

associated with a timer from the timer manager. Among all tasks, four of them are 

run-able, and the socket manager is issuing an I/O completion event into Task1.  

 Since BIND 9 supports multi-processor platforms, each CPU is associated 

with a worker thread created by the task manager to handle various tasks. A task 

has a series of events (for example, resolution requests, timer interrupts) ordered 

in a queue. When a task’s event queue is non-empty, the task is run-able. When 

the task manager assigns a run-able task to a worker thread, the worker thread 

executes the task by handling the events in the task’s event queues. 

 A timer is attached to a task for various purposes such as timeout of a client 

request, request scheduling, and cache invalidation. The timer manager is used 

to create and regulate timers which themselves are sources of events. The socket 

Continued

the exact answer. For example, if there is one entry like “nctu.edu.tw. 259200 

IN NS ns.nctu.edu.tw.” in the Authority section, there probably will be an 

entry like “ns.nctu.edu.tw. 259200 IN A 140.113.250.135” in the Additional 

section to provide the Address RR of that authoritative name server.       

lin76248_ch06_417-545.indd   437lin76248_ch06_417-545.indd   437 24/12/10   4:25 PM24/12/10   4:25 PM



438 Computer Networks: An Open Source Approach

manager provides TCP and UDP sockets which are also sources of events. When 

a network I/O completes, a completion event for the socket is posted to the event 

queue of the task that requested the I/O service. 

 Many other sub-managers are created to support the managers just 

described—for example, the zone manager for zone transfer, and the client man-

ager for processing incoming requests and generating the corresponding replies.  

  Data Structures 
 BIND’s database stores the zone information based on the  view  data structure, 

which has a set of zones. It divides the users into groups with different privileges 

to access the DNS server. In other words, a user is permitted only to access those 

view s he is authorized to see. 

 A practical example of user partitioning with  view s may be the so-called 

 split DNS.  An enterprise or a service provider typically contains two kinds of 

hosts: ordinary hosts and servers. Since the DNS information of the servers 

needs to be published to the outside world, to a degree the enterprise should 

allow queries from external users to access some of its name servers. However, the 

enterprise’s network topology may thus be exposed to the outside world if exter-

nal users can query other hosts in its domain. This can be solved by split DNS, in 

which two types of DNS servers, external and internal, are adopted. The former 

provides information about the servers for external queries, while the latter serves 

only internal hosts. Though this scheme does solve the potential risk of private 

information exposure, the use of additional DNS servers causes extra financial ex-

pense. Fortunately, with the help of the  view  structure, only one server is needed 

to support the split DNS by categorizing users into external and internal groups. 

  Figure 6.9  shows the data structure used by  named . If there is no explicit 

 view  statement in the configuration file, a default  view  that matches any user 

is formed by all zone data files. When more than two  view s are created, they 

are concatenated as a link list. The server matches the incoming query with 

Socket
manager

Timer
manager

CPU1 CPU2 CPU3 CPU4

Worker Thread1

S

Task1

Task manager

Task2 Task3 Task N Task N+1 Task N+2

Worker Thread2 Worker Thread3

Event Queues

. . .

Worker Thread4

   FIGURE 6.8 Relationship among task manager, timer manager, and socket 
manager in BIND. 

lin76248_ch06_417-545.indd   438lin76248_ch06_417-545.indd   438 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 439

 view s according to its source address and access control lists of the  view s. 

Afterwards, the first match is selected.   

  Algorithm Implementations 
 Within a  view  are those authoritative zones organized as a Red-Black Tree (RBT). 

RBT is a  balanced  tree that avoids the worst-case search but also provides a fairly 

good search time in log(N), where N denotes the number of nodes in the tree. The 

RRs in a zone data file are also implemented as an RBT to exploit the existing 

code and facilities for zones. In this stage, the best zone for the requested RR is 

chosen and the matching process continues in the RBT of that zone until the de-

sired RR is found. If no match is found, the server resorts to external name servers 

to carry on the query process for the client.  

    Dig  —A Small Resolver Program 
 Along with  named  in the BIND suite is a powerful resolver tool called domain 

information groper ( dig ). As shown in  Figure 6.10 , it performs DNS lookups 

and displays richer information, as compared with another popular tool  ns-
lookup , from the queried name server. In addition to the simple query, users 

may even use  dig  with the “ +trace ” option to  trace  the queried name servers 

along the iterative path.   

  Exercises 
    1. Find the .c file and the lines of code that implement the iterative resolution.  

   2. Find which RRs are looked up in forward query and reverse query, respec-

tively, on one of your local hosts.  

   3. Retrieve all RRs in your local name server with  dig .    

   FIGURE 6.9 Data structure inside  named . 

view1 …

viewlist

zone_table

zone1

zone3 zone2

zoneN

zone_table

zone3

zone4 zone8

…

Red-Black tree
for zones

RR1

RR2

RRN

Red-Black tree
of RRs for zone4

zone_table

…

viewNview2 NULL

Continued

lin76248_ch06_417-545.indd   439lin76248_ch06_417-545.indd   439 24/12/10   4:25 PM24/12/10   4:25 PM



440 Computer Networks: An Open Source Approach

  6.3 ELECTRONIC MAIL (E-MAIL) 

  E-mail, FTP, and telnet were the  three  earliest Internet applications from the 1970s. 

However, e-mail retains much more popularity than the other two. Though  instant 
messaging  is catching up, e-mail is still the essential Internet application in daily 

life. This section first introduces the components and processing flows of an e-mail 

delivery system. We then describe the basic and the advanced e-mail message formats: 

Internet Message Format and Multipurpose Internet Mail Extensions (MIME). Next 

we illustrate the protocol for  sending  and  receiving  e-mails, Simple Mail Transfer 

Protocol (SMTP); and the protocols for  retrieving  e-mails from mailboxes, Post 

Office Protocol (POP) and Internet Message Access Protocol (IMAP). Finally, we 

pick  qmail  as an example of e-mail’s open source implementation. 

  6.3.1 Introduction 
 Today’s e-mail service can be tracked back to the early ARPANET period when stan-

dards for encoding of e-mail messages were first proposed in 1973 (RFC 561). An 

e-mail sent in the early 1970s would closely resemble one sent on the Internet today. 

Further evolution in the early 1980s set the foundation for the current e-mail service. 

 E-mail is a method of sending messages from one user to another via computer 

networks. Traditionally, a letter is composed by a sender, dropped into a post-box, 

temporarily stored in a post office and then delivered to a recipient’s mailbox, 

and finally retrieved from the mailbox by the recipient. The way to send, receive, and 

   ; <<>> DiG 9.2.0 <<>>  www.nctu.edu.tw  
 ;; global options: printcmd 
 ;; Got answer: 
 ;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 26027 
 ;; flags: qraa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3 

 ;; QUESTION SECTION: 
 ; www.nctu.edu.tw .  IN  A 

 ;; ANSWER SECTION: 
  www.nctu.edu.tw .  259200  IN  A  140.113.250.5 

 ;; AUTHORITY SECTION: 
 nctu.edu.tw.  259200  IN  NS  ns.nctu.edu.tw. 
 nctu.edu.tw.  259200  IN  NS  ns2.nctu.edu.tw. 
 nctu.edu.tw.  259200  IN  NS  ns3.nctu.edu.tw. 

 ;; ADDITIONAL SECTION: 
 ns.nctu.edu.tw.  259200  IN  A  140.113.250.135 
 ns2.nctu.edu.tw.  259200  IN  A  140.113.6.2 
 ns3.nctu.edu.tw.  259200  IN  A  163.28.64.11 

 FIGURE 6.10 Example query with  dig  for  www.nctu.edu.tw . 

lin76248_ch06_417-545.indd   440lin76248_ch06_417-545.indd   440 24/12/10   4:25 PM24/12/10   4:25 PM

www.nctu.edu.tw


 Chapter 6 Application Layer 441

retrieve an e-mail is analogous to the mail delivery process. A sender composes his 

e-mail message with a computer and sends the message to a mail server. After that, 

the mail server transfers the mail to the recipient’s mailbox at the destination mail 

server. Finally the recipient retrieves the message from his mailbox with account and 

password information. In this way, an e-mail can be delivered to any recipient within 

seconds rather than the days needed by regular mails. 

  Internet Mail Addressing 

 Just like names and addresses on envelopes, a mechanism is required to express the 

sender and recipient information of an e-mail for transfer purposes. Each e-mail user 

can be reached by his own e-mail address, with a format defined as 

   user@{host.}network.   

 An e-mail address consists of three parts. The first part and the second part identify 

the username and the mail server of the recipient, respectively. There is always an @ 

(at) symbol separating the first part from the second part, suggesting that “this user 

dwells in that mail server.” The third part tells the network or domain where the mail 

server is located. Note that the second part is often omitted for simplicity because the 

mail server of a domain can be looked up from DNS’s mail exchanger (MX) resource 

records, as explained in Section 6.2. An e-mail address example is 

   ydlin@cs.nctu.edu.tw   

 where the mail server resides in the network of the Department of Computer Science 

(“ cs” ) of National Chiao Tung University (“ nctu” ) under the Ministry of Education 

(“ edu” ) of Taiwan (“ tw” ).  

  Components of Internet Mail System 

 The next question is what components compose an e-mail system. An e-mail system 

consists of four critical logical elements: Mail User Agent (MUA), Mail Transfer 

Agent (MTA), Mail Delivery Agent (MDA), and Mail Retrieval Agent (MRA), as 

shown in  Figure 6.11 . The following briefly describes each of them.  

Sending MUA Forwarding MTA
SMTP SMTP

Possibly
relayed by
multiple
MTAs

Receiving MTA

System call

Write

Read/Write

Receiving MUA

Sender’s machine Local mail server Remote mail server
POP/
IMAP

Recipient’s machine

MDA

Mailbox

MRA

   FIGURE 6.11 Logical elements of e-mail systems. 

lin76248_ch06_417-545.indd   441lin76248_ch06_417-545.indd   441 24/12/10   4:25 PM24/12/10   4:25 PM



442 Computer Networks: An Open Source Approach

  Mail User Agent (MUA) 

 An MUA is an e-mail client program through which users send and receive mes-

sages. An MUA often employs an editor software for users to display and edit mes-

sages. In addition to reading and writing messages, MUAs also enable users to attach 

files to the e-mail. Popular MUA applications include  elm ,  mutt , and  pine  in the 

UNIX-based systems, and  Outlook Express  and  Thunderbird  in the Micro-

soft Windows series. Automated scripts or programs that send and receive messages 

for users can also be considered MUAs.  

  Mail Transfer Agent (MTA) and Mail Delivery Agent (MDA) 

 MTAs such as  sendmail ,  qmail , and  postfix  for the UNIX platforms are used 

to accept messages from MUAs through Simple Mail Transfer Protocol (SMTP) and 

pass them directly to the MTA at the remote mail server or to the intermediate MTA 

for relaying. The MDA at the remote mail server then obtains messages from the 

receiving MTA and writes them into the recipient’s mailbox for later retrieval.  

  Mail Retrieval Agent (MRA) 

 An MRA is used to fetch messages from a mailbox on a server and then passes them to an 

MUA through Post Office Protocol (POP) or Internet Message Access Protocol (IMAP).  

 From  Figure 6.11 , we can see that a message, from the composition by the 

sender to the final stage of being fetched by a recipient’s machine, traverses several 

components of the e-mail system. These components need some protocols to trans-

port messages. Typically, a sender MUA sends messages to an MTA using SMTP. 

Thus, MTAs are also known as SMTP servers. A recipient can fetch his messages 

from a mail server via POP or IMAP. Therefore, the mail servers that store messages 

and handle retrieval requests from users are called POP servers or IMAP servers. We 

shall discuss these protocols in detail in Subsection 6.3.3.   

  6.3.2 Internet Message Standards 
 An e-mail message normally consists of two parts, one being the special data, the 

other being the message body. The special data can be categorized according to their 

intended administrative purposes. The first category is information specific to the 

transport medium, such as the address of the sender and recipient. Thus, this type of 

data is called the  envelope.  It may be passed alone by MTAs as the message to the 

recipient. The second category is the  message header,  including the subject and the 

recipients’ names, followed by a blank line and the  message body.  
 The base standard for e-mail messages is defined in RFC 822, later obsoleted 

by RFC 2822 and then RFC 5322. RFC 822 specifies considerable details about the 

message header format and leaves the message body as flat ASCII text. However, 

it could cope with various growing demands such as supporting binary characters, 

international character sets, and multimedia mail extensions. Thus, an enhancement 

known as  Multipurpose Internet Mail Extensions (MIME)  was proposed in RFC 

1341, later obsoleted by RFC 2045~2049, to deal with these new demands. In the rest 

of this section, we shall introduce these two standards. 

lin76248_ch06_417-545.indd   442lin76248_ch06_417-545.indd   442 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 443

  RFC 822—Internet Message Format 

 RFC 822 specifies the syntax of e-mail messages. In its definition, a message con-

sists of an envelope and contents that include message header and body.  Table 6.5  

summarizes common message header fields defined in RFC 822. Each field consists 

of a field name, a colon, and, for most fields, a value. These fields can be classified 

into different types according to their purposes. 

 The originator fields specify the sender information of a message. The  From:  

field tells who wrote and sent the message. The  Reply-To:  field specifies the 

address the sender wants the recipient’s reply to be directed to. This is useful when 

the sender has several e-mail addresses, but wants to receive the responses from the 

mailbox that is used most frequently. 

 The receiver fields indicate the recipients of the message. A common syntax 

is that any two adjacent recipient addresses in a receiver field are separated by a 

comma. The  To:  field gives the primary recipients of the message. The  Cc:  field 

gives a list of recipient addresses that will receive  carbon copies  of the message. In 

fact, there is no difference between the primary and secondary recipients in message 

delivery. Usually, the recipients in the  To:  field might be expected to act on the 

message while the  Cc:  recipients just receive a copy for reference. The  Bcc:  field 

TABLE 6.5 Common Message Header Fields

Type Field Description

Originator

From: The person(s) who sent this message.

Reply-To: Provides a general mechanism to indicate any mailbox(es) to which 

responses are to be sent.

Receiver

To: The primary recipients of the message.

Cc: Carbon copy to secondary recipients.

Bcc: Blind carbon copy to recipients who receive the message without others, 

including the To: and Cc: recipients, seeing who else received it.

Trace

Received: A copy of this field is added by each transport service that relays the 

message.

Return-Path: Added by the final transport system that delivers the message to its 

recipient.

Reference

Message-ID: Contains a unique identifier generated by the mail transport on the 

originating system.

In-Reply-To: Previous correspondence that this message answers.

Other Subject: Provides a summary, or indicates the nature, of the message.

Date Date: Supplies the date and time the mail was sent.

Extension
X-anything: Used to implement additional features that have not yet made it into an 

RFC, or never will.

lin76248_ch06_417-545.indd   443lin76248_ch06_417-545.indd   443 24/12/10   4:25 PM24/12/10   4:25 PM



444 Computer Networks: An Open Source Approach

contains a list of additional recipient addresses that will receive  blind  carbon cop-

ies. The difference is that the  Bcc:  recipients are concealed from other users who 

receive the message. 

 The trace fields provide an audit trail of the message-handling history and in-

dicate a route back to the sender of the message. Each machine that processes the 

message will be inserted into the  Received:  field with its machine name, a mes-

sage ID, time and date it receives the message, which machine it is from, and which 

transport software is used. The  Return-Path:  field is added by the final transport 

system that delivers the message. This field tells how to route the response back to 

the message’s source. 

 The  Message-ID:  field contains a unique identifier generated by the mail 

transport on the originating system. It also indicates the version of the message. The 

 In-Reply-To:  field identifies previous correspondence that the message answers. 

The  Subject:  field describes the content of the message in a few words. The 

 Date:  field supplies the date and time the message was sent. The extension field is 

used to implement additional features that have not yet been defined in the standard. 

All user-defined fields should have names that begin with the string “ X- ”. 

  Figure 6.12  is an example of a message of a header, which says ydlin@cs.nctu.edu.tw 

sent a message to rhhwang@exodus.cs.ccu.edu.tw with a subject entitled “book.” The 

message was processed by mail.cs.nctu.edu.tw, virus-scanned by the csmailgate.cs.nctu.

edu.tw, and finally delivered to the mail server at exodus.cs.ccu.edu.tw.   

    Return-Path: <ydlin@cs.nctu.edu.tw> 

 Delivered-To: rhhwang@exodus.cs.ccu.edu.tw 

 Received: from csmailgate.cs.nctu.edu.tw (csmailgate2.cs.nctu.edu.tw [140.113.235.117]) 

 by exodus.cs.ccu.edu.tw (Postfix) with ESMTPS id 431B212B01D 

 for <rhhwang@exodus.cs.ccu.edu.tw>; Tue, 23 Jun 2009 00:25:52 +0000 (UTC) 

 Received: from mail.cs.nctu.edu.tw (csmail2 [140.113.235.72]) 

 by csmailgate.cs.nctu.edu.tw (Postfix) with ESMTP id 119193F65F 

 for <rhhwang@exodus.cs.ccu.edu.tw>; Tue, 23 Jun 2009 00:22:57 +0800 (CST) 

 Received: from nctuc1cc065391 (f5hc76.RAS.NCTU.edu.tw [140.113.5.76]) 

 by mail.cs.nctu.edu.tw (Postfix) with ESMTPSA id 0577762148 

 for <rhhwang@exodus.cs.ccu.edu.tw>; Tue, 23 Jun 2009 00:22:57 +0800 (CST) 

 Message-ID: <6CF49E76B3C6488AAB184E4A82FFDF66@nctuc1cc065391> 

 Reply-To: “Dr Ying-Dar Lin” <ydlin@cs.nctu.edu.tw> 

 From: “Dr Ying-Dar Lin” <ydlin@cs.nctu.edu.tw> 

 To: <rhhwang@exodus.cs.ccu.edu.tw> 

 Subject: book 

 Date: Tue, 23 Jun 2009 00:22:59 +0800 

 MIME-Version: 1.0 

 Content-Type: multipart/alternative; 

 boundary=” — =_NextPart_000_04F2_01C9F398.C3392310” 

 X-Priority: 3 

 X-MSMail-Priority: Normal 

 X-Mailer: Microsoft Outlook Express 6.00.2900.5512 

 X-MimeOLE: Produced By Microsoft MimeOLE V6.00.2900.5579 

 X-UIDL: mcA”!Ak,”!-Xn!!:pg”!  

 FIGURE 6.12 An example message header. 

lin76248_ch06_417-545.indd   444lin76248_ch06_417-545.indd   444 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 445

  Multipurpose Internet Mail Extensions (MIME) 

 Multipurpose Internet Mail Extensions (MIME) is a specification for enhancing the 

conventional Internet message format. MIME enables e-mail messages to have 

    1. textual headers and message bodies in character sets other than 7-bit ASCII,  

   2. multiple objects being carried within a single message,  

   3. binary or application-specific file attachments, and  

   4. multimedia files such as images, audio, and video files.   

 MIME defines new header fields, as shown in  Table 6.6 . Although RFC 822 has been 

the only format standard for Internet messages, there are still circumstances when 

a mail-processing agent needs to know whether a message was composed with the 

new standard. Thus, the  MIME-Version:  field is used to declare the version of 

the Internet message format in use. The  Content-Type:  field describes the data 

contained in the message body so that the MUA can pick an appropriate mechanism 

to present the data to the user. It specifies the nature of data in the body or body 

parts by giving type and subtype identifiers and providing parameters needed for 

certain types. In general, the top-level media type declares the general type of data, 

while the subtype specifies a specific format for that type of data. The syntax of the 

 Content-Type:  field is 

  Content-Type := type “/” subtype [“;” parameter]...  

 There are seven predefined content types, and their essential characteristics are 

summarized in  Table 6.7 . The  text  type is for sending materials principally in textual 

form. The  multipart  indicates data consisting of multiple body parts, each having its 

own data type. The  message  type indicates an encapsulated message. The  applica-
tion  type indicates data that do not fit into any other category, such as uninterpreted 

binary data or information to be processed by a mail application. The  image  and 

 audio  types indicate image and audio data, respectively. The  video  type indicates that 

the body contains a time-varying picture image, possibly accompanied by color and 

coordinated sound. 

 Many content types are represented in their natural format such as 8-bit 

character or binary data. These types of messages may be sent through all kinds of 

networks; however, some transfer protocols cannot transmit such data. For example, 

SMTP restricts mail messages to 7-bit US-ASCII data with lines no longer than 

TABLE 6.6 MIME Header Fields

Field Description

MIME-Version: Describes the version of the MIME message format.

Content-Type: Describes the MIME content type and subtype.

Content-Transfer-
Encoding:

Indicates the encoding method for transmission.

Content-ID: Allows one body of information to refer to another.

Content-Description: Possible description for a body of information.

lin76248_ch06_417-545.indd   445lin76248_ch06_417-545.indd   445 24/12/10   4:25 PM24/12/10   4:25 PM



446 Computer Networks: An Open Source Approach

1000 characters, including any trailing CRLF line separator. Thus, MIME encodes 

messages that have non-ASCII parts. The  Content-Transfer-Encoding:  

field tells the recipient the way a message body was encoded and how to decode it. 

The possible values for this field are: 

    � Quoted-Printable : This is intended to present data that consists of octets cor-

responding to printable characters in the US-ASCII character set. Here the lines 

are no longer than 76 characters. After the 75 th  character, the rest are cut off and 

replaced with an “=” sign, which serves as an escape character.  

   � Base64 : This is used for data and other text that was meant for people with 

MIME mail programs. The Base64 uses a 65-character subset of the US-ASCII 

character set to encode and decode character strings. Here the lines are no longer 

than 76 characters as with the Quoted-Printable encoding.  

   � 7bit : This is the default value, which means the message contents are plain 

ASCII text.  

   � 8bit : This is data made of 8-bit characters with short lines that end in CRLF.  

   � Binary:  This is like 8-bit encoding but without CRLF line boundaries.  

   � X-Encoding : This represents any nonstandard Content-Transfer-Encoding. 

Therefore, any additional values must have a name beginning with “ X- ”.   

 In constructing a high-level user agent, it may be desirable to allow a mes-

sage body to refer to another one. Message bodies may be labeled accordingly 

with the  Content-ID:  field, which is syntactically identical to the RFC 822 

 Message-ID:  field.  Content-ID  values should be as unique as possible. The 

 Content-Description:  field is used to place some descriptive information for 

a given message body. For example, it may be useful to mark an “image” message 

body as “The front cover of the book,” by which the recipients of the message can 

know the meaning of this image. 

  Figure 6.13  shows an example of a MIME message. This image is encoded using 

the base64 encoding.    

TABLE 6.7 The MIME Content Type Set

Type Subtype(s) Important Parameters

text plain, html Charset

multipart mixed, alternative, parallel, digest Boundary

message RFC 822, partial, external-body Id, number, total, access-type, 

expiration, size, permission

application octet-stream, postscript, rtf, pdf, 

msword

type, padding

image jpg, gif, tiff, x-xbitmap None

audio basic, wav None

video Mpeg None

lin76248_ch06_417-545.indd   446lin76248_ch06_417-545.indd   446 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 447

  6.3.3 Internet Mail Protocols 
 An e-mail system relies on mail protocols to transport messages among clients 

and servers. Here we introduce three common mail protocols—SMTP, POP3, and 

IMAP4. As described in Subsection 6.3.1, SMTP is used to send messages from a 

mail client to a mail server, i.e., MUA to MTA, and also between mail servers, i.e., 

MTA to MTA. POP3 is used for clients to retrieve messages from a mail server, i.e., 

MRA to MUA. IMAP4 is similar to POP3 but supports some additional features such 

as storing and manipulating messages on the mail server. We shall now describe these 

protocols. 

  Simple Mail Transfer Protocol (SMTP) 

 Simple Mail Transfer Protocol (SMTP), first defined in RFC 821 and later obsoleted 

by RFC 2821 and 5321, is a standard host-to-host mail transport protocol tradition-

ally operating over TCP on port 25. A daemon that listens to port 25 and speaks 

SMTP is called an SMTP server, i.e., MTA. The SMTP server deals with messages 

from senders and other mail servers. It accepts incoming connections and then de-

livers messages to appropriate recipients or to the next SMTP server. If an SMTP 

server is unable to deliver a message to a particular address and the errors are not 

due to permanent rejections, the message is put in a message queue for later delivery. 

Retries of delivery continue until the delivery succeeds or the SMTP server gives up; 

the give-up time is generally at least four to five days. If the SMTP server gives up 

the delivery, it returns the undeliverable message with an error report to the sender. 

 After an SMTP client (MUA or MTA) establishes a two-way transmission chan-

nel to an SMTP server (MTA), the client can generate and send SMTP commands to 

the server. SMTP replies are sent from the server to the client in response to the com-

mands.  Table 6.8  lists some important SMTP commands.  HELO  is used to identify 

the SMTP client to the SMTP server at the beginning of the session.  MAIL FROM:  

informs the SMTP server who the originator is. It is used before specifying recipi-

ents for each message, or after a  RSET .  RCPT TO:  announces to the SMTP server 

to whom the message has been sent. Multiple recipients are allowed, but each must 

have its own mailbox listed in  RCPT TO: , which immediately follows the  MAIL 
FROM: .  DATA  indicates the mail data. Everything entered following  DATA  is treated 

as the message body, and is sent to the recipients. The mail data is terminated by the 

   From: ‘Yi-Neng Lin’ <ynlin@cs.nctu.edu.tw> 

 To: ydlin@cs.nctu.edu.tw 

 Subject: Cover 

 MIME-Version: 1.0 

 Content-Type: image/jpg; 

   name=cover.jpg 

 Content-Transfer-Encoding: base64 

 Content-Description: The front cover of the book 

 <.....base64 encoded jpg image of cover...> 

 FIGURE 6.13 An example of a MIME message. 

lin76248_ch06_417-545.indd   447lin76248_ch06_417-545.indd   447 24/12/10   4:25 PM24/12/10   4:25 PM



448 Computer Networks: An Open Source Approach

character sequence “ <CRLF>.<CRLF> ” which is a new line containing only a “.” 

(period) followed by another new line. When the period is entered, the message may 

be queued or sent immediately.  RSET  resets the state of the current session; both the 

 MAIL FROM:  and  RCPT TO:  for the current transaction will be cleared. Finally, 

 QUIT  is used to close the session. 

 Whenever the SMTP server receives a command from a client, the server re-

sponds with a three-digit numerical code that indicates the success or failure of the 

command.  Table 6.9  summarizes the response codes. The  200  or  2xx  response 

means the previous command has been handled successfully. 

 After seeing the syntax and semantics of SMTP commands and replies, let us 

follow the interactions between the client and the server in an example session in 

 Figure 6.14 , in which ynlin sends an e-mail to ydlin. Note that “R” is the response 

from the receiving server, while “S” is the input by the sending client.   

  Post Office Protocol Version 3 (POP3) 

 Post Office Protocol version 3 (POP3), first defined in RFC 1081 and later obsoleted 

by RFC 1225, 1460, 1725, and 1939, is designed for user-to-mailbox access. A 

daemon that listens to port 110 and speaks POP3 is called a POP3 server. The POP3 

server accepts connections from clients and retrieves messages for them. When a 

TCP connection is established between a client and the server, the server sends a 

greeting to the client and then exchanges commands and responses with the client. 

TABLE 6.8 Important SMTP Commands

Command Description

HELO Greet the receiver with the sender’s domain name.

MAIL FROM: Indicates the sender, but could be spoofed, too.

RCPT TO: Indicates the recipient.

DATA Indicates the mail data, terminated by a “.” in a single line.

RSET Reset the session.

QUIT Close the session.

TABLE 6.9 SMTP Replies

Response Description

2xx Command accepted and processed.

3xx General flow control.

4xx Critical system or transfer failure.

5xx Errors with the SMTP command.

lin76248_ch06_417-545.indd   448lin76248_ch06_417-545.indd   448 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 449

 A POP3 session progresses through a number of states during its lifetime. 

These states include  AUTHORIZATION ,  TRANSACTION , and  UPDATE . Once 

the client connects to the POP3 server and receives a greeting from the server, the 

session enters the  AUTHORIZATION  state. Then, to prove its identity, the client 

must tell the POP3 server its username and password. After the client has passed the 

identification check, the session enters the  TRANSACTION  state. At this time, the 

client can issue commands to the server and request the server to act on commands, 

for example, listing the messages on the maildrop. When the client has issued the 

 QUIT  command, the session enters the  UPDATE  state. In this state, the POP3 server 

releases any resources allocated to the client during the  AUTHORIZATION  state, 

says goodbye to the client, and finally closes the connection with the client. 

 Table 6.10 summarizes some essential POP3 commands. The third column 

indicates what session state a command belongs to.  USER  and  PASS  are used 

to identify the client in the  AUTHORIZATION  state.  STAT  gets the number of 

messages in and the octet size of the maildrop.  LIST  gets the size of one or all 

messages. If a message’s name follows  LIST  as an argument, the information for 

that message will be reported.  RETR  is used to retrieve a message from the maildrop. 

 DELE  marks a message as deleted, and any future reference to the marked messages 

in a POP3 command generates an error. Note that the marked messages do not 

actually get deleted until the POP3 session enters the  UPDATE  state.  NOOP  stands 

for no operation, for which the POP3 server does nothing but replies with a positive 

response.  RSET  resets all messages that are marked as deleted to unmarked. Finally, 

 QUIT  turns the POP3 session into the  UPDATE  state and then terminates the session. 

 All POP3 replies begin with a status line. The status line comprises a status 

indicator and a keyword, possibly followed by additional information. There are 

currently two status indicators: positive (“ +OK ”) and negative (“ –ERR ”). Additional 

information follows the status indicator on a single line of command results. 

  Figure 6.15  shows a POP3 session. Note that “S” is the response from the server 

while “C” is the input by the client. In this example, a user logs in on the POP3 

server. First, he lists all messages in his maildrop. He then retrieves one message and 

terminates the session.   

   R: 220 mail.cs.nctu.edu.tw Simple Mail Transfer Service Ready 

 S: HELO CS.NCTU.EDU.TW 

 R: 250 MAIL.CS.NCTU.EDU.TW Hello [140.113.235.72] 

 S: MAIL FROM:<ynlin@CS.NCTU.EDU.TW> 

 R: 250 OK 

 S: RCPT TO:<ydlin@CS.NCTU.EDU.TW> 

 R: 250 2.1.5 <ydlin@CS.NCTU.EDU.TW> 

 S: DATA 

 R: 354 Start mail input; end with <CRLF>.<CRLF> 

 S: ...mail content... 

 S: . 

 R: 250 2.6.0 <SK3MoY3AYg00000001@CS.NCTU.EDU.TW> Queued mail for delivery 

 S: QUIT 

 R: 221 mail.cs.nctu.edu.tw Service closing transmission channel 

 FIGURE 6.14 An SMTP session. 

lin76248_ch06_417-545.indd   449lin76248_ch06_417-545.indd   449 24/12/10   4:25 PM24/12/10   4:25 PM



450 Computer Networks: An Open Source Approach

  Internet Message Access Protocol Version 4 (IMAP4) 

 IMAP4, first defined in RFC 1730 and later obsoleted by RFC 2060 and 3501, is 

proposed as a replacement for the POP3 protocol. It comes from the need to use 

Web browsers anywhere to access e-mails on the server without actually download-

ing them. The main difference between IMAP4 and POP3 is that IMAP4 allows 

messages to be  stored  and  manipulated  on the mail system while POP3 only allows 

users to  download  their messages and store and manipulate messages on the users’ 

machines. A daemon that listens to port 143 and speaks IMAP4 is called an IMAP4 

server. IMAP4 lets users use an IMAP4 mail client on any PC to read, reply to, and 

   S: +OK POP3 Server mail.cs.nctu.edu.tw 

 C: USER ydlin 

 S: +OK send your password 

 C: PASS ******* 

 S: +OK maildrop locked and ready 

 C: ejqwe 

 S: -ERR illegal command 

 C: STAT 

 S: +OK 1 296 

 C: LIST 

 S: +OK 1 messages (296 octets) 

 C: RETR 1 

 S: +OK 296 octets 

 … <server start to send the mail content> … 

 C: QUIT 

 S: +OK ydlin POP3 server signing off (maildrop empty) 

 FIGURE 6.15 A POP3 session. 

TABLE 6.10 Minimal POP3 Commands

Command Description Session State

USER name Identifies the user to the server. AUTHORIZATION

PASS string Enters user password. AUTHORIZATION

STAT Gets the number of messages in and octet size of maildrop. TRANSACTION

LIST [msg] Gets the size of one or all messages. TRANSACTION

RETR msg Retrieves a message from the maildrop. TRANSACTION

DELE msg Marks the msg as deleted from the maildrop. TRANSACTION

NOOP No operation. TRANSACTION

RSET Resets all messages that are marked as deleted to unmarked. TRANSACTION

QUIT Terminates the session. AUTHORIZATION, 

UPDATE

lin76248_ch06_417-545.indd   450lin76248_ch06_417-545.indd   450 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 451

store messages in hierarchical folders on IMAP4 servers, and synchronize client 

messages with the IMAP4 server. 

 An IMAP4 session progresses through three stages: the establishment of a client/

server connection, an initial greeting from the server, and client/server interactions. 

An interaction consists of a client command, server data, and a server completion 

response. An IMAP4 server can be in one of four states. Most commands are valid 

only in certain states. These four states are described as follows: 

      1. Non-authenticated  : When a connection is established between the IMAP4 

server and the client, the server enters the  non-authenticated  state. The 

client must supply authentication credentials before most commands can be 

permitted.  

     2. Authenticated  : When a pre-authenticated connection starts, the server enters 

the  authenticated  state when acceptable authentication credentials have 

been provided or after an error in mailbox selection. In the  authenticated  

state, the client must select a mailbox to access before commands that affect 

messages can be permitted.  

     3. Selected  : When a mailbox has been successfully selected, the server enters the 

 selected  state. In this state, a mailbox has been selected to access.  

     4. Logout  : When the client asks to exit the server, the server enters the  logout  

state. At this time, the server will close the connection.   

 Table 6.11 lists a summary of IMAP4 commands. We do not explain each command 

here. In short, IMAP4 includes operations for creating, deleting, and renaming mail-

boxes; checking for new messages; permanently removing messages; setting and 

clearing flags; RFC 822 and MIME message parsing and searching; and selective 

fetching of message attributes, texts, and portions thereof. Messages on IMAP4 

servers are accessed with message sequence numbers or unique identifiers. 

 Each IMAP4 command starts with an identifier called a “tag” (typically a short 

alphanumeric string, e.g., A001, A002, etc.). Every command being sent must use a 

unique tag. There are two cases in which the client command is not sent completely. 

In either case, the client sends the second part of the command without any tag and 

the server then responds to this command with a line beginning with the token “+”. 

The client must finish sending the whole command before sending another command. 

TABLE 6.11 IMAP4 Command Summary

Session State Commands

Any CAPABILITY, NOOP, LOGOUT

Non-authenticated AUTHENTICATE, LOGIN

Authenticated SELECT, EXAMINE, CREATE, DELETE, 
RENAME, SUBSCRIBE, UNSUBSCRIBE, LIST, 
LSUB, STATUS, APPDNED

Selected CHECK, CLOSE, EXPUNCGE, SEARCH, FETCH, 
STORE, COPY UID

lin76248_ch06_417-545.indd   451lin76248_ch06_417-545.indd   451 24/12/10   4:25 PM24/12/10   4:25 PM



452 Computer Networks: An Open Source Approach

   S: * OK Dovecot ready. 

 C: a001 login user passwd 

 S: a001 OK Logged in. 

 C: a002 select inbox 

 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft unknown-3 unknown-4 unknown-0 NonJunk 

$MDNSent Junk $Forwarded) 

 S: * OK [PERMANENTFLAGS (\Answered \Flagged \Deleted \Seen \Draft unknown-3 

 unknown-4 unknown-0 NonJunk $MDNSent Junk $Forwarded \*)] Flags permitted. 

 S: * 885 EXISTS 

 S: * 0 RECENT 

 S: * OK [UNSEEN 869] First unseen. 

 S: * OK [UIDVALIDITY 1243861681] UIDs valid 

 S: * OK [UIDNEXT 5146] Predicted next UID 

 S: a002 OK [READ-WRITE] Select completed. 

 C: a003 fetch 2 full 

 S: * 2 FETCH (FLAGS (\Seen) INTERNALDATE “05-Apr-2009 17:50:01 +0800” 

      RFC822.SIZE 2104 ENVELOPE (“Sat, 5 Apr 2009 17:50:01 +0800” 

        “=?big5?B? Rnc6IFJlOiC4Z7ZPsMqk5KTOusOrScV2ss6tcKrt?=” 

        ((“rhhuang” NIL “ rhhuang” “ rhhwang@exodue.cs.ccu.edu.tw”)) ((“rhhuang” NIL “ rhhuang” 

“rhhwang@exodue.cs.ccu.edu.tw”)) ((“rhhuang” NIL “ rhhuang” “ rhhwang@exodue.cs.ccu.edu.tw”)) 

BODY (“text” “html” (“charset” “big5”) NIL NIL “base64”  1720 22)) 

 S: a003 OK Fetch completed. 

 C: a004 fetch 2 body[header] 

 S: * 2 FETCH (BODY[HEADER] {384} 

 S: From: “rhhuang” <rhhwang@exodue.cs.ccu.edu.tw> 

 S: To: “ydlin” ydlin@cs.nctu.edu.tw> 

 S: Subject: =?big5?B?Rnc6IFJlOiC4Z7ZPsMqk5KTOusOrScV2ss6tcKrt?= 

 S: Date: Sat, 5 Apr 2009 17:50:01 +0800 

 S: MIME-Version: 1.0 

 S: Content-Type: text/html; charset=”big5”; Content-Transfer-Encoding: base64 

 S: X-Priority: 3; X-MSMail-Priority: Normal; X-MimeOLE: Produced By Microsoft MimeOLE 

 S: a004 OK Fetch completed. 

 C: a005 store 2 +flags \deleted 

 S: * 2 FETCH (FLAGS (\Deleted \Seen)) 

 S: a005 OK Store completed. 

 C: a006 logout 

 S: * BYE Logging out 

 S: a006 OK Logout completed. 

 S: Connection closed by foreign host. 

 FIGURE 6.16 An IMAP4 session. 

 The responses in IMAP4 can be tagged or untagged. A tagged status response 

indicates the completion of a client command with a matched tag. Untagged status 

responses indicate server greeting or server status other than the completion of a 

command. The sever status responses can take three forms: status response, server 

data, and command continuation request. A client must be prepared to accept the fol-

lowing responses at any time: 

     1. Status response : The status responses can indicate either the result ( OK ,  NO , 

or  BAD ) of the completed client command or the server’s greetings and alerts 

( PREAUTH  and  BYE ).  

lin76248_ch06_417-545.indd   452lin76248_ch06_417-545.indd   452 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 453

 2. Server data : The client must record certain server data when it is received, 

as noted in the description of that data. The data conveys critical information 

that affects the interpretation of all subsequent commands and responses. Data 

transmitted from the server to the client and status responses that do not indicate 

command completion are called untagged responses. Each untagged response is 

prefixed with the character “ * ”.  

 3. Command continuation request : Theses responses indicate that the server is 

ready to accept the continuation of a command from the client. The remainder 

of this response is a line of text.   

  Figure 6.16  shows an example IMAP4 session. A user logs onto an IMAP4 server with 

his username and password. After being authenticated, the user manipulates the “inbox” 

mailbox. The user fetches a message, marks the message to be deleted, and finally termi-

nates the session.        

 Historical Evolution: Web-Based Mail vs. 
Desktop Mail 

 Webmail is an e-mail service accessed by a Web browser, as opposed to a desktop 

e-mail program such as Microsoft Outlook or Mozilla’s Thunderbird. A survey 

by  USA Today  in 2008 reported that the top four Webmail service providers were 

Microsoft Windows Live Hotmail, Yahoo! Mail, Google Gmail, and AOL Mail. 

These providers also provided desktop e-mail services for users to retrieve e-mails. 

Two advantages of Webmail over desktop e-mail service are  ubiquitous  accessibility 

and negligible maintenance overhead. With Webmail, e-mails are maintained and 

manipulated on a remote e-mail server through IMAP4 commands. In contrast, a 

desktop e-mail service requires clients to retrieve e-mails from e-mail servers through 

POP3 or IMAP4 commands and to store them locally in users’ computers. Desktop 

e-mail still has two benefits: possessing  total control  over e-mails, and being able to 

efficiently access e-mails stored locally. It is interesting to note that engineers and 

scientists tend to prefer desktop e-mail over Webmail due to the need for total control. 

 Two interfaces exist in Webmail services: (1) a Web interface using 

 GET  and  POST  HTTP commands between clients and the frontend Webmail 

server and (2) an e-mail interface using POP3/IMAP4 commands between the 

frontend Webmail server and backend e-mail servers. The frontend Webmail 

server and backend e-mail server could be separated or integrated as shown in 

 Figure 6.17(a)  and 6.17(b), respectively. In  Figure 6.17(b) , both the first and the 

second interfaces are integrated on the machine.  

   FIGURE 6.17 Webmail service architectures. 

(a) Separated frontend and backend (b) Integrated frontend and backend

HTTP -
GET, POST

Webmail
server

Backend mail
servers

POP3/
IMAP4

HTTP -
GET, POST

Webmail server/
Backend mail servers

lin76248_ch06_417-545.indd   453lin76248_ch06_417-545.indd   453 24/12/10   4:25 PM24/12/10   4:25 PM



454 Computer Networks: An Open Source Approach

 Open Source Implementation 6.2:   qmail   

  Overview 
  qmail  is a secure, reliable, efficient, and simple MTA designed for UNIX-like 

operating systems. It is targeted to be a replacement for  sendmail , the most 

popular MTA on the Internet. Up to now,  qmail  has been the second most popular 

SMTP server and has had the fastest growth among all SMTP servers on the Internet. 

The reason we do not introduce  sendmail  here is that its program and configura-

tion files are difficult to understand. We first introduce the  qmail  system structure, 

control files, and data flows. Then we go into details about  qmail  queue structure. 

 In summary,  qmail  is a concurrent implementation of the connection-

oriented stateful SMTP (port 25), POP3 (port 110), and IMAP4 (port 143) 

protocols. It also supports MIME messages.  

  Block Diagram 
 An e-mail system performs a variety of tasks, such as handling incoming messages, 

managing the queue, and delivering messages to users. From the perspective of 

program structure,  sendmail  is  monolithic,  which means it puts all functions into 

a large, complex program. This causes more security bugs and difficulties in main-

taining the program.  qmail , however, is  modular,  which means a complete  qmail  

system is composed of several modular programs. Each program of  qmail  is small 

and simple, and thus performs its specific tasks efficiently. The modular design 

makes each program run with as little privilege as possible, and therefore enhances 

the security. Due to its good design,  qmail  is also easy to set up and manage. The 

core modules of  qmail  and their functions are listed in  Table 6.12 .  Figure 6.18  

TABLE 6.12 Core Modules of qmail

Module Description

qmail-smtpd Receive a message via SMTP.

qmail-inject Preprocess and send a message.

qmail-queue Queue a message for delivery.

qmail-send Deliver messages from the queue.

qmail-clean Clean up the queue directory.

qmail-lspawn Schedule local deliveries.

qmail-local Deliver or forward a message.

qmail-rspawn Schedule remote deliveries.

qmail-remote Send a message via SMTP.

qmail-pop3d Distribute messages via POP3.

lin76248_ch06_417-545.indd   454lin76248_ch06_417-545.indd   454 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 455

shows the block diagram of these core modules. The data flows indicated in this 

block diagram shall be illustrated in the subsection on algorithm implementations.   

  Data Structures 
  qmail  uses many configuration files to change the behavior of the system. These 

files are located under the  /var/qmail/control  directory. Before starting 

the  qmail  system, we need to modify some files for desired configurations. 

 Table 6.13  lists some control files. Here we introduce the three most important 

files. The  me  file stores the full qualified domain name (FQDN) of the local host. 

Remote mail
server

Remote mail
client

Local mail
client

qmail-smtpd qmail-injectMTA

MTA MUA

SMTP

MUA

qmail system

qmail-queue

qmail-sendMDA

qmail-rspawn qmail-lspawn

qmail-remote qmail-local

mailbox/maildir

qmail-pop3dMRA

Remote mail
client

MUAMTA

SMTP POP3

Remote mail
server

qmail-clean

   FIGURE 6.18 The data flows in the  qmail  suite. 

Continued

lin76248_ch06_417-545.indd   455lin76248_ch06_417-545.indd   455 24/12/10   4:25 PM24/12/10   4:25 PM



456 Computer Networks: An Open Source Approach

rcpthosts  records all of the hosts that  qmail  shall receive messages for. Note 

that all of the local domains must be in this file.  locals  contains local hosts; 

that is, messages sent to these hosts shall be delivered to local users. 

     qmail   Queue Structure 
  qmail  temporarily stores received messages in a central queue directory for 

later delivery. This directory is located at  /var/qmail/queue , and has sev-

eral subdirectories to store different information and data.  Table 6.14  describes 

these subdirectories and what they contain. 

TABLE 6.14 Subdirectories in the qmail Queue and Their Contents

Subdirectory Contents

Bounce Permanent delivery errors

Info Envelope sender addresses

Intd Envelopes under construction by qmail-queue

Local Local envelope recipient addresses

Lock Lock files

Mess Message files

Pid Used by qmail-queue to acquire an i-node number

Remote Remote envelope recipient addresses

Todo Complete envelopes

TABLE 6.13 Some Control Files of qmail

Control Default Used by Description

me FQDN of 

system

various Default for many control 

files

rcpthosts (none) qmail-smtpd Domains that qmail 

accepts messages for

locals me qmail-send Domains that qmail 

delivers locally

defaultdomain me qmail-inject Default domain name

plusdomain me qmail-inject Added to any host name that 

ends with a plus sign

virtualdomains (none) qmail-send Virtual domains and users

lin76248_ch06_417-545.indd   456lin76248_ch06_417-545.indd   456 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 457

 Messages, from entering to leaving the  qmail  queue, may pass through 

several subdirectories, as depicted in  Figure 6.19 . This comprises three phases: 

(1) messages enter the queue, (2) queued messages are preprocessed, and (3) 

preprocessed messages are delivered. 

  Entering the Queue 
 For an incoming message,  qmail-queue  first creates a file with a unique file 

name under the “ pid  ”  directory. The file system assigns a unique “ inode  ”  

number, 457 for example, to the file. The unique  inode  number is used 

by  qmail-queue  to identify the message.  qmail-queue  renames the 

newly created file,  pid/ whatever, as  mess/457 , and writes the message to 

 mess/457 . Then,  qmail-queue  creates another new file,  intd/457 , and 

writes the envelope information to it. Next,  qmail-queue  links  intd/457  

to  todo/457 . After this step, the message has been successfully queued and is 

to be preprocessed.  

  Message Preprocessing 
 The purpose of message preprocessing is for  qmail-send  to decide which 

recipients are local and which recipients are remote. When  qmail-send  finds 

 todo/457 , it first removes  info/457 ,  local/457 , and  remote/457  

if they exist. Then it reads  todo/457 , and creates  info/457  and possibly 

 local/457  and  remote/457  .  After that, it removes  intd/457  and 

 todo/457 . The preprocessing for the message is finished at this time. The 

 local/457  or  remote/457  now contains the recipients’ addresses. Each 

address is marked either  NOT DONE  or  DONE . The definitions of  NOT DONE  

and  DONE  are as follows: 

   NOT DONE  : If there have been any delivery attempts, they have all 

met temporary failure.  qmail-send  should try to deliver to this address in 

the future. 

Continued

   FIGURE 6.19 How messages pass through the  qmail  queue. 

Incoming
messages

qmail-queue

todo/457

4: Link

7: Remove
5: Remove if existed
and then create

8: Append
if failed

9: Delete

9: Delete

10: Delete

6: Remove

11: Delete

3: Create

1: Create

2: Rename

Delivered
messages

8: Deliver successfully

qmail-send

intd/457

mess/457

pid/xxx

bounce/457

local/457

remote/457

info/457

lin76248_ch06_417-545.indd   457lin76248_ch06_417-545.indd   457 24/12/10   4:25 PM24/12/10   4:25 PM



458 Computer Networks: An Open Source Approach

DONE  : The message was successfully delivered or the last delivery attempt 

met permanent failure. Either way,  qmail-send  should not attempt further 

delivery to this address.  

  Message Delivering 
  qmail-send  delivers the message to a  NOT DONE  address at its leisure. It 

will mark the address as  DONE  if the subsequent message delivery succeeds. If 

encountering a permanent delivery failure,  qmail-send  will first append a 

note to  bounce/457 , creating  bounce/457  if needed, and then mark the 

address as  DONE . Note that  qmail-send  may inject a new bounce message to 

 bounce/457  and delete  bounce/457  at any time. Iteratively,  qmail-send
delivers the message to the addresses in  local/457  and  remote/457 . 

After delivering to all the addresses,  qmail-send  deletes  local/457  

and  remote/457 . Then  qmail-send  eliminates the message. First, 

 qmail-send  checks for the existence of  bounce/457 . If  bounce/457  

exists,  qmail-send  handles it as described above. Once  bounce/457  is 

deleted,  qmail-send  then deletes  info/457  and finally  mess/457 .    

  Algorithm Implementations 
 After  qmail  has been set and is running properly, it is ready to receive messages 

from senders. A message, being received, queued, and finally delivered to the 

recipients by  qmail , might pass through several modules. The block diagram 

in  Figure 6.18  also shows the data flows in the  qmail  suite. First, a program 

receives a message from a sender. This program may be  qmail-smtpd  for the 

message sent via SMTP or  qmail-inject  for messages generated locally. 

Then  qmail-queue  is invoked by  qmail-smtpd  or  qmail-inject  to 

put the message into a central queue directory. The message is then delivered by 

 qmail-send  in cooperation with  qmail-lspawn  or  qmail-rspawn , and 

cleaned by  qmail-clean . If the message is for local users,  qmail-lspawn  

invokes  qmail-local  to store it into the recipient’s mailbox or mail directory. 

If the recipient of the message is not in the local system,  qmail-rspawn  

invokes  qmail-remote  to send the message to the recipient’s mail server. 

The recipients belonging to the local system can retrieve their messages through 

 qmail-pop3d . Note that  qmail-send ,  qmail-clean ,  qmail-lspawn , 

and  qmail-rspawn  are long-running daemons, while the others are invoked 

when needed.  

  Exercises 
    1. Find the .c files and the lines of code that implement  qmail-smtpd , 

 qmail-remote , and  qmail-pop3d .  

   2. Find the exact structure definition of the  qmail  queue in an object of the 

 qmail  structure.  

   3. Find how e-mails are stored in the mailbox and mail directory.    

lin76248_ch06_417-545.indd   458lin76248_ch06_417-545.indd   458 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 459

  6.4 WORLD WIDE WEB (WWW) 

  Simple yet powerful, the World Wide Web (WWW) has contributed to the phe-

nomenal growth of the Internet and has changed the world in information sharing. 

Evolved from  anonymous  information sharing services including anonymous FTP, 

Archie, Gopher, and WAIS, WWW goes one step further to standardize and simplify 

the addressing methods into Universal Resource Locator (URL), multimedia content 

formats into HyperText Markup Language (HTML) and later eXtensible Markup 

Language (XML), and access protocols into HyperText Transfer Protocol (HTTP). 

This section first introduces Web naming and addressing with URL and other similar 

schemes. We then describe HTML, XML, and HTTP. Web caching and proxying 

mechanisms are also reviewed. Finally,  Apache  serves as our example of open source 

implementation, with its performance profiled. 

  6.4.1 Introduction 
 WWW provides a cyber space for universal access to knowledge, and it allows collabo-

rators from different locations to share their ideas and all aspects of a common project. 

Unless two projects are developed collaboratively rather than independently, results 

from two parties might not be integrated into one cohesive piece of work. Started by Tim 

Berners-Lee as a project at the European Organization for Nuclear Research (CERN), 

WWW has been the most popular medium for information retrieval of all sorts since 1989. 

 By using a Web browser such as the commercially available Microsoft Inter-

net Explorer (IE) or other emerging browsers like FireFox, Chrome, and Opera, 

users can access any online Web pages by an underlying procedure illustrated in 

 Figure 6.20 . First, the server name in the Universal Resource Locator (URL), which 

will be discussed shortly, is resolved into an IP address through DNS. The browser 

then connects, by TCP three-way handshake, to the Web server listening on a TCP 

port, usually port 80, at that particular IP address. Once the TCP connection is set, the 

browser issues a HTTP request for the resource to the Web server. The first requested 

resource is a Web page in HTML. The Web browser parses the requested Web page 

   FIGURE 6.20 How a Web client interacts with a Web server. 

1: DNS query

2: TCP three-way handshake

3: HTTP request

4: HTTP response

DNS
server

Web
server

Web
browser

lin76248_ch06_417-545.indd   459lin76248_ch06_417-545.indd   459 24/12/10   4:25 PM24/12/10   4:25 PM



460 Computer Networks: An Open Source Approach

immediately and might issue additional requests for images and any other files in the 

Web page. 

 HTTP 1.0 was standardized in RFC 1945 in 1996, while HTTP 1.1 was standard-

ized in RFC 2068 in 1997 and later obsoleted by RFC 2616 in 1999. RFC 1866 defined 

HTML in 1995 and was obsoleted by RFC 2854 in 2000. Uniform Resource Identifier 

(URI) was defined in RFC 1808 in 1995 and obsoleted by RFC 3986 in 2005.   

  6.4.2 Web Naming and Addressing 
 The Web is an information space formed with a great quantity of Web pages and docu-

ments. The unit of information on the Web is known as a  resource.  How to find and 

manipulate resources in the space is an important issue. Web naming is a mechanism 

for naming resources on the Web, while Web addressing provides ways to access the 

resources. URIs are short strings that identify resources in the Web. URIs make re-

sources available through a variety of naming schemes and access methods. Uniform 

Resource Locators (URLs) are a subset of URIs to describe the addresses of resources 

accessible on the Web. Another kind of URI is the Uniform Resource Name (URN). 

A URN is a name of global scope which does not imply a  location.   Figure 6.21  shows 

the relationship among URI, URL, and URN. Note that URLs are used for  locating  or 

finding resources, whereas URNs are used for  identification.  

   Uniform Resource Identifier (URI) 

 A URI is a compact string of characters for identifying an abstract or physical re-

source. Any resource, whether a page of text, an image, a video or sound clip, or a 

program, has a name encoded in a URI. A URI typically consists of three pieces: 

    1. The naming scheme used to access the resource.  

   2. The name of the machine where the resource is housed.  

   3. The name of the resource itself, given as a path or a file name.   

 The generic syntax of URI includes both  absolute  and  relative  forms. An absolute 

identifier refers to a resource independent of the current context, while a relative 

identifier refers to a resource by how it differs from the current context’s URI. The 

syntax of the absolute URI is: 

  <scheme>:<scheme-specific-part>#<fragment>  

   FIGURE 6.21 The relationship among URI, 
URL, and URN. http:

ftp:
gopher:
etc.

URLs

URNs

URIs

urn:

lin76248_ch06_417-545.indd   460lin76248_ch06_417-545.indd   460 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 461

 which consists of three parts: the name of the scheme being used ( <scheme> ), 

a string ( <scheme-specific-part> ) whose interpretation depends on the 

scheme, and an optional fragment identifier ( <fragment> ), which conveys ad-

ditional reference information. 

 A subset of URI shares a common syntax to represent the hierarchical relation-

ship within the name space. This yields a “generic URI” as 

  <scheme>:<authority><path>?<query>#<fragment>  

 where the scheme-specific-part is further broken down into  <authority> ,  <path> , 

and  <query>  components. Many URI schemes include a top hierarchical element for 

a naming authority; thus the  <authority>  is used to govern the name space defined 

by the rest of the URI. The  <path>  component contains data specific to the authority, 

identifying the resource within the scope of the specified scheme and authority. The 

 <query>  component is a string of information to be interpreted by the resource. 

 Sometimes a URI can also take the form of a relative URI, where the scheme and 

usually also the authority component are missing. Its path generally refers to a resource 

on the same machine where the current context resides. The syntax of the relative URI is 

  <path>?<query>#<fragment>.  

  Figure 6.22  shows some URI examples. The first example URI may be interpreted as 

follows: Some book information residing on the server speed.cs.nctu.edu.tw are accessi-

ble via the path ~/ydlin/index.html through HTTP protocol. The last example is a relative 

URI. Assume we have the base URI  http://www.cs.nctu.edu.tw/ . The relative URI in the 

last example would be expanded to the full URI  http://www.cs.nctu.edu.tw/icons/logo.gif .   

  Uniform Resource Locator (URL) 

 A URL is a compact string representation of a resource’s location on the Internet. It 

is a form of URI. URLs make it possible to direct both people and software applica-

tions to a variety of information, available through a number of different Internet 

protocols. The common syntax of the URL is as: 

  <service>//<user>:<password>@<host>:<port>/<url-path>  

 where some or all of  <user>:<password>@ , “ :<password> , “ :<port> , 

and  /<url-path>  might be omitted. In the preceding syntax, the  <service>  

refers to the specific schemes by which the resource is served. The schemes covered 

here are listed in  Table 6.15 . After the specific scheme comes the data starting with a 

double slash  // . The  <user>  and  <password>  are options for the user name and 

     http://speed.cs.nctu.edu.tw/~ydlin/index.html#Books   

   http://www.google.com/search?q=linux   

  ftp://ftp.cs.nctu.edu.tw/Documents/IETF/rfc2300~2399/rfc2396.txt  
  mailto: ydlin@cs.nctu.edu.tw  

  news: comp.os.linux  

  telnet://bbs.cs.nctu.edu.tw/  
  ../icons/logo.gif  

 FIGURE 6.22 Some URI examples. 

lin76248_ch06_417-545.indd   461lin76248_ch06_417-545.indd   461 24/12/10   4:25 PM24/12/10   4:25 PM

http://www.cs.nctu.edu.tw/
http://www.cs.nctu.edu.tw/icons/logo.gif
http://speed.cs.nctu.edu.tw/~ydlin/index.html#Books
http://www.google.com/search?q=linux


462 Computer Networks: An Open Source Approach

password. If present, the user name and password are separated by a colon ( : ) and 

followed by an at-sign ( @ ). The  <host>  indicates the domain name or IP address of 

a network host. The  <port> , separated from the host by a colon, is the host’s port 

number to connect to. The  <url-path>  specifies the details of how the specified 

resource can be addressed. Note that the slash (/) between the  host  (or  port ) and 

the  url-path  is not part of the  url-path . 

  Figure 6.23  shows some URL examples. The first URL indicates the location of 

an image file on the Web site  www.cs.nctu.edu.tw , while the second is the Webmail 

site of the CS department accessible through SSL (Secure Socket Layer) protocol 

(specified by the “https” service scheme). The third URL indicates a text file avail-

able on the ftp server ftp.cs.nctu.edu.tw. In this example, the user logs onto the ftp 

server with his user name “john” and password “secret”. The fourth example refers 

to a news article numbered 5238 in the newsgroup cs.course.computer-networks on 

the news server news.cs.nctu.edu.tw. The final URL shows an interactive service that 

may be accessed through port 110 by the telnet protocol.   

  Uniform Resource Name (URN) 

 A URL provides the location of a given resource on the Web. If the resource is moved 

to another location, its URL changes. URNs are intended to overcome this problem 

by providing a persistent identifier for resources. A URN is a location-independent 

    http://www.cs.nctu.edu.tw/chinese/ccg/titleMain.gif  

  https://mail.cs.nctu.edu.tw/  

 ftp://john:secret@ftp.cs.nctu.edu.tw/projects/book.txt 

 nntp://news.cs.nctu.edu.tw/cis.course.computer-networks/5238 

 telnet://mail.cs.nctu.edu.tw:110/ 

 FIGURE 6.23 Some URL examples. 

TABLE 6.15 Specific Schemes in URLs

Service Description

ftp File Transfer Protocol

http Hypertext Transfer Protocol

gopher The Gopher protocol

mailto Electronic mail address

news USENET news

nntp USENET news using NNTP access

telnet Reference to interactive sessions

wais Wide Area Information Servers

file Host-specific file names

prospero Prospero Directory Service

lin76248_ch06_417-545.indd   462lin76248_ch06_417-545.indd   462 24/12/10   4:25 PM24/12/10   4:25 PM

www.cs.nctu.edu.tw
http://www.cs.nctu.edu.tw/chinese/ccg/titleMain.gif
https://mail.cs.nctu.edu.tw/


 Chapter 6 Application Layer 463

name that identifies a resource on the Web. The URN syntax, which consists of four 

parts, is: 

   <URN> ::= “urn:” <NID> “:” <NSS>   

 where the <URN> is only a label identifying the name being a URN, the “urn:” is a 

name space identifier used to determine how to handle the URN, the <NID> refers 

to a name space identifier, which designates the authority for this URN scheme, and 

the <NSS> is the name-specific string whose syntax and meaning are defined within 

the context of the <NID>. In other words, the meaning of the <NSS> is assigned and 

determined by the <NID> that owns that particular URN name space. 

  Figure 6.24  gives some URN examples. The “path”, “www-cs-nctu-edu-tw”, 

and “isbn” are name space identifiers. The first example consists of a naming author-

ity or path “/home/ydlin/courses/index.html” and a unique string “index.html”. The 

second example illustrates a student in the domain www-cs-nctu-edu-tw. The last 

example is a URN for a book. This URN uses the ISBN number of the book to name 

it. If a service wants to use a URL to refer to the book, it might look like 

   http://www.isbn.com/0-201-56317-7   

 which contains a specific protocol and a domain name that might be changed over 

time. The URN contains neither of these, so it is more stable. However, it is much more 

useful if there is a system that can map the name onto the corresponding resource. This 

process is called resolution and is similar to the way DNS takes a domain name and 

resolves it into the IP address. RFC 1737 concentrates on the case of a URN resolved 

to a URL, though a URN could be resolved to any network resource or services.    

  6.4.3 HTML and XML 
 HyperText Markup Language (HTML) is the predominant markup language for 

Web pages. As a descendent from Standard Generalized Markup Language (SGML) 

specified by the World Wide Web Consortium (W3C), HTML provides a means 

to describe the structure of text-based information in a document by denoting text 

as links, headings, paragraphs, lists, etc., and to supplement text with interactive 

 forms,  embedded  images,  and other  objects.  HTML is written in the form of “tags” 

surrounded by angle brackets. 

 Nevertheless, pure formatting has been considered insufficient to help readers 

digest information. It is hoped that one can define his own tags in the markup language 

to  describe  data rather than simply formatting them. This is where eXtensible 

Markup Language (XML) originates. XML was defined in RFC 4826 in 2007. It 

allows the user to define the markup elements, and helps information systems to 

share structured data. Unlike HTML, which supports only limited styles, XML 

provides a standard style specification called eXtensible Style Language (XSL). 

   urn:path:/home/ydlin/courses/index.html 

 urn:www-cs-nctu-edu-tw:student 

 urn:isbn:0-201-56317-7 

 FIGURE 6.24 Some URN examples. 

lin76248_ch06_417-545.indd   463lin76248_ch06_417-545.indd   463 24/12/10   4:25 PM24/12/10   4:25 PM

www-cs-nctu-edu-tw:student
www-cs-nctu-edu-tw
www-cs-nctu-edu-tw


464 Computer Networks: An Open Source Approach

Arbitrary levels of nested structure are allowed, compared to HTML, which accepts 

only a few levels. It supports a formal grammar that standardizes parsing and makes 

parsing easier. In addition to HTML-like simple links, XML is capable of  extended 
links,  in which the target includes multiple objects of the same or different types of 

resources. This enables flexible provisioning of content and can be implemented in 

XML Linking Language (XLink) and XML Pointer Language (XPointer).  

  6.4.4 HTTP 
 The HTTP messages consist of requests and responses between clients and servers. 

A request message consists of (1) the  request line,  which includes the  method  to be 

applied to the resource, the  identifier  of the resource, and the protocol  version  in use; 

(2) the  header,  which defines various  features  of the  data  that is requested or being 

provided; (3) an  empty line,  which is used to separate the header from the message 

body; and (4) an optional  message body.  
  Table 6.16  lists request methods used in request messages. Many of them deserve 

further explanation.  CONNECT  is used to dynamically switch from a connection into a 

tunnel, e.g., SSL-encrypted tunneling, to  secure  the communication.  GET  is the most 

widely used method to retrieve a specified resource.  HEAD  is the pseudo version of  GET  

and is often used to test hypertext links for validity, accessibility, and recent modifica-

tion. A client can use  OPTIONS  to request information about the communication options 

available for the specified URL without initiating a resource action or a resource retrieval. 

  POST  submits data as a new subordinate of the specified resource.  PUT  requests 

data to be stored exactly at the specified resource. If the specified resource already 

exists, the data should be considered a modified version of that which resides on 

the origin server. Though similar, POST and PUT have some differences.  PUT  is 

a limited operation and does nothing more than  putting  data at a specified URL. 

However, depending on the server logic,  POST  would allow the server to do 

whatever it wants with the data, including storing it in the  specified  page, a  new  page, 

or a  database,  or simply throwing it away. The method  TRACE  is used to invoke a 

remote application-layer  loop-back  of the request.  TRACE  allows the client to see 

TABLE 6.16 Request Methods of the HTTP Protocol

Request Method Description

CONNECT Dynamically switch the request connection to a tunnel, e.g., SSL 

tunneling.

DELETE Delete the specified resource at the server, if possible.

GET Request a representation of the specified resource.

HEAD Ask for the response as GET, but without the response body.

OPTIONS Request for information about available options and/or requirements 

associated with the specified URL.

POST Submit data to be a new subordinate of the specified resource.

PUT Request data to be stored under the specified resource.

TRACE Invoke a remote application-layer loop-back of the request.

lin76248_ch06_417-545.indd   464lin76248_ch06_417-545.indd   464 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 465

what is being received at the receiver end of the request and to use that data for 

testing or diagnostic information. 

 After receiving and interpreting a request message, a server responds with 

an HTTP response message. The first line of a response message includes the 

protocol  version  followed by a numeric  status  code and its associated  textual  phrase. 

 Table 6.17  summarizes the response status codes. The status code is a three-digit 

integer code reporting the result of the attempt to satisfy the request. The  2xx  status 

code means the request has been handled successfully. 

  Figure 6.25  gives an example HTTP session in which the client downloads some 

image files and then uploads several documents to a remote server.  

TABLE 6.17 Response Status Codes of the HTTP Protocol

Response 
Status Code Description

1xx Informational—Request received, continuing process.

2xx Success—The action was successfully received, understood, and accepted.

3xx Redirection—Further action must be taken in order to complete the request.

4xx Client Error—The request contains bad syntax or cannot be fulfilled.

5xx Server Error—The server failed to fulfill an apparently valid request.

   C: GET / HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 C: GET /images/doclist/icon_5_spread.gif HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 C: GET /images/doclist/icon_5_chrome_folder.gif HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 C: GET /doclist/client/js/3857076368-doclist_modularized-webkit_app__zh_tw.js HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 C: POST /ir HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 C: GET /DocAction?action=updoc&hl=zh_TW HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 C: GET /doclist/client/js/2829347588-doclist_upload__zh_tw.js HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 C: GET /images/doclist/icon_5_folder.gif HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 C: POST /upload/resumableupload HTTP/1.1\r\n 

 S: HTTP/1.1 201 Created\r\n 

 C: POST 

/upload/resumableupload/AEnB2Uqc0vh4TlTW3Kblk5ayKtlptLcH-mVAd2cvLdSFD1jSIQd1nNdJeZ 

bVhOsKliVO4VeR9MP_gleoUDwU24rO07vUHUYvsQ/0 HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 C: GET / HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 C: POST /ir HTTP/1.1\r\n 

 S: HTTP/1.1 200 OK\r\n 

 FIGURE 6.25 An example HTTP session. 

lin76248_ch06_417-545.indd   465lin76248_ch06_417-545.indd   465 24/12/10   4:25 PM24/12/10   4:25 PM



466 Computer Networks: An Open Source Approach

  From Stateless to Stateful 

 HTTP is basically a  stateless  protocol, that is, the server does not have any state kept 

during transactions with clients. A server fetches the page requested by the client and 

completes a transaction, so each transaction is independent of the other. However, 

an HTTP server can be made to act as if it were stateful, with help from the client. 

 Two ways exist to realize stateful HTTP transactions for applications that re-

quire statefulness. The first is to use the concept of  session,  in which all parameters 

pertaining to a potential session are kept in the server without client awareness. How-

ever, this method lacks scalability due to the server’s limited memory space, resulting 

in session states that soon expire. To fix this drawback, relatively small  cookies  are 

employed as an alternative, in which states are sent in HTTP headers to the clients 

and then stored in the form of a cookie. Clients embed the cookie in the subsequent 

HTTP requests of the same session. Though scalability is greatly extended, this re-

quires cooperation from clients, usually through manual settings by users to enable 

the use of cookies, and brings security risks to the clients. 

 In addition to the transaction-level statefulness, additional  connection-level
statefulness is provided in terms of  HTTP1.1 persistency.  That is, only one single 

TCP connection is enough for a client to carry on all transactions with a server, of 

course with configurable timeout timers in use. This significantly reduces the amount 

of time and memory space being consumed, compared to the ordinary HTTP1.0 

which establishes one connection per transaction.  

 Principle in Action: Non-WWW Traffi c Over 
Port 80 or HTTP 

 Usually an Internet application is associated with a well-known server port 

number. For example, port 53 for the DNS service, ports 20 and 21 for the FTP 

service, ports 25, 110, and 143 for the SMTP, POP3, and IMAP4 services, re-

spectively, and port 80 for the HTTP service. Nowadays, networks carry more 

complex traffic such as P2P traffic that uses dynamically allocated port numbers. 

However, traffic on these non-well-known ports is often blocked by enterprise 

firewalls for various reasons. Thus, many such applications  disguise  their traffic 

over TCP port 80 or within HTTP messages in order to pass through firewalls. 

For example, Skype can be configured to run over port 80. Windows Live Mes-

senger uses the Microsoft Notification Protocol (MSNP) over TCP port 1863 to 

transmit messages, but optionally, it can  encapsulate  MSNP messages within 

HTTP messages. 

 Transmitting over port 80 is different from transmitting over HTTP. The for-

mer is easily done by building connections with port 80, while the latter encap-

sulates the original traffic in HTTP messages. In either case, the goal is to evade 

firewalls that bypass traffic over port 80 or HTTP messages. Consequently, 

firewalls or network administrators cannot rely on port numbers or HTTP mes-

sages to identify the message type because the traffic recognized as Web traffic 

could be something else. 

lin76248_ch06_417-545.indd   466lin76248_ch06_417-545.indd   466 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 467

 Historical Evolution: Google Applications 

 In the era of cloud computing, software would be leased to the client as a service 

instead of being sold and owned. Although well known for providing Internet 

search service, Google has released several Web-based products, including  Gmail,  
 Google Maps,   Google Calendar,   Google Talk,   Google Docs,   Google Sites,   Google 
Notebook,  and  Google Chrome,  and Picasaweb/Picasa. Techniques such as replica 

servers, data backup, and cloud computing are used by Google to distribute the 

workload among servers and raise the entire performance. In the beginning, Google 

applications just supported  online  versions, where all operations were transformed 

into sequential commands, transmitted over the Internet to and completed by 

Google servers, but now they also support  offline  versions where users operate 

locally and transmit the final results when connected to Google servers. 

  Table 6.18  summarizes the features of different categories of Google 

applications.  Google Docs  is a Web-based online application suite similar to 

Microsoft Office, with more support for online collaborative works.  Google 

TABLE 6.18 Categories of Google Applications

Categories Application Name Comments

Office suites Google Docs •  Support text editing for documents, 

spreadsheets, and presentations

• Collaborative editing of documents

• Support online use

Web Google Sites, 

Google Notebook

• Collaborative content editing of Web sites

• Support online use

Photo editing Picasaweb, 

Picasa

• Organize/edit digital photos

• Support online/offline use

Instant messaging/ 

voice

Google Talk • Use XMPP/Jingle protocol

• Support online use

Web browser Google Chrome • Webkit layout engine

• V8 Javascript engine

• Support online/offline use

Time management Google Calendar •  Agenda management, scheduling, shared 

online calendars and mobile calendar sync

• Support online/offline use

Maps Google Maps, 

Google Earth

• Online mapping service

• Support online use

Communication/

collaboration

Google Wave •  Designed to integrate e-mail, instant 

messaging, Wiki, and social network services

Mail Gmail • Web-based interface

• Support POP3, IMAP4, and SMTP

• Support online/offline use

lin76248_ch06_417-545.indd   467lin76248_ch06_417-545.indd   467 24/12/10   4:25 PM24/12/10   4:25 PM



468 Computer Networks: An Open Source Approach

     6.4.5 Web Caching and Proxying 
 Web caching is a mechanism to expedite document downloading on the World 

Wide Web. Just like the ordinary caching concept in computer systems, a copy 

of remote content previously retrieved by users is kept locally in the cache server 

for future access to improve bandwidth efficiency and, most importantly, the 

responsiveness of the surfing experience. This is especially helpful for frequently 

requested Web pages. 

 Upon receiving a request, the cache server checks whether a valid copy is 

present. If yes (cache hit), then the server returns the cached page immediately to the 

client; otherwise the client (browser) will receive the message Page Unfound. The 

client browser then continues the quest of retrieval by sending a request directly to 

the Web server, bypassing the cache server. To achieve maximum satisfaction from 

Web caching, some aspects need to be considered. 

Candidates to be cached : Though disk manufacturing technology has been 

advancing in recent years, size limits still require users not to abuse the disk 

quota. The same applies to the caching mechanism, which relies mainly on 

the disk storage. Therefore, a screening process is necessary to identify the 

caching targets, which often means frequently fetched  static  pages, rather 

than CGI/PHP/ASP–based  dynamic  content. 

Content replacement : To further deal with possible shortage in disk storage, 

some replacement techniques such as  removal  and  threshold  are usually 

adopted. The former, exercised under limited storage, simply removes old 

pages in order to make new accommodations, though a selection procedure 

may be applied based on pages’ popularity and freshness. Under a relatively 

relaxed storage requirement, a threshold may be set on the content, above 

which the content replacement is executed. 

Cache coherence : In addition to ordinary replacement to identify and remove 

old content, each cached item is also associated with an expiration time 

to prevent its becoming outdated. Expiration times can be calculated 

from the last time the document was requested or from the last validation 

date, which is thought to be more appropriate. The trade-off for the latter 

is, however, the increased computation and communication overhead, 

especially at peak times. 

Notebook  is a Web-based online notebook.  Google Chrome  is a Web browser 

that uses the Webkit layout engine and the V8 Javascript engine.  Google Earth
is a geographic information system that displays detailed satellite map and 

even street views.  Google Wave  is a Web-based service designed to integrate 

e-mail, instant messaging, and social networking for personal and collaborative 

communication. The participants can send, reply, and edit the message 

documents called  waves,  add participants, and be notified of changes and replies 

to the waves in real time as they are typed by other collaborators. 

lin76248_ch06_417-545.indd   468lin76248_ch06_417-545.indd   468 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 469

  Transparent Proxy 

 A cache server can also act as a proxy server, which helps forward queries to proper 

destinations if a cache miss occurs. The forwarding destination could be other cache 

servers or the corresponding Web server. This feature is beneficial in two respects. 

First, the overhead of resending the request from the client to the Web server is 

eliminated. Second and most importantly, the utmost control of the network can be 

achieved by  concentrating  all the accesses to the proxy server and monitoring them. 

 Normally the Web caching feature requires that the client preconfigure the 

browser to make sure it checks with the cache server in the first place; in other words, 

the browser must know the address of the cache server. Nonetheless, the complex 

manual configuration usually prevents users from activating Web caching. Fortu-

nately, this can be dealt with by  transparent proxy,  which involves a gateway-level 

technique called  port redirection.  Take the popular open-source package  Squid  that 

supports both caching and proxying as an example. The gateway server of a network 

collects all the Web accesses destined for port 80 and redirects them, for example, 

using  iptables  in Linux, to the  Squid  server, which oftentimes is integrated in 

the same gateway. In this way, the server is virtually transparent to general users, and 

manual configuration becomes unnecessary. Scenario (1) in  Figure 6.26  depicts the 

concept of transparent proxy integrated within a gateway.  

 Nonetheless, not all system administrators prefer the integrated proxy/cache 

server deployment, either due to performance concerns or to the fact that no gateway 

is present in their network topology. In this situation, a standalone server box can be 

applied in collaboration with a separate router via policy routing, or with a Layer-4 

switch via switch rules based on destination port number, as shown in scenario (2) 

in  Figure 6.26 . 

iptables

Policy route or
switch rules

Router/switch

Squid box

Gateway
HTTP

requests

HTTP
requests

Squid proxy/cache
server

(1)

(2)

dest. port
= 80

dest. port
= 80

   FIGURE 6.26 Two types of configuration for transparent proxy. 

lin76248_ch06_417-545.indd   469lin76248_ch06_417-545.indd   469 24/12/10   4:25 PM24/12/10   4:25 PM



470 Computer Networks: An Open Source Approach

 Open Source Implementation 6.3: Apache 

  Overview 
 Undoubtedly Apache stands out as the state of the art when it comes to open source 

Web servers. With its full-featured capability such as dynamic pages with database 

(ex: PHP+Mysql or the built-in  mod_dbd  module), SSL (Secure Socket Layer) 

support, IPv6 support, XML support, and scalable multithread architecture, Apache 

continues to dominate the Web server market with a share of 47% as of 2010. 

 As the demands on various Web-related services increases, the Apache Web 

server has also become one of the most complex servers in the open source com-

munity. However, thanks to its modular design, the internal design of the Apache 

program still can be outlined here. Generally speaking, Apache is a concurrent 

 preforked  implementation of the connection-oriented stateless HTTP protocol 

with binding to port 80. Apache also supports long-term statefulness by embed-

ding  cookies  in HTTP messages.  

  Block Diagram 
 The main components of the Apache server program are hierarchical in nature, 

and can be categorized into three parts: (1) server process initialization, 

(2) master server, and (3) worker process or worker thread depending on the 

implementation, as shown in  Figure 6.27 . We shall describe them in accordance 

with the processing flow in  Figure 6.29 . Next, let us go through the concept of 

“pool,” which is significant in the design of this software.   

  Data Structures 
 Like the common impression of pool as a group of processes or threads, in 

Apache memory resources are also manipulated as pools, each of which 

manages a linked list of resource blocks as basic elements of a pool. However, 

when allocating blocks on a pool, it is necessary to clean up the pool at the right 

time in case the program forgets to free the memory. To ensure appropriate 

deallocation of blocks, a number of built-in hierarchical pools with different 

Server process
initiation

Master server

Spawning

Worker
processes/threads

   FIGURE 6.27 Internal architecture of Apache. 

lin76248_ch06_417-545.indd   470lin76248_ch06_417-545.indd   470 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 471

lifetimes are supported, as shown in  Figure 6.28 . A pool further comprises a 

linked list of sub-pools. While the pool  pglobal  exists for the entire runtime 

of the server, the  pconf ,  plog , and  ptrans  pools exist only until the server 

is restarted. Similar lifetime rules apply to  pchild  (child/worker process/

thread),  pconn  (connection), and  preq  (request). A pool can be created by 

 apr_pool_create()  in  Figure 6.29 , where  parent  is designated as the 

parent pool of the  newpool . The root parent,  pglobal , is automatically 

created during server startup so that sub-pools can be initiated whenever needed 

(i.e., when new connections are to be established, when new requests arrive, etc).   

  Algorithm Implementations 
 Now let us discuss Apache’s processing flow in  Figure 6.29 . The server startup is 

done by  init_process() , which creates a pool of processes for initial use. The 

pconf

plogpglobal

apr_pool_create(newpool, parent)

ptrans

pchild pconn preq

   FIGURE 6.28 Hierarchy of pools in Apache. 

init_process()
[server/main.c]

apr_pool_create()
[srclib/apr/include/apr_pools.h]

ap_read_config()
[include/http_config.h]

ap_mpm_run() 
[server/mpm/worker]

destroy_and_exit_process

Restart request
(restart_pending=1)

Loop

Master server

ap_reclaim_child_processes()
[server/mpm_common.c]

Shutdown signal
(shutdown_pending)

perform_idle_server_mainten
ance()

[server/mpm/worker.c]

ap_setup_prelinked_modules()
[include/http_config.h]

Server process initialization

startup_children()
[server/mpm/worker.c]

Worker process
or worker thread 

server_main_loop()
[server/mpm/worker/worker.c]

make_child()

   FIGURE 6.29 Inside Apache Web server. 
Continued

lin76248_ch06_417-545.indd   471lin76248_ch06_417-545.indd   471 24/12/10   4:25 PM24/12/10   4:25 PM



472 Computer Networks: An Open Source Approach

 ap_setup_prelinked_modules()  then initializes modules involved in the 

initial operation. The server process initialization is finished once  apr_pool_
create()  has created various resource pools mentioned above. It is followed 

by  ap_read_config() processing the directives that are passed in via the 

command line, and recursively reading configuration files in related subdirectories.  
 The  ap_mpm_run() , a major milestone in implementing the Multi-

Processing Module (MPM), is invoked to start a process as a master server. Two 

types of MPMs,  prefork  and  worker,  are supported. The prefork mechanism 

implements a nonthreaded, preforking Web server, in which a preconfigured 

number of processes will be forked to responsively serve incoming requests. It 

is also the best MPM for isolating each request so that a problem with a single 

request will not affect any other. However, this MPM lacks scalability and is 

preferably used in old operating systems where a threading library is not well 

supported. Modern operating systems such as Linux and FreeBSD are well 

equipped with threading libraries, and thus do not have this issue. 

 To complement the weakness of the prefork MPM, the worker MPM 

implements a hybrid multithreaded, multi-process server. Similar to the prefork 

mechanism, a number of processes are preforked, but multiple threads are further 

pre-invoked within each process. Using threads can serve a large number of 

requests with fewer system resources, as compared with a purely process-based 

server. Yet the worker MPM still retains much of the stability of a process-based 

server by running multiple processes, each with many threads. Therefore, we shall 

use the worker MPM for the rest of the explanation, though similar procedures in 

the  server/mpm/prefork/  directory can be expected for the prefork MPM. 

 Within the  ap_mpm_run() , the  server_main_loop()  is invoked 

to spawn a preconfigured number of child server processes by repeating the 

 make_child()  function in  startup_children() . Depending on the 

chosen multi-processing strategy, each child server may require another initial-

ization phase to access resources needed for proper operation, for example, for 

connecting to a database. This can be done by calling the  child_main()  in 

the  make_child() . As shown in  Figure 6.30 , it initiates the environment set-

tings such as critical sections for the child by  apr_run_child_init() , and 

then spawns a preconfigured number of threads by  apr_thread_create() , 

which subsequently invokes  start_threads() . The  start_threads()  

deals with the creation of two types of threads: The  create_listener_
thread() function creates the listener thread, which listens for new connec-

tion requests, and the  worker_thread() creates the worker thread, which 

processes the socket by  process_socket()  and  ap_process_con-
nection() . Note that no listener thread will be created unless more than one 

worker thread exists. The idea can be explained with a simple analogy: A res-

taurant needs to be sure the chefs (worker threads) are ready before the waiter/

waitress (listener threads) can start accepting customer orders. So it is necessary 

to check from time to time the availability of worker threads, and replenish the 

thread pool whenever needed.  

lin76248_ch06_417-545.indd   472lin76248_ch06_417-545.indd   472 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 473

 Performance Matters: Throughput and Latency 
of a Web Server 

  Figure 6.31  shows the call graph of HTTP request processing within the Apache 

Web server.  ap_run_create_connection()  allocates and initializes data 

structures for an incoming request,  ap_read_request()  parses the request, 

and then  ap_process_request_internal()  checks the authorization. 

To reply to a request,  ap_invoke_handler()  invokes the content generator 

to prepare the response data,  check_pipeline_flush()  completes any 

 While the child servers are busy processing requests, the master server 

that executes  server_main_loop()  in  Figure 6.29  enters the  perform_
idle_server_maintenance()  after the spawning, looking for dying 

(with SERVER_GRACEFUL status, meaning graceful shutdown) and dead 

(with SERVER_DEAD status) child servers. By monitoring the dying and dead 

servers, Apache can know whether or not to spawn more servers. Finally, if a 

shutdown signal is caught by  ap_mpm_run() , the master server starts to re-

claim all child servers with  ap_reclaim_child_processes() .  

  Exercises 
    1. Find which .c file and lines of code implement prefork. When is prefork 

invoked?  

   2. Find which .c file and lines of code implement cookie persistence.  

   3. Find which .c files and lines of code implement HTTP request handling and 

response preparation.    

   FIGURE 6.30 Inside the  make _ child()  procedure. 

ap_process_connection()
[server/connection.c]

process_socket()
[server/mpm/worker.c]

worker_thread()
[server/mpm/worker.c]

create_listener_thread()
[server/mpm/worker.c]

start_threads() [server/mpm/worker.c]

apr_thread_create()
[srclib\apr\threadproc\unix\thread.c]

ap_run_child_init()

child_main() [server/mpm/worker.c]

make_child() [server/mpm/worker.c]

Continued

lin76248_ch06_417-545.indd   473lin76248_ch06_417-545.indd   473 24/12/10   4:25 PM24/12/10   4:25 PM



474 Computer Networks: An Open Source Approach

deferred responses, and  ap_run_log_transaction()  logs the data about 

the connection. Finally,  ap_lingering_close()  closes the connection and 

cleans up data structures.  
  Figure 6.32  illustrates the time each function spent on processing HTTP 

requests. The most noticeable observation is that the time spent on  ap_
invoke_handler()  increases with file size. In the experiment, an HTTP 

response was configured as replying a static, i.e., on-disk, Web page, so the 

task of content generator invoked by  ap_invoke_handler()  is to read the 

Web page from disk and then to transmit the file content to the client. It is a 

time-consuming task if all files need to be read from the disk to the user-space 

memory before transmission.  

   FIGURE 6.31 HTTP request handling in the Apache Web server. 

Check pipeline
flush

Log transaction

ap_run_log_transaction()

Close
connection

ap_lingering_close()

ap_process_request_internal()

Create
connection

Accept
request

Read request

ap_read_request()ap_run_create_connection()

check_pipeline_flush()

Invoke handler Process request

ap_invoke_handler()

   FIGURE 6.32 Latency of major functions in HTTP request handling. 

misc
ap_lingering_close
ap_run_log_transaction
check_pipeline_flush
ap_invoke_handler
ap_process_request_internal
ap_read_request
ap_run_create_connection

0.00
1K 4K 16K

Size of Web page (bytes)
64K 256K 1024K

100.00

200.00

300.00

400.00

500.00

D
el

ay
 (

μs
)

900.00

600.00

700.00

800.00

lin76248_ch06_417-545.indd   474lin76248_ch06_417-545.indd   474 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 475

        6.5 FILE TRANSFER PROTOCOL (FTP) 

  As one of the earliest Internet applications, the file transfer protocol (FTP) is not as 

simple as it sounds. In fact, it has a unique  two-connection operation  model that exercises 

 out-of-band signaling,  by which commands/replies and user data are transferred 

on separate  control  and  data  connections, respectively. Most other applications run 

 in-band  signaling, where control and data go through the same connection. Probably 

the only similar one is P2P, which often sends voluminous UDP segments as queries/

responses and establishes TCP connections for real data transfer. This section illustrates 

this tricky two-connection operation model and how an FTP server changes from  active  

to  passive  mode to connect behind a firewall or NAT. FTP protocol messages are also 

introduced. We pick  wu-ftp  as the example open source implementation. 

  6.5.1 Introduction 
 Decades ago, people wrote programs and saved them on tapes or disks. To run the 

programs on a remote machine, all the tapes and disks had to be shipped to and loaded 

 Linux provides the  sendfile()  system call to accelerate the data-copying 

task, and  ap_invoke_handler()  utilizes the system call to generate HTTP 

responses. The prototype of  sendfile()  is  ssize_t sendfile(int 
out_fd, int in_fd, off_t *offset, size_t count) , by which 

the Linux kernel copies directly from one file descriptor, e.g., a file on disk, to the 

other file descriptor, e.g., socket, without frequent context switches between user 

space and kernel space. This feature is called  zero-copy.  Each time it is called, 

 sendfile()  copies a file fraction whose size depends on the file system structure, 

so  sendfile()  has to be called multiple times before completing the file copy. 

 Table 6.19  lists the time for which  sendfile()  is called to send Web pages. When 

the size of Web page increases, the proportion of  ap_invoke_handler() ’s 

execution time consumed by  sendfile() grows. Only 35% of  ap_invoke_
handler() ’s executing time is spent on  sendfile()  to send a 1 kB Web page 

back to a client, while it becomes 87% when the size of the Web page is 1024 kB. 

TABLE 6.19 Ratio of sendfile() to ap_invoke_handler()

File size 1 kb 4 kb 16 kb 64 kb 256 kb 1024 kb

# of calling sendfile() 1 1 1 2 7 15

Total execution time (μs) of 

sendfile()
37 37 42 78 215 527

Time ratio of sendfile() 

to ap _ invoke _
handler()

35% 38% 40% 53% 77% 87%

lin76248_ch06_417-545.indd   475lin76248_ch06_417-545.indd   475 24/12/10   4:25 PM24/12/10   4:25 PM



476 Computer Networks: An Open Source Approach

into that machine, which was often inconvenient and time-consuming. To solve the 

inefficiency of shipping files on tapes and disks, the File Transfer Protocol (FTP) 

was designed to allow users to efficiently and reliably transfer files from one host to 

another over the Internet. Another benefit that comes with FTP is the data replication, 

which enables a larger scale of data backup. FTP was first proposed in RFC 172 in 

1971, later obsoleted by RFC 265, 354, 542, 765, and finally standardized in RFC 

959 in 1985. RFC 3659 in 2007 is the latest update on FTP extensions. 

 Like many other network applications, FTP operates in the client-server 

model and runs over TCP, and therefore guarantees a point-to-point reliable 

connection. FTP offers two kinds of accesses:  authenticated  and  anonymous.  The 

former requires an account /password pair for user authentication, while the latter 

is usually unrestricted, though some source IP addresses might be banned for 

administrative concerns. All an anonymous user has to do is log in as “anonymous” 

or “ftp” and enter the user’s e-mail address as a password, which is not strictly 

checked in many cases. 

 For example, if you want to download a file via FTP from another university, 

you would need to log in onto a local computer first. You also need a login name and 

password to access your account on the remote FTP server you will FTP from, unless 

you use anonymous FTP. There are five major steps in an FTP session: 

    1. Connect to or log in onto the computer the target files are to be downloaded to 

(or uploaded from).  

   2. Invoke the FTP client program.  

   3. Connect to the remote FTP server the files are to be downloaded from (or 

uploaded to).  

   4. Provide user name and password for login on the remote server.  

   5. Issue to the FTP server a sequence of commands to view and transfer the target files.   

 An FTP client application can run in UNIX-like or Windows systems. Basic 

commands are generally supported on FTP server sites, as described in  Table 6.20 . 

 One may even use a Web browser to initiate an FTP session. For example, in the 

anonymous mode, if you type 

  ftp://ftp.cs.nctu.edu.tw  

TABLE 6.20 Some FTP User Commands

Command Description

OPEN Connect to a remote host

CAT View a file in a remote host

GET Retrieve files in a remote host

RENAME Change the name of a file in a remote host

RM Delete a file in a remote host

QUIT Terminate an FTP session

lin76248_ch06_417-545.indd   476lin76248_ch06_417-545.indd   476 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 477

 in the URL field of the browser, the browser automatically logs you onto the FTP 

site as an anonymous user if that site permits anonymous login. In the authenticated 

mode, the login format in the URL field is as 

  ftp://user1@ftp.cs.nctu.edu.tw  

 which means the user wants to login on ftp.cis.nctu.edu.tw as “user1”. An input 

window will then appear for password input.  

  6.5.2 The Two-Connection Operation Model: Out-of-Band Signaling 
 The FTP communication between client and server employs two separate connec-

tions, the  control  connection with the server listening on TCP port 21 and the  data  

connection with the server listening on TCP port 20. As implied by the words them-

selves, the control connection deals with the exchange of commands, parameters, 

replies, and some marks for error recovery, while the data connection is dedicated 

to the transfer of files. The former lasts for the entire FTP session, while the latter 

is created and deleted as needed. Unlike most other applications, where control and 

data messages are mixed and carried through the same connection, that is, in-band 

signaling, this two-connection mechanism is often called out-of-band signaling. As 

shown in  Figure 6.33 , the procedure of an FTP session is detailed below. 

 After establishing the  control  connection and finishing the authentication 

process, the client issues an FTP request,  PORT h1, h2, h3, h4, p1, p2,  to the 

server saying, “Can you connect a  data  connection to me on port number p1p2 

at the IP address h1.h2.h3.h4?” and listens on the specified port of that address. 

Note that h1~h4 and p1, p2 are hexadecimal. The server then replies with an 

appropriate status code to the client for acknowledgment. Next the client can 

issue commands for listing, downloading, appending, or uploading files in the file 

   FIGURE 6.33 Basic operation model of FTP. 

Control connection
(initiated by client)

FTP commands
“PORT h1,h2,h3,h4,p1,p2”

FTP replies

File system File system

ServerClient

Data connection
(initiated by server)

Send/Receive data

Listen on port
“L” (L=21)

Listen on port
“p1,p2”

lin76248_ch06_417-545.indd   477lin76248_ch06_417-545.indd   477 24/12/10   4:25 PM24/12/10   4:25 PM



478 Computer Networks: An Open Source Approach

system of the server. The server will initiate a  data  connection for file transfer. 

Note that since each of these commands involves an independent data connection, 

a  PORT  command should always be issued before any of them. After all operations 

are finished, the client sends “ QUIT ” over the control connection to the server to 

terminate the FTP session.  

 Sometimes the host issuing FTP commands does not need to be the client or the 

server; that is, it could be just a broker between clients and servers, arranging data 

connections between them through FTP commands. This model may be used, for 

example, in a mutual backup system where file servers listen on ports specified by a 

central controller, and wait for the order of data transfer.  

  Active Mode vs. Passive Mode 

 In the preceding model, the control connection is initiated by the client while the data 

connection is initiated by the server. This kind of initiation is called  active mode  from 

the perspective of the  server.  Yet there is another scheme called  passive mode  where 

both connections are initiated by the client. 

 As depicted in  Figure 6.34 , a server in the active mode connects back to the 

client when receiving an FTP request. However, if the client is behind an NAT or 

firewall, the data connection from the server will probably be blocked. When detect-

ing this blocking problem, either manually by the user or automatically by the client 

 Historical Evolution: Why Out-of-Band 
Signaling in FTP? 

 Since FTP, predated by telnet by just a few days, is the second-oldest applica-

tion protocol in Internet history, the exact reasons why FTP adopted out-of-band 

signaling may no longer be recognized now. However, there is a common 

consensus on it, though a bit historical. 

 The original design of file transfer service used Data Transfer Protocol 

(DTP) as the data plane protocol, while the FTP was responsible only for the 

control connection. After IP was created, the DTP was replaced by TCP. Rather 

than merging both control and data connections into one TCP connection, FTP 

continues to use the two-connection mechanism to minimize the impact on 

existing implementations. 

 What comes as a surprise is that this out-of-band signaling also improves 

FTP’s performance. It avoids extra efforts to distinguish the control and data 

segments as would occur in the single-connection scenario. That is, transfer-

ring the file over the dedicated data connection avoids the extra overhead of 

processing headers or control information. Another advantage is that during 

a prolonged file transfer on a data connection, the control connection is still 

available for directory lookup or initiating another file transfer over yet another 

data connection. In addition, the two-connection model also enables the use of a 

middle control host as described above. 

lin76248_ch06_417-545.indd   478lin76248_ch06_417-545.indd   478 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 479

application, the client asks the server again for passive FTP by issuing the  PASV  

command, which asks the server to  listen  on a specific port for the data connection. 

If the request is granted by the server, the server acknowledges the client back by 

issuing  PORT  with the IP address and port number, other than 20, that it currently 

listens on. Now both sides enter the passive mode. The client then initiates the data 

connection to the server and starts file transfer.    

  6.5.3 FTP Protocol Messages 
  Table 6.21  lists major FTP commands. Note that the commands here are different 

from the ones in  Table 6.20 , which are site-supported commands for end users; these 

are FTP protocol messages defined in the RFC. The server maps a user command 

to one or more FTP commands, which perform the actual operations. For example, 

when we type the user command 

  rename path_of_source_file path_of_dest_file,  

 the server maps it to the following two operations: 

   RNFR path_of_source_file  (ReNameFRom) 
 RNTO path_of_dest_file     (ReNameTO)  

 to complete the renaming of the file. 

 The FTP server always sends a reply to acknowledge to the client the execution 

status of the previously issued command. There are five functional groups of reply 

   FIGURE 6.34 Active mode vs. passive mode. 

Active mode

Passive mode

Request
(Ask server to listen)

Reply
(Listening on port P of host H)

Initiate a data connection

Firewall

Initiate a data connection

Firewall

Request
(Connect to me at port P of host H)

Control

Data

Client Server

Client Server

lin76248_ch06_417-545.indd   479lin76248_ch06_417-545.indd   479 24/12/10   4:25 PM24/12/10   4:25 PM



480 Computer Networks: An Open Source Approach

codes, as shown in  Table 6.22 , with their second digit indicating the syntax error, 

status of control and data connections, etc., and the third digit representing the fine-

grained degradation of the conditions within the scope of the second digit. 

  Figure 6.35  is an example FTP session. We log in as user “www” and retrieve a 

file named “test.” The client asks the server to connect to it at 140.113.189.29 on two 

TABLE 6.21 Major FTP Commands

Command Description Type

USER Send the user name Access control

PASS Send the password Access control

PORT Send the IP and port of the client to which the data 

is retrieved

Transfer 

parameter

PASV Tell the server to listen on a data port rather than 

initiate a data connection

Transfer 

parameter

RETR Ask server to transfer a copy of the requested file to 

the client

File service

STOR Cause the server to accept and receive the data and 

store it as a file

File service

RNFR Specify the path of a source file to rename from File service

RNTO Specify the path of a destination file to rename to File service

ABOR Tell the server to abort the previous command and 

the corresponding data transfer

File service

TABLE 6.22 Five Categories of FTP Replies

Reply Description Type

1yz The requested action is being initiated; expect another 

reply before proceeding with a new command.

Positive 

preliminary reply

2yz The requested action has been successfully completed. Positive complete 

reply

3yz The command has been accepted, but the requested 

action is being held, waiting for further information 

from another command.

Positive 

intermediate reply

4yz The command is not accepted and the requested action 

did not take place. The action can be requested again.

Transient negative 

completion reply

5yz Similar to 4yz, except that the error condition is 

permanent, so the action cannot be requested again.

Permanent negative 

completion reply

lin76248_ch06_417-545.indd   480lin76248_ch06_417-545.indd   480 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 481

   STATUS:> Connecting to  www.cis.nctu.edu.tw  (ip = 140.113.166.122) 
STATUS:>  Socket connected. Waiting for welcome message...   220 

 www.cis.nctu.edu.tw  FTP server (Version wu-2.6.0(1) Mon Feb 28 10:30:36 EST 
2000) ready. 

 COMMANDS:>        USER www 
 331 Password required for www. 

 COMMANDS:>       PASS ******** 
 230 User www logged in. 

 COMMANDS:>       TYPE I 
 200 Type set to I. 

 COMMANDS:>       REST 100 
 350 Restarting at 100. Send STORE or RETRIEVE to initiate transfer. 

 COMMANDS:>       REST 0 
 350 Restarting at 0. Send STORE or RETRIEVE to initiate transfer. 

 COMMANDS:>       pwd 
 257 “/home/www” is current directory. 

 COMMANDS:>       TYPE A 
 200 Type set to A. 

 COMMANDS:>       PORT 140,113,189,29,10,27 ←  tell the server where to connect to  

 200 PORT command successful. 
 COMMANDS:>       LIST              ←  retrieve directory listing  

 150 Opening ASCII mode data connection for /bin/Is. ←  File status okay; 
about to open data connection  

 .......list of files.... 

 COMMANDS:>       TYPE I 
 200 Type set to I. 

 COMMANDS:>       PORT 140,113,189,29,10,31 
 200 PORT command successful. 

 COMMANDS:>       RETRtest         ←  retrieve the file “test”  

 150 Opening BINARY mode data connection for test (5112 bytes). 

 FIGURE 6.35 An example FTP session. 

different ports, 4135 (i.e., 1027 in hexadecimal) and 4145 (i.e., 1031 in hexadeci-

mal), for retrieving the directory listing and the file “test,” respectively. 

   Restarted Transfer With the Checkpoint 

 So far we have introduced the initialization, commands, and replies of an FTP ses-

sion. FTP also implements a restart mechanism for recovery from errors such as 

encountering a broken path and a dead host or process. The main idea lies in the use 

of the “marker,” which consists of the  bit count  of the file being transferred. 

 During the transmission of a file, the sender inserts a marker at a convenient 

place within the data stream. Upon receiving a marker, the receiver writes all prior 

data to the disk, marks the corresponding position of the marker in the local file 

system, and replies to the user, i.e., the control host, which might or might not co-

locate with the sender at the same machine, with the latest marker position of both 

the sender and the receiver. Whenever a service failure occurs, a user can issue the 

 restart  command with the preceding marker information to restart the sender at the 

 checkpoint  of the previous transmission. 

lin76248_ch06_417-545.indd   481lin76248_ch06_417-545.indd   481 24/12/10   4:25 PM24/12/10   4:25 PM

www-cis-nctu-edu-tw
www-cis-nctu-edu-tw


482 Computer Networks: An Open Source Approach

 Open Source Implementation 6.4:   wu-ftpd   

  Overview 
  Wu-ftpd  is one of the most popular FTP daemons. Originally developed at 

Washington University, it is now maintained by the WU-FTPD Development 

Group ( http://www.wu-ftpd.org/ ). 

 In addition to the basic file transfer functions described previously, 

 wu-ftpd  also provides useful utilities, such as virtual FTP servers and on-

the-fly (created when needed) compression. These utilities are  not  defined in the 

RFC, but indeed facilitate the administrative work and improve the efficiency 

of file transfer. In summary,  wu-ftpd  is a concurrent implementation of 

connection-oriented stateful FTP protocol with binding to port 20 and 21.  

  Algorithm Implementations 
 There are two major phases in the execution of  wu-ftpd , service initialization 

phase and command acceptance/execution phase. As illustrated in  Figure 6.36 , 

 wu-ftpd  exercises a typical concurrent-server model that forks child processes 

to serve clients.  
 In the service initialization phase, we first execute the “ ftpd ” command, 

either from the shell (command-line interpreter) or from  (x)inetd , to start the 

server with some options to characterize its behavior. For example, the option 

“ -t ” is to specify the timeout limit of idle connections to avoid the waste of 

system resources; “ -p ” is to specify the data port number when the owner of the 

Read ACL files

Listen to
requestsNo request

accepted?

Fork a handler

Stand-alone?

Fork off
(parent exits)

Other
initializations

Reverse DNS check

Parse and execute
commands

Yes

No (under (x)inetd)

New request

Start ftp server
with some options

Loop until termination
signal is received

   FIGURE 6.36 Execution flow inside  wu-ftpd . 

lin76248_ch06_417-545.indd   482lin76248_ch06_417-545.indd   482 24/12/10   4:25 PM24/12/10   4:25 PM

http://www.wu-ftpd.org/


 Chapter 6 Application Layer 483

server process does not have super-user privilege, which means the owner can 

use only a port number larger than 1024 instead of the default port 20. The server 

then reads the access control list in the  ftpaccess  file into the memory, which 

informs the server about the settings of its access capabilities. 

 After reading the main configurations, the initial server process forks 

a new process as a standalone server listening for new requests and then 

exits to let the newly created server process run alone. Upon the acceptance 

of a request, the server forks a handler process to deal with the subsequent 

procedures in that FTP session. If the server is not running as a standalone 

server, it means the server was invoked by  (x)inetd . In the end of the 

service initialization phase are other initialization work for reverse DNS to 

check the client, file conversion check, and virtual host allocation to map the 

request of different destination site names to the corresponding configura-

tions, and so on. 

 In the second phase, the main tasks of parsing and execution of FTP com-

mands are done through the use of  Yacc  (Yet Another Compiler-Compiler). The 

 Yacc  user specifies the structures of FTP input, together with the code segment 

to be invoked when the structure is recognized.  Yacc  exploits the structural 

input of FTP commands by turning such specification into subroutines at the 

compile time to handle the inputs.  

  Virtual FTP Server 
 Virtual FTP servers are usually adopted when servicing more than one domain 

on a single machine. They allow an administrator to configure the system so that 

a user connecting to ftp.site1.com.tw and another user connecting to ftp.site2.

com.tw each gets his own FTP banner and directory even though they are on the 

same port on the same machine. As shown in  Figure 6.37 , this can be achieved 

   FIGURE 6.37 Concept of the virtual FTP servers. 

…

FTP server

Configuration file of
each virtual server

Clients

ftp.site1.com.tw

L
oo

ku
p 

th
e 

ft
pa

cc
es

s 
fi

le

ftp.site2.com.tw

ftp.site3.com.tw

# Virtual server setup for ftp.site1.com.tw
virtual ftp.site1.com.tw root /var/ftp/virtual/site1
virtual ftp.site1.com.tw banner /var/ftp/virtual/site1/banner.msg
virtual ftp.site1.com.tw logfile /var/log/ftp/virtual/site1/xferlog

A rule segment
in ftpaccess

Continued

lin76248_ch06_417-545.indd   483lin76248_ch06_417-545.indd   483 24/12/10   4:25 PM24/12/10   4:25 PM



484 Computer Networks: An Open Source Approach

through the use of a configuration file named “ ftpaccess .” There are four ba-

sic parameters needed to set up a virtual FTP server: the server name (or IP), root 

directory, welcome message banner, and transfer log. Upon receiving a request, 

the FTP daemon matches the destination site name in the request with rules 

specified in  ftpaccess . The matched request is accepted and then processed 

as in an ordinary FTP server.   

  On-The Fly Compression 
 Since FTP needs at least two protocol messages ( PORT  and  RETR ) to download 

a file, we can easily imagine how it would affect the network when downloading 

lots of small files—they will be full of messages for connection setup and tear-

down. To complement this drawback,  wu-ftpd  provides another great utility 

called “on-the-fly compression,” i.e., the server compresses files (directories) 

right before they are sent to users.  Figure 6.38  is an example. 

  As we can see in the example, the client gets a file “ ucd-snmp-4.2.1. 
tar.gz ” when there is no such “tar-ball” (the compressed tar archive file) but 

only a directory “ ucd-snmp-4.2.1 ” in the server. The trick is that the server 

extracts the postfix of the file name and executes proper actions according to the 

postfix by rules specified in a configuration file named “ ftpconversions .” In 

this case, the invoked action is to execute the “ tar -zcf ” command with the 

given file name.  Table 6.23  lists some important configuration files of  wu-ftpd . 

TABLE 6.23 Four Important Configuration Files of wu-ftpd

File Name Description

ftpaccess Used to configure the operations of the ftp daemon.

ftpconversions Specify the postfix of a retrieved file and its corresponding 

operations.

ftphosts Used to deny/allow some hosts to log in as certain accounts.

ftpservers List the virtual servers and the corresponding directories 

containing their own configuration files.

   Userynlin logged in. 

 Logged in to wwwpc.cis.nctu.edu.tw. 

 ncftp /home/ynlin > Is 

 Ltar.gz   Desktop/    ucd-snmp-4.2.1/ 

 ncftp /home/ynlin > get ucd-snmp-4.2.Ltar.gz 

 ucd-snmp-4.2.ltar.gz:     7393280 bytes 552.83 kB/s 

 ncftp /home/ynlin >lls -I 

 drwxr-xr-x 24 gis88559 gis88  3584 Oct 8 12:18 . 

 drwxr-xr-x 88 root gis88   2048 Sep 10 17:48 .. 

 -rw-r---- 1 gis88559 gis88  7393280 Oct 8 12:18 ucd-snmp-4.2.ltar.gz 

 FIGURE 6.38 Download of a file with on-the-fly compression. 

lin76248_ch06_417-545.indd   484lin76248_ch06_417-545.indd   484 24/12/10   4:25 PM24/12/10   4:25 PM

wwwpc.cis.nctu.edu.tw


 Chapter 6 Application Layer 485

       6.6 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 

  Among all applications presented in this chapter, network management is the only 

one  not  designed for common users. In fact, it is for network  administrators  to 

remotely manage the network. We first introduce the concepts and framework of 

network management. Then we present the standardized Management Information 

Base (MIB) used to represent the  states  of the managed devices and Simple Network 

Management Protocol (SNMP) used to access MIB. An open source implementation 

called  Net-SNMP  is brought in to allow us to trace its operation for a better under-

standing of the whole architecture. 

  6.6.1 Introduction 
 People have longed for monitoring and controlling networks since the birth of the 

Internet. Many small tools have been used for years to achieve this goal; for example, 

 ping,   traceroute,  and  netstat  (refer to Appendix D for details), where the 

former two are based on ICMP and the latter is through system calls such as  ioctl . 

Even though they do meet the basic requirements for a small-scale network environ-

ment of a few hosts and network devices, information provided by these tools no 

longer satisfies network administrators when it comes to a large-scale network. What 

they want is a more generic and systematic  infrastructure  to facilitate the network 

management work. 

 This is where Simple Network Management Protocol (SNMP) comes into 

play. The idea is to install an  agent  program on all devices to be managed so that 

a  manager  program can collect and update management information for a device 

by querying the agent through a standard protocol. The management information is 

maintained in the  management objects  of a standardized Management Information 

Base (MIB). These provide several benefits. First, the use of standardized MIB and 

SNMP enables  interoperability  between multi-vendor managers and devices. Sec-

ond, the development cost for the  agent  is mainly due to program porting and hence 

is greatly reduced. Similarly, the management functions could be clearly defined for 

the network administrators and hence the developers of the  manager  programs, so 

the architecture is more  scalable,  in terms of the number of managed devices. 

 MIB and its enhanced version MIB-II were first defined in RFC 1066 and RFC 1158 

in 1988 and 1990, respectively. SNMP was first proposed in RFC 1098 in 1989, known 

as SNMPv1, and received positive responses for the integration of many categories of 

   Exercises 
    1. How and where are the control and data connections of an FTP session 

handled concurrently? Are they handled by the same process or by two 

processes?  

   2.  Find which .c file and lines of code implement active mode and passive 

mode. When is the passive mode invoked?    

lin76248_ch06_417-545.indd   485lin76248_ch06_417-545.indd   485 24/12/10   4:25 PM24/12/10   4:25 PM



486 Computer Networks: An Open Source Approach

management objects and the interoperability among multi-vendor products. In 1993, the 

second version of SNMP, known as SNMPv2, was presented in RFC 1441 to enhance the 

functionality of the first version. Finally, in 1998, SNMPv3 was published in RFC 2261, 

addressing some security add-on functionalities discussed in the first version. All three 

versions of SNMP share the same basic structure and components. 

 The evolution of network management continued and contributed the highest 

percentage of RFCs produced by all application-layer protocols. There are many 

other supplementary protocols and MIBs proposed for network management—for 

example, Remote network MONitoring (RMON) MIB with extensive traffic mea-

surements as defined in RFC 1271 in 1991, and its enhanced RMON2, defined in 

RFC 2021 in 1997, and the more recent MIB for IPv6-based OSPFv3, defined in 

RFC 5643 in 2009. However, they are beyond the scope of this text and will not be 

discussed.  

  6.6.2 Architectural Framework 
 An SNMP environment typically contains five basic components: management sta-

tion, agent, managed object, managed device, and management protocol. Relation-

ships between these components are depicted in  Figure 6.39  and described below. 

    Management station : Also called  manager,  it is responsible for coordinating 

all agents under its authority. It checks the status of each agent regularly, 

and queries or sets the values of managed objects as needed.  

   Agent : As a middleman running on a managed device between the management 

station and the managed objects, an agent is responsible for performing the 

network management functions requested by management stations.  

   Managed object and MIB : A managed object characterizes one aspect of 

the managed device. Examples include the system uptime, number of the 

packets that have been received, and number of active TCP connections in 

the system. An MIB is a collection of managed objects that form a virtual 

information store.  

   FIGURE 6.39 Architectural framework of SNMP. 

Trap or response

Management
station

MIB

Agent and
managed

device in one
machine

Master
agent

Subagent 
(managed device)

Poll or request

MIB MIB MIB

SNMP

Protocols simpler than SNMP

lin76248_ch06_417-545.indd   486lin76248_ch06_417-545.indd   486 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 487

   Managed device : This could be a router, switch, host, or any device in which 

an agent and an MIB are installed.  

   Management protocol : This is used as a common method to convey 

information between management stations and agents.   

   Poll-Based and Trap-Based Detection 

 There are three basic activities in operating an SNMP environment:  get,   set  and 

 trap.  The first two are used by a management station to get/set the values of objects 

at the agent, while the last is used by an agent to notify the management station of 

certain events. 

 Because SNMP is based on UDP, there are no persistent TCP connections, but 

there are transactions for the management station to know the healthiness of the 

agents. Two schemes are usually seen in the detection of agent status:  poll-based  

and  trap-based.  In poll-based detection, a management station periodically sends 

inquiry messages to the agent and receives the agent status in response. Though the 

poll-based detection is intuitive and simple, with this scheme the management station 

becomes a bottleneck when there are a large number of agents to monitor. 

 Trap-based detection is proposed to avoid this drawback. Instead of being pas-

sively asked, the agents actively  trap  the management station when events happen 

to the managed objects. The event-driven trap reduces unnecessary messages as we 

would see in the poll-based detection. For the most part, when rebooting, a manage-

ment station merely checks the agent to have a basic picture of all its agents.  

  Proxying 

 Proxying is considered another useful operating scheme in SNMP in addition 

to the ordinary relationship between a management station and the agent. For 

simple and inexpensive devices like modems, hubs, and bridges, it might not 

be practical to implement the whole TCP/IP suite (including UDP) just to be 

compatible with SNMP. To accommodate those without SNMP support, a concept 

of  proxying  is proposed: a mechanism whereby one system “fronts” for another 

system in responding to protocol requests. The former system is called the 

master agent and the latter is the subagent. As shown in  Figure 6.39 , the master 

agent, not implemented with any MIBs, handles the SNMP requests from the 

management station on behalf of the subagent. All a master agent does is to 

translate SNMP requests into some non-SNMP messages understandable to the 

subagent. Although subagents are supposed to be very simple, some protocols 

such as Agent eXtensibility (AgentX) and SNMP Multiplexing (SMUX) were 

developed to enhance the subagent.   

  6.6.3 Management Information Base (MIB) 
 An MIB can be viewed as a tree-like virtual information store, though it is not used 

as a database to store the information. Actually it is merely a specification that 

lists the managed objects, with each object in an  MIB tree  being uniquely identi-

fied by an object identifier ( OID ). For example, in  Figure 6.40 , which shows the 

lin76248_ch06_417-545.indd   487lin76248_ch06_417-545.indd   487 24/12/10   4:25 PM24/12/10   4:25 PM



488 Computer Networks: An Open Source Approach

structure of the Internet-standard MIB— MIB-II —the  ip  object group is identified 

by OID 1.3.6.1.2.1.4. With the associated OID an object has better accessibility. 

Only  leaf  objects in an MIB tree are accessible with OID values; for example, the 

 sysUpTime,  which is a leaf node under the  system  group. Therefore, a typical 

scenario of accessing MIB objects could be like this: 

    1. The management station sends messages to the agent with OIDs of particular 

objects it queries for.  

   2. Upon receiving the requests, the agent first checks if the object really exists, 

and then verifies the accessibility. If the action fails, the agent responds to the 

management station with appropriate error messages. Otherwise, it looks for 

the corresponding value of the  object instance  in files, registers, or counters of 

the local system.    

  Object and Object Instance 

 One may get confused about the meanings of “object” and “object instance.” For 

example, people think they want to get objects for management information, while in 

fact they are getting  object instances.  An object has two attributes,  type  and  instance.  
An object type gives us the syntactic description and properties of the object, 

whereas the object instance is a particular instance of an object type with a specific 

value bound to it. Take the object  sysUpTime  as an example. The object type says 

that the system uptime is measured in terms of  TimeTicks  and read-only for all 

accesses; the object instance, on the other hand, tells us the time elapsed since the 

system’s last reboot. In addition to simple objects, there are two types of  compound  

   FIGURE 6.40 The Internet-standard MIB: MIB-II. 

iso (1)

org (3)

dod (6)

….

internet (1)

directory (1)mgmt (2)experimental (3)private (4)

mib-2 (1)

system (1)interface (2)at (3)icmp (5)tcp (6)udp (7)egp (8) ip (4)

….

….

transmission (10)snmp (11)

OBJECT IDENTIFIER: 1.3.6.1.2.1.4

security (5)snmpv2 (6)

….

lin76248_ch06_417-545.indd   488lin76248_ch06_417-545.indd   488 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 489

objects:  scalar  and  tabular.  Scalar objects define a single but  structured  object 

instance, whereas tabular objects define  multiple  scalar object instances grouped in a 

table. To differentiate from the expression of the scalar objects under a tabular object, 

an ordinary scalar object is expressed using the OID of the object with an additional 

0 concatenated to its OID. 

 Nowadays, almost all MIB activities occur in the portion of the ISO branch 

and are dedicated to the Internet community under object identifier 1.3.6.1. The 

adoption of MIB in SNMP also provides the extensibility such that one can build 

one’s own MIB under the  experimental  and  private  branches. The former is used 

to identify objects being designed by IETF working groups, and once those objects 

become standard, they are moved under the  mgmt(2) subtree. Right beneath 

the private branch resides an MIB subtree called  enterprise,  which is reserved 

for networking device vendors to use. Nevertheless, in order to guarantee the 

interoperability and avoid collisions of OIDs between devices from different 

vendors, a registration of MIB objects to  Internet Assigned Numbers Authority 
(IANA)  is always recommended. 

 The major contribution of MIB-II is the definition of the object group “ mib-2, ” 

which describes the management of TCP/IP-based internets more precisely. We 

summarize each of the object groups of MIB-II in the following list. 

     1. system : Provides general information about the managed system. For example, 

the name, up time, and location of the system.  

    2. interface : Supplies the configuration information and statistics of each 

physical interface. For example, type, physical address, and status of the interfaces.  

    3. at:  Address translation between network addresses and physical addresses. 

However, it is deprecated in the RFC and only tobork-level addresses may be 

associated with each physical address.  

    4. ip:  Information about implementation and operation of IP in a local system. 

For example, routing table and default TTL.  

    5. icmp:  Information about the implementation and operation of ICMP. For 

example, the number of ICMP messages sent and received.  

    6. tcp:  Information about the implementation and operation of TCP. For ex-

ample, the number of maximum and active connections in the system.  

    7. udp:  Information about the implementation and operation of UDP. For ex-

ample, the number of datagrams sent.  

    8. egp:  Information about the implementation and operation of EGP (External 

Gateway Protocol).  

    9. transmission : Related information and statistics about different transmis-

sion schemes.  

    10. snmp:  Information about the accesses (get, set and trap) and errors of SNMP 

operations.    

  Example—TCP Connection Table in MIB-II 

 The TCP connection table under the  tcp  group in MIB-II is presented in  Figure 6.41 . 

It provides us a good example of how Structure of Management Information (SMI), 

first defined in RFC 1442, is used to implement an MIB. 

lin76248_ch06_417-545.indd   489lin76248_ch06_417-545.indd   489 24/12/10   4:25 PM24/12/10   4:25 PM



490 Computer Networks: An Open Source Approach

  The TCP connection table in  Figure 6.41  is a two-dimensional table where each 

row representing a connection ( TcpConnEntry ) contains the five properties of a TCP 

connection as its columns: connection state, local/remote IP address, and local/remote 

port number. Each column in a row is a  scalar element  and has its attribute fields defined 

in SMI. The table is constructed by using two Abstract Syntax Notation One (ASN.1): 

“SEQUENCE OF” and “SEQUENCE”. The former is to group one or more objects 

of the same type,  TcpConnEntry  in this case, while the latter is to group scalar 

elements possibly of different types,  tcpConnState ,  tcpConnLocalAddress , 

 tcpConnLocalPort ,  tcpConnRemAddress , and  tcpConnRemPort  in this 

case. In addition, it takes four elements in a row, as indicated in the INDEX clause in 

the left-middle part of  Figure 6.41 , to identify a connection.  Table 6.24  is an example 

TCP connection table, which gives us a clear view. 

 From the table we can see that four connections are currently present in the 

system, and each one can be uniquely identified (indexed) by its local/remote IP 

addresses and local/remote port numbers (also known as a “socket pair”). Note that 

each scalar object in the table also has its own OID so that modification on its value 

is possible. For example, OID of the “established state” in the fourth entry is assigned 

“x.1.1. 140.113.88.164.23.140.113.88.174.3082 ”, with its postfix chosen in light of 

 FIGURE 6.41 The TCP connection table in the MIB-II specification. 

-- the TCP Connection table
-- The TCP connection table contains information about this
-- entity's existing TCP connections.

tcpConnTable OBJECT-TYPE
SYNTAX  SEQUENCE OF TcpConnEntry
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION

"A table containing TCP connection-specific information."
::= { tcp 13 }

tcpConnEntry OBJECT-TYPE
SYNTAX  TcpConnEntry
ACCESS  not-accessible
STATUS  mandatory
DESCRIPTION

"Information about a particular current TCP connection.  An 
object of this type is transient, in that it ceases to exist when (or soon after) 
the connection makes the transition to the CLOSED state."

INDEX { tcpConnLocalAddress,
tcpConnLocalPort,
tcpConnRemAddress,
tcpConnRemPort }

::= { tcpConnTable 1 }
TcpConnEntry ::=

SEQUENCE {
tcpConnState  INTEGER,
tcpConnLocalAddress  IpAddress,
tcpConnLocalPort  INTEGER (0..65535),
tcpConnRemAddress   IpAddress, 
tcpConnRemPort   INTEGER (0..65535)

}
tcpConnState OBJECT-TYPE

SYNTAX  INTEGER {
closed(1), listen(2), synSent(3), synReceived(4) 
established(5), finWait1(6), finWait2(7), closeWait(8),
lastAck(9), closing(10), timeWait(11), deleteTCB(12) }

ACCESS  read-write
STATUS  mandatory
DESCRIPTION

"The state of this TCP connection.."
::= { tcpConnEntry 1 }

tcpConnLocalAddress OBJECT-TYPE
SYNTAX  IpAddress
ACCESS  read-only
STATUS  mandatory
DESCRIPTION

"The local IP address for this TCP connection.  In the case of a 
connection in the listen state which is willing to accept connections for any IP 
interface associated with the node, the value 0.0.0.0 is used."

::= { tcpConnEntry 2 }
tcpConnLocalPort OBJECT-TYPE

SYNTAX  INTEGER (0..65535)
ACCESS  read-only
STATUS  mandatory
DESCRIPTION

"The local port number for this TCP connection."
::= { tcpConnEntry 3 }

tcpConnRemAddress OBJECT-TYPE
SYNTAX  IpAddress
ACCESS  read-only
STATUS  mandatory
DESCRIPTION

"The remote IP address for this TCP connection."
::= { tcpConnEntry 4 }

tcpConnRemPort OBJECT-TYPE
SYNTAX  INTEGER (0..65535)
ACCESS  read-only
STATUS  mandatory
DESCRIPTION

"The remote port number for this TCP connection."
::= { tcpConnEntry 5 }

lin76248_ch06_417-545.indd   490lin76248_ch06_417-545.indd   490 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 491

the connection it belongs to, and its value can be modified accordingly whenever the 

state is changed.   

  6.6.4 Basic Operations in SNMP 
 We mentioned that there are three kinds of activities in SNMP: get, set and trap. 

Actually, they can be further specified with operations shown in  Table 6.25 , where 

each operation is encapsulated in a Protocol Data Unit (PDU) as the basic unit in 

SNMP operations. Note that the version field in the table means the SNMP version 

at the time the PDUs were proposed. The PDUs proposed in version 1 are still being 

widely used with some functional enhancements in version 2. 

TABLE 6.24 TCP Connection Table in a Tabular View

tcpConnTable (1.3.6.1.2.1.6.13) tcpConnEntry = (x.1)

tcpConnState 
(x.1.1)

tcpConnLocalAddress 
(x.1.2)

tcpConnLocalPort 
(x.1.3)

tcpConnRemAddress 
(x.1.4)

tcpConnRemPort 
(x.1.5)

x.1 Listen 0.0.0.0 23 0.0.0.0 0

x.1 Listen 0.0.0.0 161 0.0.0.0 0

x.1 close Wait 127.0.0.1 161 127.0.0.1 1029

x.1 established 140.113.88.164 23 140.113.88.174 3082

INDEX

TABLE  6.25 Basic Operations in SNMP

PDU Descriptions Version

GetRequest Retrieve the value of a leaf object V1

GetNextRequest Get the object lexicographically next to the one specified V1

SetRequest Set (update) a leaf object with a value V1

GetResponse Response for GetRequest (value) or SetRequest (ACK) V1

Trap Issued by agent to notify the management station of 

some significant event asynchronously
V1

GetBulkRequest Retrieve large blocks of data, such as multiple rows in a 

table.
V2

InformRequest Allows one MS to send trap information to another MS 

and receive a response
V2

PDU: Basic data unit in SNMP operations

MS: Management Station

Variable-binding list: A list of variables and corresponding values in a PDU

lin76248_ch06_417-545.indd   491lin76248_ch06_417-545.indd   491 24/12/10   4:25 PM24/12/10   4:25 PM



492 Computer Networks: An Open Source Approach

 Each SNMP message, encapsulated in a UDP datagram, is made up of three 

major parts: the  common SNMP header,   operation header,  and  variable-binding 
list.  The common SNMP header consists of the SNMP version, the  community  

(a  cleartext  password for access control), and the PDU type. The first column 

of  Table 6.25  lists the possible PDU types. The operation header provides 

information on the operation, including request-id (assigned to match outstanding 

requests) and error status. The variable-binding list, consisting of a sequence 

of  variable-value pairs,  is used to assist the information exchange. Normal 

operations perform a  single  retrieval and set on an object by  GetRequest  

and  SetRequest , respectively. However, it is also possible to access  multiple  

objects at a time. The management station puts the OIDs of the objects in the 

“variable” fields of the variable-binding list, and sends the PDU to an agent which 

in turn fills up the corresponding value fields and replies the management station 

as a  GetResponse  PDU.  

  Traversing an MIB Tree 

 The  GetNextRequest  is used to get the object  lexicographically  next to the speci-

fied OID. Though much about it resembles  GetRequest , it is helpful in exploring 

the structure of an MIB tree. To clarify the idea of this PDU, let’s use again the TCP 

connection table of  Table 6.24  but show it in a tree structure in  Figure 6.42 . 

 There exist hierarchical relationships and thus a lexicographical order in the tree 

of OIDs that is traversable using DFS (Depth First Search). Consider a management 

station using only the  GetRequest  PDU. Because the OIDs in an MIB tree are not 

consecutive, the management station has no way to know the MIB structure if it does 

   FIGURE 6.42 TCP connection table in a lexicographical view. 

tcpConnTable (1.3.6.1.2.1.6.13=x)

tcpConnState
(x.1.1)

tcpConnLocalAddress
(x.1.2)

tcpConnLocalPort
(x.1.3)

tcpConnEntry= (x.1)

Listen
(x.1.1.0.0.0.0.23.0.0

.0.0.0)

Listen
(x.1.1.0.0.0.0.161.0.0

.0.0.0)

closeWait
(x.1.1.127.0.0.1.161.

127.0.0.1.1029)

0.0.0.0
(x.1.2.0.0.0.0.23.0.0

.0.0.0)

established
(x.1.1.140.113.88.164.23.

140.113.88.174.3082)

0.0.0.0
(x.1.2.0.0.0.0.161.0.0

.0.0.0)

127.0.0.1
(x.1.2.127.0.0.1.161.

127.0.0.1.1029)

140.113.88.164
(x.1.2.140.113.88.164.23.

140.113.88.174.3082)

23
(x.1.3.0.0.0.0.23.0.0

.0.0.0)

161
(x.1.3.0.0.0.0.161.0.0

.0.0.0)

161
(x.1.3.127.0.0.1.161.

127.0.0.1.1029)

23
(x.1.3.140.113.88.164.23.

140.113.88.174.3082)

…

lin76248_ch06_417-545.indd   492lin76248_ch06_417-545.indd   492 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 493

not have a complete table of OIDs. However, once equipped with  GetNextRe-
quest , the management station can traverse the tree completely.   

  Bulk Transfer of MIB Objects 

 The  GetBulkRequest  PDU is adopted in SNMPv2 for efficiency. Compared 

to  GetNextRequest ,  GetBulkRequest  supports a more powerful retrieving 

scheme, the  range  retrieval for  multiple  objects, rather than several consecutive 

retrievals. The management station just specifies in the PDU the starting OID and the 

range to retrieve. The agent receiving the PDU sends back to the management sta-

tion a  GetResponse  whose variable-binding list is embedded with those requested 

variable-value pairs. For the example in  Figure 6.42 ,  GetBulkRequest[2,4]
(system, interface tcpConnState, tcpConnLocalAddress, tcp-
ConnLocalPort) will return four variable-value pairs.      

 Open Source Implementation 6.5:   Net-SNMP   

  Overview 
 Originally developed at Carnegie Mellon University (around 1995) and the 

University of California at Davis (between 1995 and 2000), this package is now 

maintained by the  Net-SNMP  development team (since 2000) hosted at  http://

sourceforge.net/projects/net-snmp . It provides (1) an extensible agent with the 

MIB compiler by which one could develop his or her own MIB, (2) SNMP 

libraries for further development, (3) tools to get or set information from an 

SNMP agent, and (4) tools to generate and handle SNMP traps. It also supports 

SNMPv1, v2, v3 and other SNMP-related protocols. Different from most other 

open source implementations in this chapter,  Net-snmp  is an  iterative  imple-

mentation supporting both connectionless (on UDP port 161) and connection-

oriented (on TCP port 1161) models of the  stateless  SNMP protocol.  

  Basic Commands and Examples 
  Table 6.26  shows the descriptions of some commands in Net-SNMP and the 

corresponding PDUs being used. Basically they are pure implementations of the 

PDUs of different versions. In  Figure 6.43 , we use  snmpget ,  snmpset  and 

 snmpwalk  for demonstration.  snmpwalk  traverses all objects under a subtree 

with the  GetNextRequest  PDU. We use a preconfigured user “ynlin” with 

its password “ynlinpasswd” to retrieve the  object instance  system.sysContact .0.  
The security level is set to “ authNoPriv ” (which means authentication only, 

no data privacy, i.e., data encryption, is needed), and the authentication method is 

set to MD5.   

  Algorithm Implementations 
  Figure 6.44  shows how  Net-SNMP  runs internally. The server is started up 

by executing the  snmpd  with some options such as logging in  syslog  and 

Continued

lin76248_ch06_417-545.indd   493lin76248_ch06_417-545.indd   493 24/12/10   4:25 PM24/12/10   4:25 PM

http://sourceforge.net/projects/net-snmp
http://sourceforge.net/projects/net-snmp


494 Computer Networks: An Open Source Approach

starting with certain modules. The  init_agent()  is then called to read 

the configuration files, set up the needed data structures (e.g. object tree), and 

possibly initialize other subagents such as  AgentX . Further loading of the 

   $ snmpget -v 3 -u ynlin -I authNoPriv -a MD5 -A ynlinsnmp localhost system.sysContact.0 
system.sysContact.0 = ynlin@cis.nctu.edu.tw 

 $ snmpset -v 3 -u ynlin -I authNoPriv -a MD5 -A ynlinsnmp localhost system.sysContact.0 
s gis88559 system.sysContact.0 = gis88559 

 $ snmpget -v 3 -u ynlin -I authNoPriv -a MD5 -A ynlinsnmp localhost system.sysContact.0 
system.sysContact.0 = gis88559 

 $ /usr/local/bin/snmpbulkwalk -v 3 -u ynlin -I authNoPriv -a MD5 -A ynlinpasswd localhost 
system system.sysDescr.0 = Linux ynlin2.cis.nctu.edu.tw 2.4.14 #5 SMP Thursday 
November 22 23:6 system.sysObjectlD.0 = OID: enterprises.ucdavis.ucdSnmpAgent.linux 
system.sysllpTime.0 = Timeticks: (30411450) 3 days, 12:28:34.50 system.sysContact.0 = 
gis88559 system.sysName.0 = ynlin2.cis.nctu.edu.tw system.sysLocation.0 = ynlin2 
 system.sysORLastChange.0 = Timeticks: (0) 0:00:00.00 system.sysORTable.sysOREntry.
sysORID.1 = OID: ifMIB 
 system.sysORTable.sysOREntry.sysORID.2 = OID: .iso.org.dod.internet.snmpV2.snmpB 
system.sysORTable.sysOREntry.sysORID.3 = OID: tcpMIB system.sysORTable.sysOREntry.
sysORID.4 = OID: ip system.sysORTable.sysOREntry.sysORID.5 = OID: udpMIB 

 FIGURE 6.43 Example of snmpget, snmpset, and snmpwalk in SNMPv3. 

TABLE 6.26 Some Commands for Query, Set and Trap in Net-SNMP

Name Description and Example PDU Used

SNMPGET Retrieve the value of a leaf object using 

get.

GetRequest

SNMPSET Set (update) a leaf object with a value. SetRequest

SNMPBULKGET Get multiple objects at a time. Possibly 

under different subtrees.

GetBulkRequest

SNMPWALK Explore all the objects under a subtree 

of the MIB.

GetNextRequest

SNMPTRAP Uses the TRAP request to send 

information to a network manager. 

More than one object identifier can be 

applied as arguments.

Trap

SNMPSTATUS Used to retrieve several important 

statistics from a network entity. Errors 

will also be reported, if any.

SNMPNETSTAT Displays the values of various network-

related information retrieved from a 

remote system using the SNMP protocol.

lin76248_ch06_417-545.indd   494lin76248_ch06_417-545.indd   494 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 495

configurations is done by  init_snmp() , which also parses the MIB modules. 

A master agent is then started. It declares required sessions whose structure is 

depicted in  Figure 6.45 , and registers callbacks for the corresponding session. For 

example, the  handle_master_agentx_packet()  function is registered 

for the session named  sess  for  AgentX -specific packet processing. Finally, 

the program enters a receiving loop dealing with various sessions. 

  Sessions are served with the  select()  function by I/O multiplexing with 

other daemons. However, the  snmp_select_info()  function has nothing 

to do with this technique. Instead, it performs the housekeeping work on (1) the 

active sessions for the forthcoming  select()  and (2) sessions to be closed, 

and active sessions are recorded in the  fd_set  and  numfd  structure. The 

 snmp_read()  function reads requests of selected sessions. It checks whether 

those in the  fd_set  belong to SNMP packets using the  snmp_parse()  

function, and then strips off the unnecessary portion from the request to form 

   FIGURE 6.44 Processing flow inside Net-SNMP. 

Start the server with
required options

init_agent()
[agent/snmp_vars.c]

init_snmp()
[agent/snmp_api.c]

init_master_agent()
[agent/snmp_agent.c]

snmp_select_info()
[snmplib/snmp_api.c]

while (netsnmp_running)

receive() [agent/snmpdt.c]

snmp_read()
[snmplib/snmp api.c]

netsnmp_check_outstanding_agent_requests()
[agent/snmp_agent.c]

count = select(numfds, & fdset, 0, 0, tvp)

Continued

lin76248_ch06_417-545.indd   495lin76248_ch06_417-545.indd   495 24/12/10   4:25 PM24/12/10   4:25 PM



496 Computer Networks: An Open Source Approach

an SNMP PDU. The resulting PDU is passed to the callback routine registered 

previously for the session, and demanded information is sent back to the inquirer 

once the routine returns successfully. 

 Finally, the  netsnmp_check_outstanding_agent_requests()  

checks whether there are any outstanding delegated requests. If positive, it veri-

fies with the access control module (ACM), and processes the requests once the 

verification is passed.  

 When a module needs more time to complete an incoming request, it can 

mark the request as  delegated  and return, allowing the agent to process other 

requests. For example, the agent marks any request that must be processed by an 

 AgentX  subagent as delegated, so as to free itself up to process other requests 

while waiting for the subagent to respond.  Net-SNMP  requires that all pend-

ing delegated requests are completed before the  set  request can be processed. 

If there are still pending requests, the  set  and all other incoming requests are 

queued until they are finished.  

  Exercises 
    1. Find which .c files and lines of code implement the set operation.  

   2. Find out the exact structure definition of an SNMP session.    

   /** snmp version */ 

 long   version; 

 /** Number of retries before timeout. */ 

 int   retries; 

 struct snmp_session *subsession; 

 struct snmp_session *next; 

 /** UDP port number of peer. (NO LONGER USED - USE peername INSTEAD) */ 

u_short   remote_port; 

 /** My Domain name or dotted IP address, 0 for default */ 

 char   *localname; 

 /** My UDP port number, 0 for default, picked randomly */ 

 u_short   local_port; 

 /** Function to interpret incoming data */ 

  netsnmp_callback callback;  
 /** Session id - AgentX only */ 

 long   sessid; 

 * SNMPv1, SNMPv2c and SNMPv3 fields 

 FIGURE 6.45 Structure of a session (partial). 

  6.7 VOICE OVER IP (VoIP) 

  Among the two real-time applications presented in this chapter, Voice over IP 

(VoIP) is considered  hard  real-time while streaming is  soft  real-time. The former 

has a round-trip time (RTT) constraint of around 250 ms as the threshold for us-

ers’ delay perception, but the latter could accommodate an RTT up to seconds 

with its delayed playback. Thanks to the over-provisioned optical backbone, 

lin76248_ch06_417-545.indd   496lin76248_ch06_417-545.indd   496 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 497

VoIP took off after the early 2000s. Along the evolution, two standards have been 

developed: H.323 from ITU-T and SIP from IETF. SIP won but hasn’t dominated 

the market because there are several other  proprietary  VoIP protocols. This section 

introduces and compares H.323 and SIP, and illustrates Asterisk as the open source 

implementation of SIP.   

  6.7.1 Introduction 
  The telephone service and the equipment that makes it possible are taken for 

granted in most parts of the world. Availability of a telephone, fixed or mobile, 

and access to low-cost, high-quality worldwide networks are considered essential 

in a modern society. However, the world of voice communication is no longer 

dominated by the traditional Public Switched Telephone Network (PSTN). 

A paradigm shift has occurred since more voice communications are packetized 

and transported over the Internet. Voice communications using the Internet Pro-

tocol, called VoIP or IP Telephony, has become especially attractive given the 

following virtues: 

    Inexpensive cost : There could be real savings on long distance telephone 

calls, especially for companies with international branches and markets. The 

flat-rate charging model on the Internet means you only pay the  fixed  access 

fee, regardless of how much and how long you send the data, which is quite 

different from the charging model of the PSTN.  

   Simplicity : An integrated voice/data network could simplify network 

operations and management. Managing one network should be more 

cost-effective than managing two.  

   Less bandwidth consumption : The voice channels within a telephone 

company circuit are chopped into a standard 64 kbps using  pulse code 
modulation  (PCM). Under an IP network, on the other hand, with a 

powerful codec, the bandwidth of a single voice channel can be further 

reduced to 6.3 kbps using G.723.1.  

   Extensibility : New types of services exploiting the real-time voice 

communications and data processing could be supported. New features 

could be extended to, for example, whiteboard, call center, teleworking, and 

distance learning.   

 Though VoIP has many advantages, issues such as quality of service (QoS) need to 

be addressed to reduce the impact of loss, latency, and jitter inherited from the IP 

network. Thanks to the huge investment in the optical network infrastructure around 

the year 2000, VoIP applications nowadays run satisfactorily in most areas, which 

was not the case a decade ago. 

 This section covers two kinds of VoIP protocols, H.323 and SIP, and their 

extension architectures. H.323, defined by the International Telecommunications 

Union (ITU-T), was developed earlier but has been replaced by SIP from IETF. Its 

simplicity makes SIP a favorable solution over H.323. SIP was defined in RFC 2543 

in 1999 and later obsoleted by RFC 3261 in 2002.  

lin76248_ch06_417-545.indd   497lin76248_ch06_417-545.indd   497 24/12/10   4:25 PM24/12/10   4:25 PM



498 Computer Networks: An Open Source Approach

  6.7.2 H.323 
 The H.323 protocol suite was the dominant VoIP protocol adopted by many commercial 

products. This recommendation, first released in 1996, originally targeted multimedia 

conferencing over LANs but was later extended to cover VoIP. Further enhancements 

include the ability for end points to configure QoS through ReSerVation Protocol 

(RSVP), URL-style addresses, call setup, bandwidth management, and security features. 

  Elements in an H.323 Network 

 An H.323 environment, called a  zone,  typically comprises four kinds of elements: one 

or more terminals, gateways, multipoint control units (MCU), and an administrative 

gatekeeper, as defined below. 

     1. Terminal : An H.323 terminal, usually a client-side software, is used for initial-

izing two-way communication with another H.323 terminal, MCU, or gateway.  

    2. Gateway : This acts as a middleman between a VoIP zone and another type of 

network, usually a PSTN network, providing the translation services for the 

two-way communication.  

    3. Multipoint control unit : An MCU is an H.323 end point that manipulates three 

or more terminals or gateways participating in a multipoint conference. It can be 

either standalone or integrated into a terminal, a gateway, or a gatekeeper.  

    4. Gatekeeper : This provides various services for other entities in the network such 

as address translation, admissions control, and bandwidth control. Supplementary 

 Historical Evolution: Proprietary VoIP 
Services—Skype and MSN 

 A number of applications, either public domain or proprietary, have been 

developed in the history of VoIP. However, prevalence has only been gained by 

some of them, such as Skype (proprietary), MSN (proprietary), and Asterisk 

(open source). Surprisingly enough, among the three of them only Asterisk 

follows the SIP protocol, while the other two cultivate their own, i.e., the 

 encrypted  Skype protocol and the MSNMS (MSN Messenger Service) protocol. 

Even though MSN had provided the SIP option in its 2005 version, interoper-

ability has been abandoned. 

 It is believed that they resorted to similar approaches, namely an SIP-like 

protocol as they have been widely discussed and analyzed. However, due to 

business concerns, a private community is maintained by using a transport 

protocol other than RTP/RTCP and different codecs. This trend pretty much 

resembles the traditional telecom market, in which bare interoperability exists 

among products of different vendors. The number of users for Skype is 443 mil-

lion (42.2 million active users per day) as of early 2010, while that of MSN is 

not disclosed. Asterisk is supposed to attain many fewer users than the other two 

due to complexity of installation and operation. It is adopted more by enterprises 

than by end users. 

lin76248_ch06_417-545.indd   498lin76248_ch06_417-545.indd   498 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 499

services like location service, i.e., locating a gateway for a registered terminal, 

and call management may also be included. However, it is optional because two 

terminals could still contact each other without additional service support.   

  Figure 6.46  shows the relationships between the four elements in an H.323 zone. A 

normal VoIP transaction can be described as follows: Every entity in the H.323 network 

has a unique network address. Whenever a terminal wants to connect to another for a voice 

conversation, it first issues a request to the gatekeeper, if required, for call admission. If 

admitted, the caller sends a connection request specifying destination address and port, 

like ras://host@domain:port, to the remote terminal. After some capability negotiations, 

a communication channel is built for the two terminals. MCU and gateway would be 

involved only in a three-way call and internetwork call, respectively.   

  Protocol Stack of H.323 

  Figure 6.47  shows the H.323 protocol family, which can be divided into two planes: 

control plane and data plane. The control plane coordinates the setup and teardown 

process of a VoIP session, while the data plane deals with the encoding and transmis-

sion of the voice or multimedia data. We describe the function of each protocol in the 

paragraphs that follow.  

   FIGURE 6.46 An H.323 environment. 

PSTN
Network

Gateway
Router

IP Network

MCU

Telephone
H.323

gatekeeper

H.323
terminal

Packet-switched network Circuit-switched network

   FIGURE 6.47 Protocol stack of H.323. 

Q.931 H.245

G.711

G.723

G.729

H.263
RTCP

RAS
(H.225.0)

Control
A/V

controlAudio VideoControl

TCP UDP

IP

RTP

T.120

Data

lin76248_ch06_417-545.indd   499lin76248_ch06_417-545.indd   499 24/12/10   4:25 PM24/12/10   4:25 PM



500 Computer Networks: An Open Source Approach

 Registration Admission and Status (RAS) is a signaling method between a 

gatekeeper and the end points that it controls. Defined in H.225.0, it supports 

the registration/deregistration, admission, bandwidth change, and disengagement 

of a call for a terminal. Q.931 is a signaling method for call setup and teardown 

between two terminals. Since it is a variation of the Q.931 protocol defined for 

PSTN, the design for internetworking H.323 and PSTN is also simplified. H.245 is 

used for capability negotiation, such as the types of audio (G.711, G.723, G.729) 

or video (H.263) codec, between two terminals, and determines the master-slave 

relationships of terminals. The master-slave distinction is necessary since there 

needs to be an arbiter (the master) to describe logical channel characteristics and 

determine the multicast group addresses for all the RTP/RTCP sessions. A number 

of logical channels can be built by H.245 after those initializations are completed. 

T.120 comprises a set of data protocols for multimedia conferencing, for example, 

application sharing, whiteboard, and file transfer during a VoIP session. 

 As presented in Section 5.5, Real-time Transport Protocol (RTP) is a simple 

protocol designed to transport and synchronize real-time traffic by exploiting the 

sequence numbers not presented in existing transport protocols like UDP. Real-Time 

Control Protocol (RTCP), defined also by IETF as a companion of RTP, is based 

on the periodic transmission of control packets to all participants in the session. It 

is mainly responsible for providing feedback for all participants about the quality 

of the data transmission, which helps suggest proper codec adoption. The underly-

ing transport protocol must provide multiplexing of the RTP and RTCP packets, by 

using, for example, separate port numbers with UDP. RTP and RTCP were covered 

comprehensively in Section 5.5. In addition to their use in H.323 and SIP for VoIP, 

we see them again in Section 6.8 in connection with streaming.  

  Setup Procedure of an H.323 Call 

 There are two cases of the setup procedure for an H.323 call: one with a gatekeeper 

and one without. Typically a quality, fully controllable call involves an administra-

tive gatekeeper in the local zone cooperating with a remote gatekeeper. This model is 

known as “gatekeeper-routed call signaling.” 

  Figure 6.48  shows the general setup procedure of a gatekeeper-routed H.323 call. 

In the presence of a gatekeeper, all control messages, including call requests, are sent or 

routed to it. A call request is handled by RAS implemented in a gatekeeper for registra-

tion admission and other services such as address translation and bandwidth allocation 

required by VoIP service providers for billing and accounting. The local gatekeeper 

then issues a setup message to the callee, who then asks its own gatekeeper if it wants 

to handle this session. If permitted, the callee sends a positive reply to the originating 

gatekeeper and all future  control  messages will be routed through these two gatekeepers.  
 After a call request is granted by the gatekeepers of both sides, the caller 

proceeds with Q.931 setup. The Q.931 protocol is used to essentially “ring the 

phone” and return the dynamically allocated port for the H.245 control channel. 

After the H.245 channel establishment process with capability negotiation and 

master-slave determination, logic channels are opened and the two terminals start 

conversation based on RTP and monitored by RTCP. The closing of channels and 

teardown of calls are done in a similar manner. 

lin76248_ch06_417-545.indd   500lin76248_ch06_417-545.indd   500 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 501

 It is not hard to see that the overhead of message exchanges in H.323 is 

huge, especially when the gatekeeper-routed model is used. To overcome this 

drawback, a procedure named  fast connect  is introduced. In the fast connect 

procedure, H.245 information is carried within the Q.931 messages, and there is 

no separate H.245 control channel. Therefore bringing a call to a conclusion is also 

faster. The call is released simply by sending the Q.931 Release Complete message 

that also has the effect of closing all of the logical channels associated with the call 

as H.245 does.   

  6.7.3 Session Initialization Protocol (SIP) 
 The Session Initialization Protocol (SIP) is an alternative signaling protocol for VoIP. 

Proposed by IETF, it was targeted to replace H.323 from ITU-T for its simplicity and 

compatibility with existing protocols in the IP networks, where most of the protocols 

are also defined by IETF, anyway. With session description and multicast capability 

provided by other supplementary protocols, it is easy to handle the setup, modifica-

tion, and teardown of multimedia sessions. Due to the real-time nature, it also relies 

on the RTP as its transport protocol. 

 Like HTTP, which is a text-based protocol, SIP borrows its message types and 

header fields, and the client-server scheme as well. However, unlike HTTP which 

is over TCP, SIP may use UDP or TCP. Multiple SIP transactions can be carried in 

a single TCP connection or a UDP flow. In addition, user mobility is satisfied by 

proxying and redirecting, which provides the current location of a user. 

  Elements in a SIP Network 

 Since SIP is client-server based, there must be at least a caller, referred to as User 

Agent Client (UAC) and a callee, referred to as User Agent Server (UAS), plus some 

assistant servers, as shown in  Figure 6.49  and described below. 

   FIGURE 6.48 Setup procedure of an H.323 call. 

Registration and admission

Call setup

Terminal capability negotiation, channel
setup, and master-slave detection

Stable call established and proceeds

Close channel

Call teardown

Disengagement

RAS

Q.931

H.245

RTP/RTCP

H.245

Q.931

RAS

lin76248_ch06_417-545.indd   501lin76248_ch06_417-545.indd   501 24/12/10   4:25 PM24/12/10   4:25 PM



502 Computer Networks: An Open Source Approach

     1. Proxy  servers: A SIP proxy server, like the one in HTTP, acts on behalf of a client, 

and forwards requests to the other servers, possibly after translating the requests. 

It could be used to store information for billing and accounting purposes.  

    2. Redirect  server: The redirect server responds to a client’s requests by  informing  

it of the requested server’s address. It does not initiate a SIP request as the proxy 

server does, nor does it accept calls like a UAS.  

    3. Location  server: The location server is used to handle requests from the proxy 

server or the redirect server for the callee’s possible location. Typically it is an 

external server that uses non-SIP protocol or routing policies to locate the user. 

A user may  register  its current location to the server. Co-location with other SIP 

servers is possible.   

 A UAC issues a calling request, also known as an  INVITE  request, either directly to 

the UAS or through the proxy. In the former case, if the UAC only knows the URL 

of the UAS but has no idea about the location of the UAS, the  invite  request is 

sent to the redirect server, which asks the location server for location information for 

the UAS, assuming the UAS has registered in the location server, and then replies 

to the UAC. If a proxy is used, the UAC simply sends the request to the proxy 

without worrying about the location of the UAS. The proxy will contact the location 

server. Oftentimes a proxy server is implemented with the redirect capability. 

A UAC just specifies what service, redirection or proxy, it wants when contacting 

that proxy server.   

  Protocol Stack of SIP 

 Several protocols, as shown in  Figure 6.50 , are required to build up the basis of 

SIP operations. The real-time transport by RTP, monitored by RTCP, is the same 

as H.323. We detail SIP and its supplementary protocols, Session Announcement 

Protocol (SAP) and Session Description Protocol (SDP).  
 SIP clients are identified by a SIP URL which follows the “user@host” format. 

Note that this type of addressing looks similar to an e-mail address. The user part 

may be the name of the user or a telephone number. The host part may be a domain 

name, a host name, or a numeric network address. For example, 

  callee@cs.nctu.edu.tw and 
 +56667@nctu.edu.tw.   

   FIGURE 6.49 A SIP environment. 

Local
proxy server

Remote
proxy server

Redirect
server

Location
server

User Agent
Server (UAS)

User Agent
Client (UAC)

Internet

lin76248_ch06_417-545.indd   502lin76248_ch06_417-545.indd   502 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 503

  Setup Procedure of a SIP Call 

 Once the callee’s address is known, a caller may issue a series of commands or op-

erators to initiate a call.  Table 6.27  lists the operators or commands in SIP. The first 

four operators are used in call setup and teardown. A general scenario would be like 

this: A caller issues  INVITE,  which typically contains a session description written 

in SDP, to the callee specified in a URL for a new VoIP session, and waits for the 

response. If the destination IP address is known, the request is sent directly to the 

callee. Otherwise it is sent to the local proxy server with a built-in location server, 

in either  redirection  mode or  proxy  mode. For the latter case, the proxy forwards 

the  INVITE  message according to address information from the location server, 

possibly through other proxies, to the destination. 

 Now the callee’s telephone is rung. If the callee agrees with the session require-

ments, checked by the local machine, and wants to participate the session, i.e., pick 

up the phone, it replies to the caller with an appropriate reply code such as  200 
OK , as shown in  Table 6.28 . The caller then acknowledges the callee’s response 

by sending an  ACK  message. The handshake is thus completed and a conversation 

starts. However, chances are that the callee is so busy that the  INVITE  request is not 

handled for a long period. In this event, the caller may give up and send a  CANCEL  

message for this invitation. 

   FIGURE 6.50 Protocol stack of SIP. 

SIP 

SAP/SDP

Multimedia Traffic 

RTP

TCP UDP

IP

RTCP

Control planeControl plane Data plane

TABLE 6.27 Some SIP Commands

Operators Description

INVITE Invite a user to a call

ACK Confirmation for the final response

BYE Terminate a call between end points

CANCEL Terminate the search for a user or request for a call

OPTIONS Features supported for a call

REGISTER Register current location of the client with location server

INFO Use for mid-session signaling

lin76248_ch06_417-545.indd   503lin76248_ch06_417-545.indd   503 24/12/10   4:25 PM24/12/10   4:25 PM



504 Computer Networks: An Open Source Approach

 When the conversation is to be closed, one of the participants hangs up and 

causes a  BYE  message to be sent. The receiving host then responds with  200 OK  to 

confirm the receipt of the message, and at the same time the call is terminated. 

 While SIP acts as a command generator in a session, SDP, which is also a text-based 

protocol, is used to  describe  the characteristics of the session to session participants. A 

session consists of a number of  media streams.  Therefore, the description of a session 

involves the specification of a number of parameters related to  each  of the media streams, 

TABLE 6.28 SIP Reply Codes

Reply Code Description

1xx (Informational) Trying, ringing and queued

2xx (Successful) The request was successful

3 xx (Redirection) Give information about the receiver’s new location

4xx (Request Failures) Failure responses from a particular server

5xx (Server Failures) Failure responses given when a server itself has erred

6xx (Global Failures) Busy, decline, requests not acceptable

 Historical Evolution: H.323 vs. SIP 

 Though the H.323 protocol has been defined since 1996, it has failed to capture 

the market in the way it was supposed to. Analysts have suggested various reasons 

for the failure of H.323, including the complex signaling, scalability issues, and 

security issues in H.323. This is why SIP was developed — to have a lightweight 

and easy-to-implement alternative. Among other advantages, SIP is a  proposed 
standard,  defined in RFC 2543 and obsoleted by RFC 3261, that has approval and 

backing from the IETF. Nevertheless, H.323 still has its advantageous features. 

Following are some other differences between these two protocols. 

    1. Message encoding: H.323 encodes messages in the binary format, rather 

than the ASCII text format, so that it is more compact for transmission. 

However, it is easier for developers to debug and decode with ASCII strings. 

Methods for ASCII compression are also provided in SIP.  

   2. Channel types: H.323 can exchange and negotiate on channel types such as 

video, audio, and data channels. An SIP UAC can only propose a set of channel 

types within which other UASs are limited. If not supported, the UAS responds 

to the INVITE message with error codes such as 488 (not acceptable here) and 

606 (not acceptable), or warning codes such as 304 (media type not available).  

   3. Data conferencing: H.323 supports video, audio, and data conferencing 

(with T.120). It also has defined procedures to control the conference, 

while SIP supports only video and audio conferencing and is not capable of 

controlling the conference.   

lin76248_ch06_417-545.indd   504lin76248_ch06_417-545.indd   504 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 505

such as transport protocol and media type (audio, video or application), as well as the 

session itself, such as protocol version, origin, session name, and session start/stop time. 

 Although SDP describes the characteristics of a session, it does  not  provide a 

means for session advertisement at the beginning of a session setup. For this, SAP 

is used for  advertising  multimedia conferences and other multicast sessions, as well 

as sending the relevant session setup information, to the participants during a SIP 

session. A SAP announcer  periodically  sends an announcement packet to a well-

known multicast address and port (9875) so that receivers, i.e., potential session 

participants, can use the session description to start the tools required to participate 

in the session. Note that the payload of the packet containing the description of the 

multicast session must be written in the SDP format for interoperability among all 

participants, since there is  no  capability negotiation in a SAP announcement. 

 Open Source Implementation 6.6: Asterisk 

  Overview 
 Rather than looking at simple point-to-point VoIP software, we examine an inte-

grated PBX (Private Branch eXchange) system, Asterisk, which bridges between 

softphones or between softphones and traditional phones in PSTN via a PSTN 

gateway. As  Figure 6.51  shows, an Asterisk server acts as a communicator between 

PSTN and a VoIP network. A VoIP network may comprise a PC-based phone with 

VoIP software installed or a SIP-capable phone. A traditional phone can even be 

applied when coupled with an Analog Telephony Adaptor (ATA adaptor), which 

translates analog signals into a VoIP data stream. Technically speaking, Asterisk is 

a  concurrent  implementation of the  connection-oriented stateful  SIP protocol and 

the  connectionless stateless  RTCP/RTP protocols. The port it binds is  not  specific.   

  Block Diagram 
 Asterisk provides a framework to build a  customized  VoIP system. As shown 

in  Figure 6.52 , the inherent flexibility comes from the addition and removal of 

   FIGURE 6.51 An Asterisk-based VoIP environment. 

Asterisk PBX server

PSTN
networks

PC softphone SIP phone Analog phone

ATA
adaptor

Continued

lin76248_ch06_417-545.indd   505lin76248_ch06_417-545.indd   505 24/12/10   4:25 PM24/12/10   4:25 PM



506 Computer Networks: An Open Source Approach

modules such as channel, RTP, and framer used to establish the basic transport 

service. The core functionality of Asterisk is to serve as a PBX that  exchanges
calls locally in, say, an office or a building. Yet additional utilities such as HTTP 

server, SNMP agent, and Call Detail Record (CDR) engine for ease of high-level 

management can also be equipped.   

  Data Structures 
 A PBX switches calls to their corresponding destinations. However, at the des-

tination a number of  extension numbers  may be present, and thus another level 

of switching is required locally. To implement this scheme, within an Asterisk 

PBX, two concepts named  context  and  extension  are introduced, in which the 

latter enlarges the  callee group  while the former further extends the number of 

groups supported. As shown in  Figure 6.53 , by incorporating the contexts  mul-
tiple  companies or organizations can each have their own extension space while 

sharing just one single PBX.  
 It is further designed so that each extension can have multiple  steps —called 

priorities  here—in order to organize a  dial plan  that allows users to pre-setup their 

   FIGURE 6.53 Contexts for multiple groups and their extensions. 

Context1

Inside an
Asterisk PBX

Ext1 Ext1Ext2 Ext2

Context2 ...

. . .. . .

   FIGURE 6.52 Framework of Asterisk. 

HTTP

Asterisk framework

PBX Module Loader

Channel RTP Framer

CDR Engine SNMP

lin76248_ch06_417-545.indd   506lin76248_ch06_417-545.indd   506 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 507

own calls for automation purposes. A priority is associated with an application 

that performs a specific action. For example, a call could be composed of (1) a call 

action to connect to the callee by an application “ Call”  at priority 1, (2) an answer 

action that involves the playback of a prerecorded sound file by an application 

“ Answer”  at priority 2, and finally (3) a hand-up action to close a channel by an 

application “ HangUp”  at priority 3.  

  Algorithm Implementations 
 The internal execution of Asterisk can be divided into four steps: (1) initialization 

of management interface, (2) call origination with required parameters such as 

priority and application, (3) channel setup for data transportation, and (4) forking of 

a serving thread that establishes the  pbx  structure and carries out the call. 

  Initialization of Management Interface 
 The detailed processing flow is shown in  Figure 6.54  and elaborated as follows: 

At the very beginning  init_manager()  is called to load configurations 

   FIGURE 6.54 Call flow within the Asterisk. 

init_manager()
[main/manager.c]

action_originate()
[main/manager.c]

_ast_request_and_dial()
[main/pbx.c]

ast_pbx_start()
[main/pbx.c]

pbx_thread()
[main/pbx.c]

ast_pbx_run()
[main/pbx.c]

_ast_pbx_run()
[main/pbx.c]

_ast_pbx_run()
[main/pbx.c]

First call in
this channel?

ast_pbx_outgoing_exten() [main/pbx.c]

Yes No

Continued

lin76248_ch06_417-545.indd   507lin76248_ch06_417-545.indd   507 24/12/10   4:25 PM24/12/10   4:25 PM



508 Computer Networks: An Open Source Approach

and register important callback functions, namely the “actions.” Example 

actions, in addition to those mentioned above, include (1)  Ping  for testing 

both endpoints and keeping the connection alive, (2)  Originate  for 

initiating a call, and (3)  Status  for listing channel status. After the 

initialization is completed, it starts to listen to connection requests. Note 

that a “manager” session in Asterisk typically means an HTTP session with 

a management interface for a user to perform demanded actions. Therefore, 

multiple manager sessions are possible by creating the corresponding threads 

on a  nonblocking  socket, and an  event queue  is employed for actions triggered 

in those sessions.   

  Call Origination 
 When the user of a manager session places a call, the  action_originate()  

is called with a message containing various parameters describing the call such 

as caller ID, action ID, channel name, extension/context/priority, account of 

the user, and application. The originating action is actually placed into a  caller 
queue,  rather than executed immediately, in case of simultaneous call events 

with insufficient resources. The  ast_pbx_outgoing_exten() , which 

contains a series of important procedures carrying out the calling, is executed 

after verifying the authentication status of the user account. 

 The  ast_pbx_outgoing_exten()  calls  _ast_request_
and_dial() , which subsequently calls the  ast_request()  and then 

 chan->tech->requester() , which asks for a channel for transport of voice.  

  Channel Setup 
 The  chan  is an instance of the  ast_channel  structure that describes a chan-

nel. Among the attributes of the structure the most critical one has to do with 

 tech , an instance of the structure  ast_channel_tech  used to specify the 

transport technology. Since  chan->tech->requester()  has been defined 

as a function pointer, here we intend to adopt the case where  sip_request_
call()  is registered as the corresponding callback function to request a SIP-

based channel. Eventually a channel is granted and the channel identifier is also 

returned all the way back to the  ast_pbx_outgoing_exten()  for future 

use of other upper-layer procedures. 

 The  sip_request_call() , which resides in  channels/chan_
sip.c , checks whether the specified codec is supported and, if positive, 

invokes  sip_alloc()  to build a SIP private data record,  sip_pvt . The 

 sip_pvt  structure consists of dozens of elements describing the private dialog 

of the SIP session during session registration and call placement—for example, 

CallerID, IP address, capability, SDP session ID, and RTP socket descriptor.  

  Thread Forking 
 The  ast_pbx_outgoing_exten()  continues the dialing by invoking either 

 ast_pbx_start()  or  ast_pbx_run() , depending on whether this is the 

lin76248_ch06_417-545.indd   508lin76248_ch06_417-545.indd   508 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 509

   FIGURE 6.55 Inside the  __ ast _ pbx _ run()  function. 

_ast_pbx_run() [main/pbx.c]

ast_calloc() [main/cdr.c]

ast_cdr_alloc() [main/cdr.c]

ast_spawn_extension() [main/pbx.c]

sip_request_call() [channels/chan_sip.c]

ast_hangup() [main/channel.c]

 first  call to the  same  destination. If it is indeed the first call, a serving thread is 

created to execute  pbx_thread() , which subsequently invokes the  _ast_
pbx_run() , and to increment the call count. 

 In  Figure 6.55 ,  _ast_pbx_run() , as the main serving procedure of 

the call, establishes the private  pbx  structure for the channel using  ast_
calloc()  and the CDR structure for recording the calling activities using 

 ast_cdr_alloc() . It then loops on all priorities of this context/extension 

executing the designated applications with  ast_spawn_extension()  until 

a hang-up event is triggered and handled by  ast_handup() , i.e., the previ-

ously registered hand-up action. Within the  ast_spawn_extension() , the 

preregistered callback function,  sip_request_call()  as mentioned previ-

ously, is called to build a  PVT  structure describing the SIP session. Afterwards 

an RTP/RTCP transport is also initiated and assigned to the  PVT  structure by 

executing  ast_rtp_new_with_bindaddr()  (not shown in this figure) 

during  sip_request_call() .    

  Exercises 
    1. Find the .c file and lines where  sip_request_call()  is registered as a 

callback function.  

   2. Describe the  sip_pvt  structure and explain important variables in that 

structure.  

   3. Find the .c file and lines where the RTP/RTCP transport is establish for the 

SIP session.    

lin76248_ch06_417-545.indd   509lin76248_ch06_417-545.indd   509 24/12/10   4:25 PM24/12/10   4:25 PM



510 Computer Networks: An Open Source Approach

        6.8 STREAMING 

  As a  soft  real-time application, streaming achieved its popularity sooner than VoIP 

in the late 1990s before the huge investment in the optical backbone around 2000. 

It could  absorb  and thus  accommodate  much higher latency and jitter than VoIP. In 

this section, we first introduce the architecture and components of streaming clients 

and servers. Then we describe the common  compression /decompression  techniques 

that significantly reduce the video/audio bit rate, which facilitates network transport. 

Next, two streaming mechanisms, Real-Time Streaming Protocol (RTSP) and HTTP 

streaming, are introduced and compared. Advanced issues, including  QoS control  
and  synchronization  during streaming, are addressed. Last, the Darwin Streaming 

Server (DSS) is presented as the example open source implementation. 

  6.8.1 Introduction 
 Traditional multimedia entertainment was mostly carried out by storing or 

downloading a media file to a client PC before it was played. However, this 

download-and-play manner cannot support  live  programs, and requires, for  recorded  

programs, long latency in starting the playback and large storage on the client side. 

Streaming, which was designed to overcome these drawbacks, is used to distribute 

live or recorded media streams to audiences  on-the-fly.  Unlike the download-

and-play model, a movie can be played once its  initial  piece arrives at the client. 

Then, transfer and playback are done  concurrently,  or are  interleaved.  A streamed 

movie is never actually downloaded since the packets are discarded right after they 

are played out. In this way, it saves both startup latency and storage overhead at the 

client side, and supports live programs. 

 It takes many functions to form a streaming system. For example, a  compression  

mechanism is needed to convert the video and audio data from digital camera into a 

proper format. We also need special-purpose  transport protocols  for real-time data 

transmission. QoS control must be provided to ensure  smoothness  in streaming the 

session. The client needs a decompressor or  decoder,  in hardware or software, and 

a  playback  mechanism adaptive to latency, jitter, and loss. Some  synchronization  is 

needed to coordinate the video and audio playback. 

 A streaming architecture is given in  Figure 6.56 . There are typically two 

kinds of participants: a streaming server that distributes the media content, and a 

number of clients joining the multimedia session. A general streaming processing 

is summarized as follows: Raw video and audio data from the recording device are 

 compressed,  i.e.,  encoded,  and  stored  in a storage device. When receiving a client’s 

request, the streaming server retrieves the stored content to be sent via a transport 

protocol. Before sending the content, some application-level QoS control modules 

are invoked to  adapt  bit streams to the network status and QoS requirements. 

 After being successfully received at the client, packets are processed through 

the transport layer and then the receiver QoS module, and finally  decoded  at the 

video/audio decoder. Before the packets are played out, media  synchronization  

mechanisms are performed to synchronize the video and audio presentations. We 

elaborate on these components in the next three subsections.   

lin76248_ch06_417-545.indd   510lin76248_ch06_417-545.indd   510 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 511

  6.8.2 Compression Algorithms 
 The truth is that raw video/audio data is huge. Ten seconds of raw, uncompressed 

NTSC (National Television System Committee), a standard of television, will fill 

as much as 300 MB of storage space. That is why compression is much needed, 

especially for creating video files small enough to play over the Web. 

 A compression algorithm analyzes the data and removes or changes bits so 

that the  integrity  of the original content is retained as much as possible while 

reducing the file size and bit rate. Three characteristics of compressing algorithms 

are commonly examined:  temporal  and/or  spatial,   lossy  or  lossless,  and  symmetrical  
or  asymmetrical.  

  Spatial and/or Temporal 

 Spatial compression looks for similar patterns or repetitions within a still  frame.  
For example, in a picture that includes a blue sky, spatial compression would 

notice a particular area, i.e., sky, that contains similar pixels, and reduce the file size 

by recording much shorter bit streams to denote “the specified area is light blue” 

without the burden of describing thousands of repeated pixels.  Almost all  video 

compression methods/format recognized by ITU-T or ISO adopt a discrete cosine 

transform (DCT) for spatial redundancy reduction. 

 Temporal compression, on the other hand, looks for changes during  a sequence 
of frames.  For example, in a video clip of a talk, since it is often the case that only 

the speaker moves, temporal compression would only notice those changed pixels 

around the speaker. It compares the first frame, which is fully described and known 

as a  key  frame, with the next, called a  delta  frame, to find anything that changes. 

After the key frame, it only keeps the  changed  information in the subsequent frames. 

If there is a  scene change  where most of the content is different from the previous 

frame, it tags the  first  frame of the new scene as the next key frame and continues 

   FIGURE 6.56 Architecture and components for streaming. 

Video files

Audio files

Transport
protocols

Transport
protocols

QoS control

Server

Video decoder Audio decoder

QoS control

Client

Synchronization

Video/audio
raw data

Internet

lin76248_ch06_417-545.indd   511lin76248_ch06_417-545.indd   511 24/12/10   4:25 PM24/12/10   4:25 PM



512 Computer Networks: An Open Source Approach

comparing the subsequent frames with this new key frame. The resulting file size 

is thus quite sensitive to the number of key frames. The MPEG (Motion Picture 

Exert Group) standard, one of the most popular video codecs, employs temporal 

compression. 

 Note that these two techniques are  not exclusive  to each other. For example, 

almost all QuickTime movies involve both compression techniques.  

  Lossless or Lossy 

 Whether a compression algorithm is lossless or lossy depends on whether or not all 

original data can be  recovered  when the file is uncompressed. With lossless compres-

sion, every single bit of data that was originally in the file remains the same after the 

file is uncompressed. All of the information is completely restored. This is generally 

the technique of choice for text or spreadsheet files, where losing words or financial 

numbers certainly poses a problem. For multimedia data, the Graphics Interchange 

File (GIF) is an image format used on the Web that provides lossless compression. 

Other formats include PNG and TIFF. 

 On the other hand, lossy compression reduces a file by permanently 

 eliminating  certain information, especially  redundant  information. When the file 

is uncompressed, only a part of the original information is still there, although 

the user might not notice it. Lossy compression is generally used for video and 

audio, where a certain amount of information loss would not be detected by most 

users. The JPEG image file, commonly used for photographs and other complex 

still images on the Web, has lossy compression. Using JPEG compression, an 

editor could decide how much loss to introduce and  trade off  between file size 

and image quality. Video compression standards such as MPEG-4 and H.264 also 

adopt lossy compression for a relatively larger  compression ratio  compared to the 

lossless scheme.  

  Symmetrical or Asymmetrical 

 The major difference between symmetrical and asymmetrical lies in the 

time taken for compression and decompression. The times for compression 

and decompression with a symmetrical method are the same, while they are 

different when an asymmetrical one is adopted. More specifically, asymmetrical 

means it takes more time to compress the multimedia data and, in a sense, the 

resulting quality is higher. Therefore a streaming server usually carries files 

compressed asymmetrically (such as MPEG and AVI videos) so as to alleviate the 

decompression load and provide satisfactory quality to its clients. Nonetheless, 

for real-time video conferencing over cellphones, symmetrical codecs such as 

H.264 are frequently used. The encoder hardware is simply not powerful enough 

to afford the asymmetrical scheme.   

  6.8.3 Streaming Protocols 
  Figure 6.57  is the protocol stack for streaming. Though there are other proprietary 

streaming protocols, here we introduce two streaming mechanisms that are fre-

quently used in the public domain: RTSP and HTTP.  

lin76248_ch06_417-545.indd   512lin76248_ch06_417-545.indd   512 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 513

  Real-Time Streaming Protocol (RTSP) 

 Real-Time Streaming Protocol (RTSP) is a client-server multimedia session control 

protocol that works well for both large audiences (multicast) and media-on-demand 

single-viewer (unicast). One of the main functions is to establish and control streams of 

video and audio media between media server and client. The way a stream is controlled 

is defined in a server-side  presentation description file,  which can be obtained by the 

client using e-mail. It states the encodings, language to use, transport capabilities, and 

other parameters that enable the client to choose the most appropriate combination of 

media. It also supports VCR-like control operations such as stop, pause/resume, fast 

forward, and fast backward. Similar to SIP, RTSP may also invite others to participate 

in an existing streaming session. As a whole, it has the following properties: 

    1. HTTP-friendly and extensible: Since RTSP has syntax and message format in 

ASCII strings similar to HTTP, an RTSP message can be parsed by a standard 

HTTP parser, while at the same time more methods can be added easily. URLs 

and status codes can be reused, too.  

   2. Transport-independent: Both UDP and TCP can be used to deliver the RTSP 

control messages through transport negotiation between client and server. 

However, TCP is not well suited for transmitting multimedia presentations, which 

relies on time-based operation, or for large-scale broadcasting. HTTP streaming 

over TCP is examined later. The default port for both transport protocols is 554.  

   3. Capability negotiation: For example, if seeking is not implemented in the server, 

the client has to disallow moving a sliding position indicator in the user interface.    

  RTSP Methods 

 There are several methods to be performed on the resource indicated by the URL 

in the request. Unlike HTTP, where requests can be initiated only by clients, an 

RTSP-enabled streaming server can communicate with the clients to update the 

presentation description file by  ANNOUNCE  and can check the health of the clients 

with  GET_PARAMETER  as “ping”. Following are some methods that must be sup-

ported in an RTSP implementation to perform basic RTSP sessions. 

     1. OPTIONS:  An  OPTIONS  request may be issued whenever a client is going 

to try a nonstandard request. If the request is granted by the server, a 200 OK 

response is returned.  

   FIGURE 6.57 Protocol stack for streaming. 

IP

RTSP RTCP RTP

Control plane Data plane

HTTP

TCP UDP

lin76248_ch06_417-545.indd   513lin76248_ch06_417-545.indd   513 24/12/10   4:25 PM24/12/10   4:25 PM



514 Computer Networks: An Open Source Approach

2. SETUP:  This is used to specify the transport mechanism when retrieving 

streaming data at a URL.  

3. PLAY:  The  PLAY  method informs the server to start sending data using the 

transport mechanism specified in  SETUP . Some parameters within the header of 

the request can be set for extra functionalities. For example, having “Scale” set 

to 2 means doubled viewing rate, i.e., fast forward.  

    4. TEARDOWN:  This is to stop the stream delivery of a particular URL. The 

corresponding session is closed until another  SETUP  request is issued.    

  HTTP Streaming 

 In addition to RTSP, it is possible to stream video and audio content over HTTP, 

which is also called  pseudo-streaming.  The trick is that a client has to buffer current 

media content, which is sent via TCP at a bandwidth possibly higher than required 

by the player, and play out from the buffer. However, it is much more likely to cause 

major packet drop-outs, low performance, and high delay jitter due to the  retransmis-
sion  nature of TCP when it keeps resending the lost packet before sending anything 

further. The result is that it could not deliver as much content as UDP and RTSP do. 

The sidebar in Subsection 5.5.1 has addressed these issues. While this method is not 

robust and efficient, it nevertheless serves as a reasonable and convenient alternative, 

without the RTSP support, for delivering streaming content at a small scale.    

 Historical Evolution: Streaming with Real 
Player, Media Player, QuickTime, and YouTube 

 With the introduction of streaming by RealNetworks in 1995, vendors of 

multimedia players started to complement their product lines with streaming 

capability. This produced three major camps: Microsoft (Media Player), Apple 

(QuickTime), and the pioneering RealNetworks (RealPlayer), in addition to 

other players of much smaller scale. Nonetheless, to form a complete solution 

for streaming, a player also needs to incorporate with a content provider, namely 

a server. For this Microsoft has the Windows Media Services (proprietary), 

while Apple has the QuickTime Streaming Server (proprietary) and Darwin 

Streaming Server (open source), and RealNetworks is equipped with the Helix 

DNA Server (supporting both private and open source versions). 

 Though based on common transport architecture, RTSP/RTCP/RTP, in-

teroperability is not supported among those servers and players due to different 

streaming container formats (e.g., AVI, RM, WMV) and license restrictions. 

Nonetheless, standard formats such as MPEG are frequently supported. 

 Another rapidly emerging streaming technology is via Flash Media Server 

from Adobe Systems. Using a proprietary content type (FLV) and transport 

method (Real Time Messaging Protocol, RTMP, over TCP), it has become the 

major approach for on-demand video streaming over HTTP, called pseudo-

streaming in this section. The well-known video sharing portal, YouTube, adopts 

this technology. 

lin76248_ch06_417-545.indd   514lin76248_ch06_417-545.indd   514 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 515

  6.8.4 QoS and Synchronization Mechanisms 
 The question of how users feel has always been important in networking services. 

In streaming, there are two factors that directly affect the user-perceived quality: the 

 QoS control  on data transmission and the  synchronization  between the video and 

audio content. 

  QoS Control Mechanisms 

 Imagine a streaming session with poor QoS control. The quality is usually satisfiable 

under a normally loaded network. However, when the network is heavily loaded, the 

increasing packet  loss  rate will lead to broken or delayed frames and thus a rough 

play-out. Moreover, since the session coordinator is unaware of the network condition, 

it may even admit extra streams that worsen the quality of all involved sessions. 

 The objective of QoS control is therefore to maximize the streaming quality 

in the presence of packet loss. QoS control in streaming typically takes the form 

of  rate control,  which attempts to achieve the goal by matching the rate of the 

stream to the  available bandwidth.  Here we briefly introduce two approaches for 

rate control. 

    1. Source-based rate control: As the name suggests, the sender is responsible 

for adapting the video transmission rate through  feedback  about the network 

condition, or according to some modeling formulas. The feedback is usually 

the available bandwidth obtained from probing. The rate adaptation could keep 

the packet loss below a certain threshold. Adaptation may also be performed 

according to some TCP-like models so that packet loss can be alleviated as 

with TCP.  

   2. Receiver-based rate control: Under receiver-based rate control, regulation is 

done by the receiver by adding or dropping channels with the sender. Since a 

video can be decomposed into  layers  of different importance, with each layer 

transmitted in the corresponding channel, the network can be further relieved by 

deleting layers, and thus channels, that are less important.   

 There is another hybrid version that is based on the preceding two approaches. In 

this version the receiver regulates the receiving rate by adding or dropping channels 

while the sender adjusts the sending rate according to the feedback from the receiver. 

In addition to rate control, buffer management mechanisms, which prevent  overflow  

or  underflow  to achieve smooth playback, are often applied to the receiver for better 

tolerance to possible network changes.  

  Synchronization Mechanisms 

 The second factor in user-perceived quality in streaming is whether the video and 

audio content is well synchronized. While the network as well as the operating 

systems may pose delays for the media streams, media synchronization is required to 

ensure proper rendering of the multimedia presentation at the client. 

 There are three levels of synchronization:  intra-stream  synchronization, 

 inter-stream  synchronization, and  inter-object  synchronization. They are briefly 

described here. 

lin76248_ch06_417-545.indd   515lin76248_ch06_417-545.indd   515 24/12/10   4:25 PM24/12/10   4:25 PM



516 Computer Networks: An Open Source Approach

1. Intra-stream synchronization: A stream consists of a sequence of time-dependent 

data units that need to be strictly  ordered  and well  spaced.  Without the intra-

stream synchronization, the presentation of the stream might be disturbed by 

pauses, gaps, or temporary fast-forwards.  

   2. Inter-stream synchronization: Since a multimedia session is mainly made up of 

video and audio streams, inappropriate synchronization between streams would 

lead to mismatch between, for example, the lips and the voice of the speaker.  

   3. Inter-object synchronization: The streaming content can be further abstracted to 

the object level and divided into two categories, the  time-dependent  objects used 

in the preceding two schemes, and  time-independent  objects. A good example 

of the time-independent objects would be the commercial banner or image that 

appears at the edge of a screen regardless of video and audio streams. As a result 

of poor inter-object synchronization, a commercial banner might be incorrectly 

displayed in, say, a news report where it is not supposed to appear.        

 Open Source Implementation 6.7: Darwin 
Streaming Server 

  Overview 
 The Darwin Streaming Server (DSS) is the open source version of Apple’s 

QuickTime Streaming Server (QTSS). The DSS allows users to deliver 

streaming media over the Internet with RTP and RTSP. Users can tune in to 

the broadcast of live or prerecorded programs, or they can view prerecorded 

programs on demand. The DSS provides a high degree of customizability 

where developers can extend and modify the existing modules to fit their 

needs. The DSS runs on a variety of operating systems and supports a range of 

multimedia formats, including H.264/MPEG-4 AVC, MPEG-4 Part 2, 3GP, and 

MP3. In addition, the DSS provides an easy-to-use Web-based administration, 

authentication, server-side playlists, relay support, and integrated broadcaster 

administration.  

  Block Diagram 
 The DSS can be divided into two parts:  core server  and  modules.   Figure 6.58  

shows the DSS block diagram. The core server is like an interface between 

clients and modules to provide  task scheduling,  while modules are called by 

task objects to provide specific functions. Objects are defined later in the data 

structures. Under such a framework, DSS can support  asynchronous  opera-

tions ranging from accepting client requests, allocating resources, scheduling 

requests, suspending requests, streaming programs, and interacting with clients, 

to recycling resources. 

 To explain the relationship between two kinds of objects:  socket event  
and  task,  we illustrate how a client connection is handled. When the DSS 

accepts a connection from a client, a socket event will be  caught  and the 

 RTSPListenerSocket  task object is  signaled.  If everything goes well, the 

lin76248_ch06_417-545.indd   516lin76248_ch06_417-545.indd   516 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 517

 RTSPListenerSocket  task object will create a new  RTSPSession  task 

object to handle this RTSP session. Next, the client can send a  PLAY  command 

to request media content. After handling this command, the  RTSPSession  

task object may create a new  RTPSession  task object and then put it into 

scheduling to  continuously  stream media content back to the client. Both task 

objects would last until the client sends a  TEARDOWN  command to close this 

RTSP session. 

 Modules can be statically compiled-in or dynamically linked. There are 

three types of modules: (1)  content managing  modules, which manage the RTSP 

requests and responses related to media sources such as a stored file or live 

broadcast, (2)  server support  modules, which perform server data gathering and 

logging functions, and (3)  access control  modules, which provide authentication 

and authorization functions as well as URL path manipulation. The core server 

loads and initializes these modules when the stream server starts running.   

  Data Structures 
 To know how the core server works, first we should know what a task is. 

 Figure 6.59  shows the important object classes of the DSS. Class  Task  is the 

base class of all classes that can be scheduled. A task is an object instance, 

which is the type of class directly or indirectly inheriting from class  Task , 

and which therefore can be scheduled in the  fHeap  and  fTaskQueue  of a 

 TaskThread . While  fTaskQueue  is a FIFO queue, tasks inside  fHeap  are 

popped out according to their expected wakeup time. 

 The  Signal()  is used to schedule task objects into the  fTaskQueue  of 

 TaskThread  with specific events marked in the  fEvents  variable.  Run()  ,  
a virtual function, provides a general interface to be invoked when it is time for 

the task object to operate. In general,  Run()  operates according to the events 

marked in the  fEvents  variable.   

Continued

   FIGURE 6.58 The DSS block diagram. 

Core server Modules

Content
managing

Server
support

Access
control

Client

Client

Client

MainThread

IdleThread

TaskThread

Request & response

EventThread

Task under
scheduling

Task under
processing

Socket event
under scheduling

Socket event
under processing

Call module Signal associated task

lin76248_ch06_417-545.indd   517lin76248_ch06_417-545.indd   517 24/12/10   4:25 PM24/12/10   4:25 PM



518 Computer Networks: An Open Source Approach

  Algorithm Implementations 
  Task Handling 
 The DSS uses a set of preforked threads to support the operations mentioned here. 

It is different from other servers such as  Apache  and  wu-ftpd , which  dedicate  

a single thread to serve a client throughout the entire session. Tasks of DSS can 

be  scheduled  and  switched  between different threads. The reason for this OS-like 

design results from the  long session life  of stream applications. In this case, a large 

number of overlapping sessions could be handled by just a few threads. 

 As shown in  Figure 6.60 , in addition to  MainThread , there are three types 

of threads in the core server : (1)  EventThread , (2)  TaskThread , and (3) 

   FIGURE 6.60 Task handling. 

Function call Task assignment Socket event registration

fIdleHeap

EventThread × 1

TaskThread × N

IdleTaskThread × 1

EventQueueSocket
events

EventContext->
ProcessEvent()

fHeap
timeout > 0

timeout < 0

timeout=
Task->Run()

delete Task

According to the
implementation,
may trigger these

functions

EventContext->
RequestEvent()

Task->Signal()

IdleTask->
SetIdleTimer()

fTaskQueue

   FIGURE 6.59 Relationships of important classes. 

EventThread

fRefTable fIdleHeap

EventContext

fRef
fTask

RequestEvent()
ProcessEvent()

TaskThread

fHeap
fTaskQueue

Task IdleTask

fEvents
fTimerHeapElem
fTaskQueueElem

IdleTaskThread

fIdleElem

SetIdleTimer()

Signal()
Run()

Inherit from Point to Is element of

lin76248_ch06_417-545.indd   518lin76248_ch06_417-545.indd   518 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 519

 IdleTaskThread . Objects inheriting from the  EventContext  class register 

their  fRef  into the  fRefTable  of  EventThread . Once a client connects or 

sends a command to the DSS,  EventThread  will get socket events and then find the 

associated  EventContext  from  fRefTable , executing its  ProcessEvent()  

to signal the related task object pointed to by  fTask  to react to the client. 

 When a task object is signaled, it will be assigned to one of the N 

 TaskThreads  in a round-robin fashion and will be put into the  fTaskQueue . 

 TaskThread  will first check to see if there is any task in the  fHeap  whose 

sleeping time has elapsed. If there is not, it will check the  fTaskQueue  instead. 

Once the  TaskThread  gets a task, it invokes the  Run()  implementation of 

that task to deal with events marked in the  fEvents  variable. According to 

the return value of  Run() , the task will be deleted or put into  fHeap  to be 

processed again after a while.  
 Once the  SetIdleTimer()  of an  IdleTask  object, also a task object, 

is invoked, the task object will be put into  fIdleHeap  to wait for the sleeping 

time to elapse. This is similar to putting a task object into the  fHeap  of a 

 TaskThread , but the difference is that after popping the task object out of the 

 IdleHeap ,  IdleTaskThread  does nothing but signal it to let the task object 

get scheduled again. 

 According to the different implementations of  Run()  and 

 ProcessEvent() , functions such as  RequestEvent() ,  Signal() , and 

 SetIdleTimer()  could be invoked for tasks to be scheduled. How to design 

a task suitable for a system like the DSS is another lesson for programmers.  

  RTSP Session Handling 
 When the  RTSPListenerSocket  object accepts a connection, it creates 

an RTSPSession object and makes this object schedulable. Inside the  Run()  

implementation of  RTSPSession  class, there is a well-defined state machine, 

which is used to track the process state of RTSP handling. Because the real state 

transition diagram is too complex to describe here, we simplify it as shown in 

 Figure 6.61 . Starting from  Reading First Request , if the first request 

Continued
   FIGURE 6.61 RTSP handling state transition diagram. 

Handling
HTTP Tunnel

Cleaning Up
Routing
Request

Reading
Request

Filtering
Request

General RTSP
request

HTTP tunnel
request

Sending
Response

Processing
Request

Access
Control

Reading First
Request

lin76248_ch06_417-545.indd   519lin76248_ch06_417-545.indd   519 24/12/10   4:25 PM24/12/10   4:25 PM



520 Computer Networks: An Open Source Approach

  6.9 PEER-TO-PEER APPLICATIONS (P2P) 

  In the 1990s, the client-server model was believed to be a scalable solution for Internet 

applications for a number of reasons. For example, users’ computers were dumb in 

terms of computing power and storage; the 80 –20 rule indicated that most network 

traffic is devoted to retrieving only the most popular Web pages. It might have been true 

in the past that a powerful server could serve the purpose of storing information and 

sharing it in an efficient, stable, and scalable manner. However, with the rapid increase 

in computing power, network bandwidth, and hard disk storage of personal comput-

ers, users’ computers are not dumb any more. Furthermore, as broadband access from 

home prevails, more computers, acting like servers,  always  stay on the Internet. There-

fore, in recent years, more Internet applications were developed based on Peer-to-Peer 

(P2P) architecture. These applications introduce not only a new communication model 

but also new creative ideas and business models into the Internet. Noticeably, P2P 

already accounts for 60% of Internet traffic according to CacheLogic’s report! 

 Here we introduce P2P applications from four aspects: (1) a general overview 

of the operations of P2P, (2) a review of several P2P architectures, (3) performance 

issues of P2P, and (4) a case study on a popular P2P file sharing application, Bit-

Torrent (BT) and its open source implementation. Readers are advised that this 

section is heavier than the other sections in this chapter, mostly due to the more 

complicated behaviors of P2P. 

  6.9.1 Introduction 
 Unlike the client-server model, P2P is a distributed network architecture in 

which participants act as both clients and servers. Participants in a P2P network 

of the RTSP session is for HTTP tunneling, the state switches to  Handling 
HTTP Tunnel  to handle HTTP tunneling. 

 If it is a general RTSP request, the state goes through  Filtering 
Request  to parse the request,  Routing Request  to route the request to a 

content directory,  Access Control  for authentication and authorization, and 

 Processing Request  for RTP session setup and accounting. All these four 

states use functionalities provided by related modules. After sending a response 

back to the client and cleaning up the data structure for handling the request, the 

state goes back to  Reading Request  for the next RTSP request.    

  Exercises 
1. Find out under what situation the DSS core server will put the  RTSPLis-

tenerSocket  object into the  fIdleHeap  of  IdleTaskThread  for 

waiting.  

2. Refer to the function  Task::Signal() . Explain the procedure of 

assigning a  Task  object to a  TaskThread .    

lin76248_ch06_417-545.indd   520lin76248_ch06_417-545.indd   520 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 521

are usually normal users’ computers. Based on some P2P protocols, they are 

able to construct a  virtual overlay network  at the  application layer  on top of the 

underlying IP network, as shown in  Figure 6.62 . Nodes in an overlay network 

are participants, while an overlay link is usually a TCP connection between two 

participants. For example, the virtual link between P1 and P2 in  Figure 6.62  is 

a TCP connection passing through routers R1, R2, and R3 in the underlying IP 

network. Participants in P2P networks are called peers as they are assumed to play 

equivalent roles as both resource consumers and resource producers. Peers share a 

part of their own resources, such as processing power, data files, storage capacity, 

and network link capacity, through  direct  communication without going through 

intermediary nodes. 

  In general, operations in P2P systems consist of three phases: joining the P2P 

overlay network, resource discovery, and resource retrieval. Firstly, a peer joins the 

P2P overlay network by some join procedure. For example, a peer can send a join 

request to a well-known bootstrap server to obtain a list of existing peers on the 

overlay or through manual configuration. After joining the P2P overlay network, a 

peer often tries to search the network for an object shared by other peers. How to 

search an object in the distributed network is the most challenging problem for P2P 

applications. The search algorithm could be based on a central directory server, 

request flooding, or distributed hash table (DHT), depending on the underlying 

P2P architecture. We shall describe different P2P architectures next. If the search 

succeeds, the peer will obtain the information of the resource holders, such as their 

IP addresses. Retrieving the shared object is rather simple as direct TCP connec-

tions can be built between the seeking peer and the resource holders. However, 

complicated downloading mechanisms could be needed in light of factors such as 

holder’s upload bandwidth, concurrent downloading, unexpected disconnection of 

holders, how to resume downloading after a disconnected peer reconnects to the 

Internet, and so on.  

   FIGURE 6.62 P2P overlay network on top of the underlying IP network. 

P1 

R1 

R2 R3 
P2 

P1

P2

Physical network 

Overlay network 

lin76248_ch06_417-545.indd   521lin76248_ch06_417-545.indd   521 24/12/10   4:25 PM24/12/10   4:25 PM



522 Computer Networks: An Open Source Approach

 Historical Evolution: Popular P2P Applications 

 There are other P2P applications beyond file sharing. P2P communications 

through messages, voice, and video are popular. Streaming through P2P is 

gaining momentum; so is P2P computing for collaboration and research.  Table 

6.29  categorizes popular P2P applications. Generally speaking, the whole 

operation of a P2P application can be divided into P2P and non-P2P parts. 

At the initialization stage, participants in a P2P application usually connect 

to some preconfigured servers to retrieve updates or messages, which is the 

traditional client/server relationship. Afterward, the participants start to build 

their own overlay connections with each other to exchange information, which 

is the P2P relationship. 

TABLE 6.29 Categories of Peer-to-Peer Applications

Categories Application Name Features

File sharing Napster, Limewire, 

Gnutella, 

BitTorrent, eMule, 

Kazaa

•  Search and download shared files from 

others

•  Large files could be broken into 

chunks

• The largest portion of P2P traffic

IP telephony Skype • Call anywhere in the Internet for free

• P2P file-sharing built on top of Kazaa

•  Servers for presence information and 

skype-out billing

Streaming 

media

Freecast, Peercast, 

Coolstreaming, 

PPLive, PPStream

•  Built on top of the underlying P2P 

file-sharing network of Kazaa

• On-demand content delivery

• Search and relay streams through peers

Instant 

messaging

MSN Messenger, 

Yahoo Messenger, 

AOL Instant 

Messenger, ICQ

• Messages/audio/file exchange

Collaborative 

community

Microsoft 

GROOVE

•  Document sharing and collaboration

•  Keep data shared among users 

up-to-date

•  Integrate messaging and video 

conferencing

Grid 

computing

SETI@HOME • For scientific computation

•  Aggregate millions of computers to 

search for extraterrestrial intelligence

lin76248_ch06_417-545.indd   522lin76248_ch06_417-545.indd   522 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 523

 Historical Evolution: Web 2.0 Social 
Networking: Facebook, Plurk, and Twitter 

 Compared to the traditional Web 1.0, where content and services are provided 

solely by servers and the visibility of this information is on servers only, Web 2.0 

allows clients to  contribute  contents and services and to interact with peers. 

Examples include Wikipedia, Web Services, blogs, micro-blog, and online 

communities. A typical Web 2.0 application allows clients to interact with 

others by e-mail or instant messaging, update personal profiles to notify others, 

or modify contents of Web sites collaboratively. Facebook, Plurk, and Twitter 

belong to the type of Web 2.0 social networking services that build online 

communities to connect with friends, and a recommendation system linked to 

trust. In addition, Plurk and Twitter provide the services of micro-blog, which 

are similar to a traditional blog but limited in the size of contents. Entries in 

micro-blog could consist of a single sentence, an image, or a short 10-second 

video.  Table 6.30  summarizes their features. Facebook is popular because of its 

rich features and applications that make it easier to interact with friends. Plurk 

and Twitter catch up due to its sharing comments with friends in real time. 

TABLE 6.30 Features of Facebook, Plurk, and Twitter

Application Service Type Features

Facebook Social 

networking

•  Hundreds of millions of active users

•  Over 200 groups of different interests or expertise

•  A markup language, Facebook Markup Language, for 

developers to customize their applications

•  Wall: a user’s space for friends to post messages

•  Pokes: a virtual nudge to attract the attention of others 

•  Photos: upload photos

•  Status: inform friends of their whereabouts and actions

•  Gifts: send virtual gifts to friends

•  Marketplace: post free classified ads

•  Events: inform friends about upcoming events

•  Video: share homemade videos

•  Asynchronous games: a user’s moves are saved on the 

site and the next move could be made at any time

Plurk Social 

networking, 

micro-

blogging

•  Short messages (up to 140 characters)

•  Updates (called plurks) listed in chronological order

•  Respond updates by messaging

•  Group conversation between friends

•  Emoticons with text

Twitter Social 

networking, 

micro-

blogging

•  Short messages (up to 140 characters)

•  Messages (called tweets) on the author’s page 

delivered to the subscribers (known as followers)

• Support SMS messages

lin76248_ch06_417-545.indd   523lin76248_ch06_417-545.indd   523 24/12/10   4:25 PM24/12/10   4:25 PM



524 Computer Networks: An Open Source Approach

    6.9.2 P2P Architectures 
 The way of forming a P2P overlay network could be classified into three categories: 

centralized, decentralized and unstructured, and decentralized but structured. It is 

also related to the evolution of P2P applications that the centralized P2P is the first 

generation, and decentralized and unstructured P2P is the third generation. The way 

that a P2P overlay is organized, referred to as the infrastructure, affects its search 

operation and the overlay maintenance overhead. 

  Centralized 

 The centralized approach utilizes a central directory server for locating objects in 

the P2P network, as shown in  Figure 6.63 . The central directory server is a stable, 

always-on server just like a WWW or FTP server. Peers can join the P2P network 

by registering themselves to the directory server first. Peers also inform the directory 

server of objects to be shared, e.g., a list of music files with metadata. To search an 

object, a peer just sends the query message to the central directory server. The search 

could take the form of keyword search or metadata search, such as a keyword in the 

song title or name of singer. Since all objects to be shared have been registered to the 

server, the search could be done at the server alone. If the search succeeds, a reply 

consisting of a list of the content holders’ information is sent back to the inquirer. 

The inquirer in turn selects one or more peers in the list to download the object 

directly from.  

 This approach is adopted by Napster, which is considered the pioneer of recent 

P2P development. Napster, created by Shawn Fanning, is a program that allowed 

users to share and swap music files through a centralized directory server. It became 

very popular quickly right after its first release. However, it was sued by the Record-

ing Industry Association of America (RIAA) for copyright infringement in Decem-

ber 1999. In July 2000, the court ordered Napster to shut down. Napster was acquired 

by Bertelsmann later in 2002. 

 The centralized approach is very simple, easy to implement, and can support 

various kinds of search such as keyword, full-text, and metadata search. Ironically, it 

is not a true P2P system as it relies on a central directory server. Without this server, 

the system will not work anymore. As a consequence, it suffers the problems of the 

   FIGURE 6.63 Centralized P2P. 

2. Query &
response

Peer

3. Download file

1. Upload index

Peer Peer

Directory

1. Upload index

lin76248_ch06_417-545.indd   524lin76248_ch06_417-545.indd   524 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 525

client-server model, such as the server being the performance bottleneck, unreliabil-

ity due to a single point of failure, and not scalable and vulnerable to DoS attacks. 

Most importantly, it holds the responsibility for copyright infringement.  

  Decentralized and Unstructured 

 To get rid of the directory server of the centralized approach, the decentralized and 

unstructured approach floods query messages to peers within an overlay network to 

search for shared objects, as shown in  Figure 6.64 . To reduce the overhead traffic 

incurred by flooding, limited-scope flooding is adopted such that a query message 

will not be forwarded after a certain hop-count. Upon receiving a query message, 

if a neighboring peer holds resources that matched the query, the current hop will 

respond with a query hit message to the previous sender instead of to the original in-

quirer in  Figure 6.64 ; if the query is not a duplicate and its scope-limit is not reached, 

forward the query message to all the neighboring peers; discard the message other-

wise. A query hit message is returned along the reverse path back to the inquirer. The 

inquirer in turn can download the object directly from the object holder.  
 To join the P2P network, a peer needs some kind of out-of-band mechanism to 

know at least one of the peers already on the overlay network. The peer then sends a 

join message (or ping message) to the peer already on the overlay. The existing peer 

then replies its identity as well as a list of its neighbors. It may also forward the join 

message to one or all of its neighbors. Upon receiving join reply messages, the new-

comer knows more peers on the overlay and begins establishing TCP connections 

with selected peers that will become its neighbors. 

 The advantage of this approach is that it is fully decentralized, robust to peer 

failures, and difficult to shut down. However, the flooding approach is apparently 

not scalable because of excessive query traffic. In the case of limited-scope flooding, 

another critical problem emerges that it might occasionally fail to find a shared object 

that actually exists in the system. The first version of Gnutella is an example of this 

approach. To solve the scalability problem, FastTrack, a proprietary protocol of Kazaa, 

and later versions of Gnutella adopt a hierarchical overlay, as shown in  Figure 6.65 .  

   FIGURE 6.64 Limited-scope query flooding 
in decentralized and unstructured P2P system. 

Query

Query

Query

Query
Download

Query

Query Hit

Query Hit

Query Hit

lin76248_ch06_417-545.indd   525lin76248_ch06_417-545.indd   525 24/12/10   4:25 PM24/12/10   4:25 PM



526 Computer Networks: An Open Source Approach

 The hierarchical overlay divides peers into ordinary peers and super peers. 

When a peer first joins the overlay, it acts as an ordinary peer and connects to at least 

one super peer. Later on, it may be elected as a super peer if it stays on for a long 

time and/or has high upload bandwidth. A super peer acts as a local directory data-

base that stores the indexes of objects shared by ordinary peers. To search for a data 

object, an ordinary peer sends a query message to its super-peer neighbor. The super 

peer may reply to the query if the shared object can be found in its local directory; 

otherwise, it broadcasts the query to neighboring super peers using limited-scope 

flooding. Therefore, this approach builds a two-level hierarchical overlay where the 

lower level adopts the central directory server approach while the upper level adopts 

the decentralized and unstructured approach.  

  Decentralized but Structured 

 Neither Napster nor Gnutella organizes their peers into a structured overlay. The 

centralized directory in Napster is not scalable, while the way queries are propagated 

in Gnutella is rather random and thus not very efficient. Therefore, a better approach 

is to combine the distributed directory service with an efficient query routing 

scheme, which leads to the development of the decentralized and structured P2P 

systems, such as Chord, CAN, and Pastry. 

 The key ideas of this approach are as follows: For distributed directory service, 

a hash function maps peers and objects into the same address space so that objects 

can be deterministically assigned to peers in a distributive manner. For efficient 

query routing, peers are organized into a structured overlay based on their positions 

in the address space. The hash function should hash the set of peers and objects 

uniformly across the address space, known as consistent hashing. The hash function 

runs distributedly on each peer; therefore, this approach is also called Distributed 

Hash Tables (DHT). The following presents an overview on the operations of a DHT 

system and uses Chord as an example. 

 As mentioned, all peers and objects are hashed into the same address space. To 

avoid collision, the address space shall be large enough, e.g., 128 bits. A peer may 

   FIGURE 6.65 Hierarchical overlay with super peers. 

Query
Reply

lin76248_ch06_417-545.indd   526lin76248_ch06_417-545.indd   526 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 527

use its IP address or other identity as the input to the hash function and obtain the 

hash result as its node ID. Similarly, a peer may obtain the object ID of an object 

by supplying the object’s filename or some form of URI as the input to the hash 

function. As the node ID and object ID share the same address space, the key idea is 

to have each peer host the directory service for the object that has the object ID the 

same as its node ID. 

 Based on this idea, each peer first generates its own node ID by a predefined 

hash function. Then for each object being held and to be shared, it generates the 

object ID by the same or another hash function. For each object, the peer will send 

a register message to the node that has the node ID the same as the object’s ID. If a 

peer wants to query an object, it uses the hash function to generate the object ID and 

sends the query message to the node that hosts the object’s ID. We shall assume that 

an efficient routing mechanism is available to route the query message. If the address 

space is full of peers and objects, then some node would have the same node ID as 

the object’s ID. Unfortunately, we expect the address space to be sparsely occupied 

by peers and objects, so a peer with that object’s ID may not exist. To get around this 

problem, the registration message for an object ID is routed to the peer with the node 

ID closest to the object’s ID, and so is the query message. In this way, a peer is able 

to provide directory service for objects that have IDs close to its node ID. 

 The problem is then how to route a message to a peer with node ID closest to 

the destination ID, which is the ID of an object or a peer, in a structured overlay. 

The key is to have each peer maintain a specially designed routing table such that 

every peer could forward the arriving message to a neighboring peer with a node ID 

that is closer to the destination. Let us use Chord as an example to explain how the 

routing table is set up to achieve efficient routing. Chord views its address space as a 

one-dimensional circular space so that peers in the space form a ring overlay. 

  Figure 6.66  shows an example of a 10-node Chord overlay in a 6-bit address space. 

The routing table in Chord is called a finger table. For an  m -bit address space, the finger 

table of a node with ID = x consists of at most  m  entries and the  i -th entry points to 

the first node with ID following the ID of x + 2  i -1  modulo 2  m  , for 1  ≤   i   ≤   m.  Let us 

consider the finger table of node  N8  in  Figure 6.66 , where  m  = 6. In this example, node 

ID ranges from  N0  to  N63,  but only 10 nodes really exist on the ring. 

  Each node is responsible for providing directory service for objects with ID 

larger than the ID of its previous node but less than or equal to its ID. For example, 

node  N15  will keep information about objects with ID from 9 to 15. With this in 

mind, let us examine the entries of  N8 ’s finger table. The first entry,  i = 1,  keeps the 

next-hop information that leads to the node hosting  N9.  This entry points to the first 

node whose ID is  greater than or equal to  9, which is node  N15.  That is, if there is a 

query message regarding object ID 9, the message will be forwarded to  N15,  which 

actually does provide directory service for this object. Let us use the last entry,  i = 6,  
as another example. The last entry shall point to the node providing directory service 

for object ID 8 + 32 = 40. The entry points to  N42,  which is responsible for objects 

with ID from 31 to 42. 

 Now, let us consider the case of routing a query message for object 54 from 

 N8,  as shown in  Figure 6.67 . To route a message, a node looks up its finger table for 

the last entry with ID less than the object ID. Therefore,  N8  looks up the last entry 

lin76248_ch06_417-545.indd   527lin76248_ch06_417-545.indd   527 24/12/10   4:25 PM24/12/10   4:25 PM



528 Computer Networks: An Open Source Approach

   FIGURE 6.66 Finger table of Chord. 

Finger table 

N8+1 N15 

N1

N8

N15

N20

+1

+2

+4

+8

+16
+32

N30

N38

N42

N47

N51

N56

N8+2 N15 

N8+4 N15 

N8+8 N20 

N8+16 N30 

N8+32 N42 

   FIGURE 6.67 Routing in Chord. 

Finger table

N1

N8
lookup (54)

N15

N20

N30

N38

N42

N47

N51

N56

N8+1    N15

N8+2    N15

N8+4    N15

N8+8   N20

N8+16  N30

N8+32 N42

Finger table

N42+1 N47

N42+2 N47

N42+4 N47

N42+8 N51

N42+16 N1

N42+32 N15

Finger table

K54

N51+1 N56

N51+2 N56 

N51+4 N56

N51+8 N1

N51+16 N8

N51+32 N20

lin76248_ch06_417-545.indd   528lin76248_ch06_417-545.indd   528 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 529

(ID = 40 < 54) and forwards the message to  N42.  The distance from 42 to 54 is 12 < 2 4 , 

therefore,  N42  looks up the fourth entry (ID = 50 < 54) and forwards the message 

to  N51.  Finally, the distance from 51 to 54 is 3 < 2 2 , so  N51  looks up the second entry 

(ID = 53 < 54) and forwards the message to  N56.  Since  N56  is responsible for the 

directory service of object 54, it will reply the query message upon receiving the query. 

An interesting question is how many hops are required to forward the message. The 

answer is, it is bounded by  log(n).  An intuitive rationale is that each routing hop will 

reduce the distance to the destination ID by a factor of 2. For example, the distance 

from 8 to 54 is 46, which is 101110 when represented in binary. As a consequence, 

when the entry of 2 5  is selected at  N8,  the message is forwarded to a node with ID larger 

or equal to 40 (8 + 32) which has a distance less than 23 (46/2) to node 54. In other 

words, with the finger table, Chord is able to reduce the searching space by a factor of 

2 at each routing step. 

  Many DHT-based P2P systems with clever designs have been proposed. 

However, they are built upon the same ideas of distributed directory service and 

efficient routing based on a structured overlay. Although they are decentralized and 

efficient, a major drawback of DHT is that search is limited to exact match. Recall 

that an object ID is obtained by hashing its name. A slight difference in the name will 

result in a wild difference in the hash result. Therefore, it becomes difficult to search 

in a DHT by keywords, semantic search, or full-text search. Another disadvantage of 

DHTs is the overhead of overlay construction and maintenance.  

  Others 

 As different infrastructures have their own advantages and disadvantages, several 

hybrid as well as hierarchical infrastructures have been proposed in the literature.   

  6.9.3 Performance Issues of P2P Applications 
 There are several performance issues of P2P applications that draw much attention 

from researchers. The following discusses some major issues. 

  Free Riding 

 The scalability of P2P systems relies on contributions from peers. If a peer only 

consumes but contributes little or no resources, it becomes a free rider of the system. 

If there are many free riders in the system, the system will degrade to a client-server 

model where most free-rider peers act as clients while a small number of non-

free-rider peers act as servers contributing most of the resources. This will become 

a serious problem if a P2P system does not support some mechanisms to prevent it. 

Results from Hughes, Coulson, and Walkerdine in 2005 indicate that 85% of peers 

share no files in Gnutella, which does not have any anti-free-riding mechanism. 

A common solution to the free-riding problem is to implement some incentive 

mechanisms. For example, tit-for-tat in BitTorrent, which we examine next, gives 

upload priority to those peers that have higher download rates. Other solutions, 

such as reward-based and credit-based mechanisms, have also been proposed in 

the literature.  

lin76248_ch06_417-545.indd   529lin76248_ch06_417-545.indd   529 24/12/10   4:25 PM24/12/10   4:25 PM



530 Computer Networks: An Open Source Approach

  Flash Crowd 

 The flash crowd phenomenon refers to a sudden, unanticipated growth in the demand 

for a particular object, e.g., a new release of a DVD video or mp3 file. Issues related 

to this phenomenon include how to deal with a sudden large volume of query 

messages and how long it takes to find and download the object within a short time 

period. Though different types of P2P infrastructure require different solutions, in 

general, caching the object’s index on peers that have forwarded the reply message 

could reduce the query traffic as well as the latency of query messages. On the 

other hand, duplicating the object to as many peers as possible could increase the 

download speed. For example, a peer will become a seed, i.e., a resource provider, 

when it has completely downloaded the file.  

  Topology Awareness 

 DHT-based P2P systems can guarantee an upper bound on the routing path’s 

length. However, a link on the path corresponds to a transport-layer connection 

in the underlying physical network, as shown in  Figure 6.62 . Such a virtual link 

could be a long end-to-end connection across continents or a short one within a 

local area network. In other words, if peers choose their overlay neighbors without 

considering the underlying physical topology, the resultant P2P overlay network 

may have a serious topology mismatch to the underlying physical network. There-

fore, how to perform topology-aware overlay construction and overlay routing 

significantly affects the performance of P2P systems. Many route-proximity and 

neighbor-proximity enhancements for P2P overlay systems have been proposed 

based on RTT measurement, preference of routing domain or ISP, or geographical 

information.  

  NAT Traversal 

 A peer can establish a transport-layer connection to another peer directly only if 

the destination peer has a public IP address. However, many broadband access 

users are connected to the Internet through NAT devices. If both peers are behind 

NAT devices, they cannot connect to each other without help from other peers or 

STUN servers, as we discussed in  Chapter 4 . Therefore, the basic requirement 

for a P2P system is to provide peers with NAT traversal mechanisms. In most 

cases, NAT traversal is solved by relay peers or super peers that have public IP 

addresses.  

  Churn 

 Churn refers to the phenomenon that peers dynamically join and leave the system 

at will. Intuitively, a high churn rate seriously affects the stability and scalability 

of a P2P system. For example, a high churn rate may cause a tremendous overlay 

maintenance overhead and dramatic degradation in routing performance (including 

correctness of routing) in DHT-based systems. To cope with churn, a P2P system 

should avoid a rigid structure or relation among peers, such as a tree structure in P2P 

video streaming, and peers shall maintain a list of potential neighbors for quick and 

dynamic neighbor replacement when needed.  

lin76248_ch06_417-545.indd   530lin76248_ch06_417-545.indd   530 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 531

  Security 

 There are several security issues in P2P systems. Examples include P2P programs 

with back hole (Trojan Horse), spurious content, or leaking of files not to be 

shared. Spurious content or the content pollution problem in a P2P system 

could reduce content availability and increase redundant traffic. For example, a 

malicious user may share a popular mp3 file with part of the content modified 

(polluted). Users that downloaded this polluted file will usually try to download 

the file from other sources again. If polluted content (objects) is spread all over 

the P2P system, users may lose interest in participating in this P2P system as 

most downloaded objects are useless. Solutions to the content pollution problem 

include protecting the content with message digest such as MD5, peer reputation 

system, and object reputation system. For example, in BitTorrent, the MD5 digest 

of each piece of a shared file is stored in the metadata file, i.e., the .torrent file. 

In FastTrack, the UUHash mechanism prevents file pollution by hashing selected 

blocks of a file using MD5.  

  Copyright Infringement 

 Finally, it should be noted that sharing copyrighted objects through P2P systems 

is a serious problem that hinders the promotion and usage of P2P systems. Many 

universities and organizations prohibit their users from running P2P applications. In 

addition, it is not only P2P users who are responsible for copyright infringement; so 

are the companies that host P2P applications, especially in cases where P2P systems 

will not be able to exist without their servers, as was the case with Napster.   

  6.9.4 Case Study: BitTorrent 
 BitTorrent (BT), originally designed by Bram Cohen in 2001, has become a very 

popular file sharing software nowadays. In 2004, it contributed about 30% of Internet 

traffic. Although there are several competitors now, such as eDonkey and eMule, it is 

still a very popular file sharing software. BT is a well-thought-out protocol with sev-

eral unique features: (1) use of tit-for-tat as an incentive mechanism to cope with free 

riders; (2) use out-of-band search to avoid copyright infringement issue; (3) use of 

pull-based swarming for load balancing; (4) use of hash check to prevent propagation 

of spurious pieces; (5) after a peer has successfully downloaded a file, it becomes a 

seeder to distribute the file. 

 Before we describe the protocol, we first introduce some terminologies used in 

BT. A file to be shared is cut into  pieces  of a fixed size. A piece is further divided into 

 chunks,  the basic data unit for a peer to request for content. The integrity of a piece 

is protected by an SHA-1 hash code so that a polluted piece will not be propagated. 

A peer becomes a seeder if it has successfully downloaded the file. There is a tracker 

for each file or group of files to be shared. The tracker tracks the downloading peers 

and seeds, and coordinates the file distribution among peers. Although the tracker-

less BT system where every peer acts as a tracker has become available since 2005, 

it is still more common to use centralized trackers. Therefore, we will review the BT 

protocol with centralized trackers. 

lin76248_ch06_417-545.indd   531lin76248_ch06_417-545.indd   531 24/12/10   4:25 PM24/12/10   4:25 PM



532 Computer Networks: An Open Source Approach

  Operation Overview 

  Figure 6.68  is a brief overview of the operations of BT. To share a file, a peer first 

creates a “.torrent” file, which contains metadata about the file to be shared, includ-

ing the file name, file length, the piece length being used, SHA-1 hash code for 

each piece, state information of each piece, and URL of the tracker. The torrent 

file is usually published to some well-known Web site. To find and download a file, 

users browse the Web to find a torrent of the file first. The torrent file is then opened 

with a BT client program. The client connects to the tracker and gets a list of peers 

currently downloading the file. After that, the client connects to those peers to obtain 

the various pieces of the file according to a piece selection algorithm.  

  Piece Selection 

 For the first few pieces (usually around four), the client just randomly selects a piece 

to download, referred to as random first piece selection. After the initial phase, the 

rarest first policy kicks in. The rarest first policy selects the most scarce piece to 

download first because the most scarce piece may not be available later on due to 

some peers’ departure. It also ensures that a large variety of pieces are downloaded 

from the seeder. Finally, to speed up the completion of a file download at the end, a 

peer with only a few pieces missing will enter an end-game mode and send requests 

for all missing pieces to all the peers.   

  Peer Selection 

 A peer may receive requests for pieces from other peers. BT uses a built-in incentive 

algorithm, known as tit-for-tat, to select the peers to upload their interested pieces. 

Tit-for-tat is the most prevalent strategy for the prisoner’s dilemma in game theory. 

The basic idea is that an agent will cooperate if the opponent was cooperative; 

   FIGURE 6.68 Operation steps of BitTorrent. 

Web page with Link to .torrent 

Web Server 

Tracker 

Seeder

Source 

Publish

Downloading peer 

Downloading peer 

1.
 G

et
 .t

or
re

nt

2. G
et announce

3. R
espond peer lis

t

4. Get piece

5. Get piece 

lin76248_ch06_417-545.indd   532lin76248_ch06_417-545.indd   532 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 533

otherwise, if the opponent provoked, the agent will retaliate. The peer selection 

algorithm consists of three components: choking/unchoking, optimistic unchoking, 

and anti-snubbing. 

 Tit-for-tat is adopted in the choking/unchoking algorithm. Choking refers to a 

temporal refusal to upload to a peer. At the beginning, all peers are choked. The peer 

then unchokes a fixed number (usually 4) of peers; some of them (usually 3) are 

based on the tit-for-tat while the rest (usually 1) are based on optimistic unchoking. 

From those interested in the peer’s pieces, the tit-for-tat algorithm selects a fixed 

number of peers (usually 3) from which the peer downloaded most. Specifically, the 

selection is based solely on the download rate of each peer. The tit-for-tat algorithm 

is down every 10 seconds and the download rate is evaluated based on a 20-second 

moving window. However, the new peer needs to move its first step when it initially 

joins the system; it is also desirable to move the first step to explore better peers 

that are currently not cooperating. Therefore, the idea of optimistic unchoking is to 

select one peer at random from those interested in the peer’s piece, regardless of their 

download rate. Optimistic unchoking is performed every 30 seconds to select peers 

in a circular order. Finally, the anti-snubbing algorithm is run whenever the peer is 

choked by all of its peers, referred to as snubbed, e.g., it does not receive any data 

in 60 seconds. A snubbed peer does better to run optimistic unchoking more often 

to explore more peers that are willing to cooperate. Therefore, the anti-snubbing 

algorithm stops uploading to peers selected by tit-for-tat so that optimistic unchoking 

can be performed more often.      

 Open Source Implementation 6.8: BitTorrent 

  Overview 
 There are several free client software programs for file sharing networks, such 

as Limewire of Gnutella, eMule of eDonkey, and uTorrent and Azureus of 

BitTorrent. With different design philosophy and infrastructure, they address 

performance issues of P2P systems differently. For example, Gnutella adopted 

the decentralized and unstructured topology, and later the super-peer hierarchy. 

DHT technology is adopted by eMule and BT to avoid the centralized tracker 

(server). As a result, Gnutella, known for its decentralized, serverless topology, 

is extremely resilient to random node failure; eMule, known for its distributed 

tracker, is based on a DHT solution Kademlia; BT is known for dividing a large 

file into pieces, adopting tit-for-tat to cope with free riders, and integrity check 

to prevent propagation of spurious pieces. Since BT has so many unique fea-

tures, it remains one of the most popular P2P file sharing software programs. 

 Recall that solutions adopted by BT to cope with performance issues are: 

    1. Tit-for-tat to avoid free riders: BT implements tit-for-tat based on the down-

load rate between two peers. The advantage of using the download rate as 

the criterion for reciprocation is that it can be easily implemented with local 

information at each peer. Alternative solutions, such as the reputation-based 

Continued

lin76248_ch06_417-545.indd   533lin76248_ch06_417-545.indd   533 24/12/10   4:25 PM24/12/10   4:25 PM



534 Computer Networks: An Open Source Approach

approach and the download rate to all peers, require information from other 

peers, and whether the information is correct remains a question. On the 

other hand, BT’s approach is unfair to the newcomers.  

2. Out-of-band search to avoid copyright infringement: BT assumes a peer 

is able to find the .torrent file first without specifying how. This approach 

is a simple and effective way to decline the responsibility for copyright 

infringement. The disadvantage is that the distribution of .torrent files relies 

on third-party servers.  

3. Pull-based swarming for load balancing: Based on tit-for-tat, peers upload 

pieces to other peers in order to download pieces they need. This approach 

is quite effective to force peers to contribute pieces they already down-

loaded. Therefore, peers can speed up the download process as more peers 

join the system. A potential problem of this approach is that a peer may 

leave the system as soon as it completes its download, which is called the 

leech problem. Clearly, the longer a seeder stays, the better the swarming 

performance.  

4. Message digest to protect integrity of each piece: BT adopts SHA-1 

to protect the integrity of each piece. Though this approach can effec-

tively prevent propagation of spurious pieces, it requires SHA-1 compu-

tation on every piece retrieved. In FastTrack (KaZaa), message digest is 

only applied to partial blocks of a file. Doing so would save some computa-

tion overhead, but it would also allow an attacker to pollute a file without 

being caught.   

 Since the protocol specification of BitTorrent is free to use, many BT client 

programs are open-source. Among them, uTorrent, Vuze, and BitComet are 

some of the most popular client programs. In this section, we trace Vuze version 

4.2.0.2, which is implemented in Java.  

  Files and Data Structures 
 Most of Vuze’s core packages are located under the .\com\aelitis\azureus\core 

directory. Packages that can be found in this directory are shown in  Table 6.31 . 

 Most codes for peer selection and piece selection are under the directory.\

com\aelitis\azureus\core\peermanager. Under this directory, the piece selection 

and peer selection algorithm can be found in the directory of \piecepicker and 

\unchoker, respectively; codes for the status information of connected peers can 

be found in the \peerdb directory. 

 Another important directory is the \org\gudy\azureus2\core3 directory. The 

main program for controlling the piece and peer selection is  PEPeerContro-
lImpl.java , which is located under \peer\impl\control of this directory. The 

classes for the peer and piece objects are  PEPeer  and  PEPiece , which are 

defined in \org\gudy\azureus2\core3\peer. 

  Figure 6.69  shows the class hierarchy of  PEPeer ,  PEPiece , and 

PEPeerManager .   

lin76248_ch06_417-545.indd   534lin76248_ch06_417-545.indd   534 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 535

  Algorithm Implementations 
  Main Program 
 The main program for controlling the piece and peer selection is the 

 PEPeerControlImpl  class, which inherits from two classes, 

 PEPeerManager  and  PEPeerControl . A detailed inheritance diagram 

TABLE 6.31 Packages in com.aelitis.azureus.core

Packages

package clientmessageservice

package cnetwork

package content

package crypto

package custom

package devices

package dht

package diskmanager

package download

package drm

package helpers

package impl

package instancemanager

package Iws

package messenger

package metasearch

package monitoring

package nat

package networkmanager

package neuronal

package peer

package peermanager

package proxy

package security

package speedmanager

package stats

package subs

package torrent

package update

package util

package versioncheck

package vuzefile

Continued

lin76248_ch06_417-545.indd   535lin76248_ch06_417-545.indd   535 24/12/10   4:25 PM24/12/10   4:25 PM



536 Computer Networks: An Open Source Approach

for  PEPeerControlImpl  is shown in  Figure 6.70 . The constructor of 

this class creates the object  piecePicker . The function is also defined 

in this class; schedule() calls  checkRequests()  and  piecePicker.
allocateRequests()  to schedule piece requests if the peer is not in 

the seeding mode. It then calls  doUnchokes()  to handle peer choking and 

unchoking. In  doUnchokes() ,  unchoker.calculateUnchokes()  is 

called to determine which peers to unchoke.   

  Implementation of Peer Selection 
 The unchoking algorithms for downloading peer and seeding peer are imple-

mented in DownloadingUnchocker.java and SeedingUnchocker.java under the 

.\com\aelitis\azureus\core\peermanager\unchoker directory. Let us trace the 

codes for tit-for-tat and optimistic unchoking. The main function of tit-for-tat 

org.gudy.azureus2.core3.peer.PEPeer

org.gudy.azureus2.core3.peer.PEPiece

org.gudy.azureus2.core3.peer.impl.PEPieceImpl

org.gudy.azureus2.core3.peer.PEPeerManager

org.gudy.azureus2.core3.peer.impl.PEPeerControl

org.gudy.azureus2.core3.peer.impl.control.PEPeerControlImpl

org.gudy.azureus2.core3.peer.impl.PEPeerTransport

org.gudy.azureus2.core3.peer.impl.transport.PEPeerTransportProtocol

org.gudy.azureus2.core3.peer.PEPeer

org.gudy.azureus2.core3.peer.impl.PEPeerTransport

org.gudy.azureus2.core3.peer.impl.transport.PEPeerTransportProtocol

org.gudy.azureus2.pluginsimpl.local.peers.PeerForeignDelegate

org.gudy.azureus2.pluginsimpl.local.peers.PeerForeignDelegate

org.gudy.azureus2.core3.peer.PEPiece

org.gudy.azureus2.core3.peer.impl.PEPieceImpl

org.gudy.azureus2.core3.peer.PEPeerManager

org.gudy.azureus2.core3.peer.impl.PEPeerControl

org.gudy.azureus2.core3.peer.impl.control.PEPeerControlImpl

   FIGURE 6.69 Class hierarchy of  PEPeer ,  PEPiece , and  PEPeerManager . 

lin76248_ch06_417-545.indd   536lin76248_ch06_417-545.indd   536 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 537

is implemented in  calculateUnchokes() . Four peer lists are used in 

this function:  chokes ,  unchokes ,  optimistic_unchokes , and  best_
peer . They are used to bookkeep peers to be choked, unchoked, optimistic 

unchoked, and best peers to be unchoked based on the downloading rate. The 

pseudocode for  calculateUnchokes()  is given as follows: 

     calculateUnchokes()  
 BEGIN 

   get all the currently unchoked peers; 

   IF the peer is not previously choked by me { 

     IF the peer is unchokable { 

       add it to the  unchokes  list; 

       IF the peer is previously optimistic unchoked 

         add it to the  optimistic_unchokes  list; 

     } 

     ELSE 

       add the peer to the  chokes  list 

    } 

    IF not forced to refresh the optimistic unchoke peers { 

     Move the peers in the  optimistic_unchokes  list to the 

best_peers  

       list until the number of peers exceeds  max_optimistic  

    Add peers to the  best_peers  list if its download rate is higher than 256 

    Call  UnchokerUtil.updateLargestValueFirstSort  to sort 

the  best_peers  

      list according to the download rate 

org.gudy.azureus2.core3.logging.LogRelation

org.gudy.azureus2.core3.peer.impl.PEPeerControl

org.gudy.azureus2.core3.config.ParameterListener

org.gudy.azureus2.core3.disk.DiskManagerWriteRequestListener

com.aelitis.azureus.core.peermanager.nat.PeerNATInitiator

com.aelitis.azureus.core.peermanager.control.PeerControlInstance

org.gudy.azureus2.core3.disk.DiskManagerCheckRequestListener

org.gudy.azureus2.core3.ipfilter.IPFilterListener

org.gudy.azureus2.core3.peer.impl.control.PEPeerControlImpl

   FIGURE 6.70 Detailed inheritance diagram for  PEPeerControlImpl . 

Continued

lin76248_ch06_417-545.indd   537lin76248_ch06_417-545.indd   537 24/12/10   4:25 PM24/12/10   4:25 PM



538 Computer Networks: An Open Source Approach

    IF we still have not enough peers in the  best_peers  list 

      (less than  max_to_unchoke ) { 

      fill the remaining slots with peers that we have downloaded 

        from in the past ( uploaded_ratio  < 3); 

    } 

    IF we still have remaining slots 

     Call  UnchokerUtil.getNextOptimisticPeer  to get more 

optimistic 

       unchoke peers. ( factor_reciprocated  is set to true) 

    Call  chokes.add()  to update  chokes  

    Call  unchokes.add()  to update  unchokes  

   END 

 In this function, peers are first put into the list of  chokes ,  unchokes , or 

 optimistic_unchokes  based on their current status. Peers that are currently 

optimistic unchoked will remain unchoked unless the number of optimistic 

unchokes exceeds the  max_optimistic  threshold. Then, for peers that are 

interested in our pieces ( peer.isInteresting() ) and are unchokable 

( UnchokerUtil.isUnchokable ), the method  peer.getStats().
getSmoothDataReceiveRate()  is called to obtain their download rate. 

These peers are sorted a into the  best_peers  list according to the rate by calling 

 UnchokerUtil.updateLargestValueFirstSort() . If the number of 

peers in the  best_peers  list is less than  max_to_unchoke , the maximum 

number of peers to be unchoked, peers that have  uploaded_ratio  less than 3 

are added to the  best_peer s list where  uploaded_ratio  is the ratio of total 

data bytes sent over total data bytes received (plus  BLOCK_SIZE -1). If the size 

of  best_peers  is still less than  max_to_unchoke , then  UnchokerUtil.
getNextOptimisticPeer()  is called to find more peers for optimistic 

unchokes. The  UnchokerUtil.getNextOptimisticPeer()  function 

either takes into account the peer reciprocation ratio when picking optimistic 

peers or just randomly select peers from the  optimistic_unchokes  list, 

depending on whether the  factor_reciprocated  parameter is true. The 

reciprocation score is defined as the difference between total data bytes sent and 

total data bytes received, and a lower score is preferred.  

  Implementation of Piece Selection 
 The  getRequestCandidate() method, defined in PiecePickerImpl.java 

under the .\com\aelitis\azureus\core\peermanager\piecepicker\impl directory, 

is the core method for deciding which block to download. Two parameters are 

important to know first: priority and avail. Priority is the aggregate priority of 

the piece under inspection, while avail is the swarm-wide availability level of 

the piece under inspection. There are three stages in this method. First, if there 

is a  FORCED_PIECE  or a reserved piece, it will be started/resumed if possible. 

Second, find the rarest piece with the highest priority which has already been 

lin76248_ch06_417-545.indd   538lin76248_ch06_417-545.indd   538 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 539

loaded and can possibly be continued by scanning all the active pieces. Avail-

ability of a piece is represented by  availability[i] . Third, if there is no 

piece to resume, find a list of the rarest pieces with the highest priority as can-

didates for starting the download of a new piece. The method returns  int[] 
pieceNumber  and  blockNumber  if a request to be made is found.   

  Exercises 
    1. Explore the locality by considering the round-trip delay and changing the 

random selection code in the  getNextOptimisticPeer()  function 

accordingly. For example, you may give preference to peers with lower 

round-trip delay.  

   2. Discuss why it is important to consider locality in choosing optimistic un-

choked peers. Note that optimistic unchoke plays an initiation role in find-

ing potential tit-for-tat peers.    

  Unlike other chapters in this text, it is more difficult 

but still necessary to capture the  common  themes for 

the Internet applications. This chapter started from 

the general issues concerning the design of  all  Inter-

net applications. We learned how well-known ports 

work, how servers run as daemon processes, the 

differences between the combinations of concurrent 

connection-oriented servers and iterative connec-

tionless servers, and why application protocols have 

variable-length ASCII messages and statefulness/

statelessness. Then we covered major application 

protocols, from the fundamental DNS, to the classic 

SMTP, POP3, IMAP4, HTTP, FTP, and SNMP, and 

well into the real-time SIP, RTP, RTCP, RTSP, and 

various P2P protocols. For each application protocol, 

we described design concepts, protocol messages 

and behaviors, example sessions when needed, and 

one popular open source package. We do not plan to 

summarize the design concepts of individual appli-

cations here. Instead, we re-examine their common 

characteristics: well-known ports, variable-length 

ASCII, statefulness, and concurrency. Through this, 

we can better appreciate these characteristics and the 

possibilities beyond the current practices. 

 First, the practice that classifies application 

traffic according to port numbers no longer works 

very well. Many applications run themselves over 

port 80 or encapsulate their messages in the HTTP 

messages in order to pass through firewalls that 

allow only Web traffic. Additionally, P2P applica-

tions often select their port numbers dynamically 

well beyond the range of well-known ports. Thus, 

deep packet inspection  (DPI) into the application 

headers or even payloads is needed for accurate clas-

sification. Secondly, unlike the binary fixed-length 

protocol headers in lower layers, application pro-

tocols have variable-length ASCII formats. Table 

lookup algorithms used in single-field (destination IP 

address) packet forwarding and multi-field (5-tuple) 

packet classification cannot be applied here. Instead, 

DPI with regular expression  parsing  or signature-

based  string matching  is needed for classification 

or security purposes. This fixed-to-variable gap has 

an analogy in the area of database systems, where 

traditional  relational  databases are fixed-length 

tables and  semistructured  data formatted in XML 

or  unstructured  data indexed by search engines are 

variable-length strings. Just like the increased per-

centage of semistructured or unstructured data in the 

world of databases, variable-length protocol message 

handling is gaining more attention in the world of 

networking. 

 Thirdly and fourthly, being stateful is a  design
choice of a protocol while being concurrent is an 

    6.10 SUMMARY 

lin76248_ch06_417-545.indd   539lin76248_ch06_417-545.indd   539 24/12/10   4:25 PM24/12/10   4:25 PM



540 Computer Networks: An Open Source Approach

 implementation  decision of a protocol server. Most 

application protocols chose to be stateful to keep track 

of client connections, except HTTP and SNMP for 

efficiency and scalability reasons. DNS is something 

in between. Local DNS servers are mostly stateful 

and recursive to be  fully responsible  for a DNS query, 

while all other DNS servers are stateless and iterative 

for the same reasons of efficiency and scalability. 

Though stateless in their nature, HTTP servers could 

turn stateful for long sessions by the mechanism of 

 cookies.  For concurrency, the decision depends on 

the  time  required to serve a session or a request. If the 

service time is short, the server could remain iterative. 

SNMP belongs to this, and thus the server in net-snmp 

is implemented as an iterative server. All other open 

source packages in this chapter have concurrent server 

implementations due to their prolonged service time. 

 From  Chapter 2  to  Chapter 6 , we have learned all 

the protocol layers. There are two advanced issues that 

deserve special treatment: quality of service (QoS) 

and network security. Once we achieve connectivity, 

we expect the connectivity to be  fast  enough and 

 secure  enough. QoS or performance issues are central 

in the design of all network systems or components. In 

 Chapter 7 , QoS is treated formally with two  total  solu-

tions, IntServ and DiffServ, and six important  building 
blocks.  Although these two total solutions did not 

succeed, technologies for some building blocks have 

prevailed in our daily Internet life. In  Chapter 8 , we 

shall classify the security issues into  access  security, 

 data  security, and  system  security, addressing who can 

access what, private data on the public Internet, and 

system vulnerabilities to intruders, respectively. State-

of-the-art solutions to these issues shall be presented.   

  COMMON PITFALLS 

   Alternatives to Server Concurrency 
 The simplest way to program a concurrent connection-

oriented server is to fork a child process on demand to 

serve a newly accepted client connection. This is exercised 

in wu-ftp introduced in Open Source Implementation 

6.4. But there are many other alternatives to achieve this 

concurrency considering the issues of  overhead,   latency,  
and  scalability.  Forking a process is expensive since 

it involves  creating  a new entry in the process table, 

 allocating  memory space for the process body, and  copying  

from the parent process body to the child process body. A 

low-overhead alternative is  threading,  where a thread is 

created with its body shared with its parent thread, thus 

no memory allocation or copy. Asterisk in Open Source 

Implementation 6.6 belongs to this category. On the other 

hand, forking or threading  on demand  introduces startup 

latency in serving the incoming clients. Preforking or 

prethreading with a  pool  of  idle  processes or threads to 

dispatch surely would reduce this startup latency. This pool 

could be monitored periodically to keep its size between a 

high threshold and a low threshold. Apache introduced in 

Open Source Implementation 6.3 runs this approach. 

 Finally, an even tougher issue is the scalability when a 

server has to handle thousands of concurrent connections. 

This happens often to a  proxy  server, which stands between 

clients and servers. It would not be feasible to maintain 

thousands of processes or threads in a single server. There 

are two common solutions: a single process with  I/O 
multiplexing  or a  larger  number of connections served 

and  switched  between a  smaller  number of processes or 

threads, i.e., no  per-connection  process or thread. The for-

mer does I/O multiplexing, by the  select()  function in 

the single process, to listen on an array of per-connection 

sockets and handle those sockets with new arrivals. Squid 

is an open source proxy that runs this. The latter schedules 

and switches the connections between a pool of processes 

and threads throughout the lifetime of the connections. 

BIND, qmail, and Darwin introduced in Open Source 

Implementation 6.1, 6.2, and 6.7 run this solution.  

  DNS Queries: Recursive or Iterative 
 When we say a DNS query resolution process is recursive, 

it does not imply  all  DNS servers are recursive and stateful. 

In fact, only the  local  DNS servers are recursive and state-

ful. All the other DNS servers in the DNS hierarchy are 

iterative and stateless. That is, they only  reply  or  redirect  
a query from local DNS servers, but do not  forward  the 

query to other DNS servers. The reason is the scalability 

lin76248_ch06_417-545.indd   540lin76248_ch06_417-545.indd   540 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 6 Application Layer 541

concern on heavily loaded servers, especially those near 

the root of the hierarchy. On the other hand, the local DNS 

servers would not be heavily loaded since they are far 

away from the root of the hierarchy and could handle the 

recursive resolution. Though less likely, it is possible that 

the local DNS servers run iteratively. Then it is the business 

of the resolver (the DNS client) to handle the recursion.  

  ALM vs. P2P 
 Due to the lack of wide-scale deployment of network-layer 

IP multicast, application-layer multicast (ALM) gained 

a lot of attention in the early 2000s. As its name implies, 

ALM supports group applications through TCP or UDP 

sockets among participating nodes. That is, ALM imple-

ments the multicast service at the application layer without 

the need for a network-layer multicast protocol. It can be 

seen as a special type of peer-to-peer (P2P) application 

as it builds a  multicast tree  at the application layer and 

intermediate nodes of the tree are required to relay packets 

from parents to children. Therefore, these nodes behave 

like data consumers as well as data providers, just like 

peers in P2P systems. How to build the  multicast overlay  

is the main focus of ALM research. On the other hand, P2P 

refers to a much wider range of applications which may 

or may not need multicast support. For example, the most 

popular application, file sharing, does not need multicast 

support. Even for the video streaming application, most 

P2P systems developed recently adopted the concept of 

data-driven overlay network, or  mesh overlay,  instead of 

 tree overlay,  mainly for robustness. Coolstreaming is a 

typical example.    

 A number of RFCs have been proposed regarding DNS 

ever since its debut in 1987. Here we list some classic 

RFCs that pioneered the standardization. Albitz and Liu 

have also published a popular book on this. The BIND 

project homepage is also added for your own examination. 

   • P. Mockapetri, “Domain Names—Concept and Facili-

ties,” RFC 1034, Nov. 1987.  

  • P. Mockapetri, “Domain Names—Implementation and 

Specification,” RFC1035 Nov. 1987.  

  • M. Crawford, “Binary Labels in the Domain Name 

System,” RFC 2673, Aug. 1999.  

  • P. Albitz and C. Liu,  DNS and BIND,  5 th  edition, 

O’Reilly, 2006.  

  • BIND: a DNS server by Internet Systems Consortium, 

available at  https://www.isc.org/products/BIND/     

  MAIL 
 Below we list some of the latest batch of RFC updates on 

e-mail. It is obvious that the design of e-mail systems has 

never stopped evolving. The qmail project site is also given 

for your initial trial on building an e-mail system. 

   • J. Yao and W. Mao, “SMTP Extension for Internation-

alized E-mail Addresses,” RFC 5336, Sept. 2008.  

  • J. Klensin, “Simple Mail Transfer Protocol,” RFC 

5321, October 2008.  

  • P. Resnick, “Internet Message Format,” RFC 5322, 

October 2008.  

  • The qmail project,  http://www.qmail.org/top.html .    

  WWW 
 Following are some classical works on WWW, including 

one of the pioneering articles on searching the Web and the 

RFC for HTTP 1.1, which updated HTTP 1.0 in 1999 and 

has been widely adopted ever since. Also read what Tim 

Berners-Lee said about the future architecture of the WWW. 

   • S. Lawrence and C. L. Giles, “Searching the World 

Wide Web,” Science, Apr. 1998.  

  • R. Fielding et al., “Hypertext Transfer Protocol— 

http/1.1,” RFC 2616, June 1999.  

  • World Wide Web Consortium (W3C), “Architecture of 

the World Wide Web, Volume One,” W3C Recommen-

dation, Dec. 2004.  

  • The Apache project,  http://www.apache.org/     

  FTP 
 It seems that development of FTP is still progressing, 

though at a relatively slower pace. You might be curious 

  FURTHER READINGS 

   DNS 

lin76248_ch06_417-545.indd   541lin76248_ch06_417-545.indd   541 24/12/10   4:25 PM24/12/10   4:25 PM

http://www.qmail.org/top.html
https://www.isc.org/products/BIND/
http://www.apache.org/


542 Computer Networks: An Open Source Approach

about how the latest FTP extensions look. Check them out 

at RFC 3659. 

   • J. Postel and J. Reynolds, “File Transfer Protocol 

(FTP),” RFC 959, Oct. 1985.  

  • S. Bellovin, “Firewall-Friendly FTP,” RFC 1579, Feb. 

1994.  

  • M. Horowitz et al., “FTP Security Extensions,” RFC 

2228, Oct. 1997.  

  • P. Hethmon, “Extensions to FTP,” RFC 3659, Mar. 2007.  

  • The wu-ftp project, available at  http://www.wu-ftpd.org/     

  SNMP 
 The number of RFCs on SNMP would surprise you. 

Following are some important ones for your reference. 

But we suggest you buy a book before you get lost in the 

SNMP jungle. 

   • M. Rose and K. McCloghrie, “Structure and Identifi-

cation of Management Information for TCP/IP-based 

Internets,” RFC 1155, May 1990.  

  • J. Case et al., “A Simple Network Management Proto-

col (SNMP),” RFC 1157, May 1990.  

  • J. Case et al., “Textual Conventions for Version 2 of the 

Simple Network Management Protocol (SNMPv2),” 

RFC 1903, Jan. 1996.  

  • J. Case et al., “Protocol Operations for Version 2 of the 

Simple Network Management Protocol (SNMPv2),” 

RFC 1905, Jan. 1996.  

  • J. Case et al., “Management Information Base for Ver-

sion 2 of the Simple Network Management Protocol 

(SNMPv2),” RFC 1907, Jan. 1996.  

  • J. Case et al., “Introduction to Version 3 of the Internet-

Standard Network Management Framework,” RFC 

2570, Apr. 1999.  

  • D. Harrington, “An Architecture for Describing SNMP 

Management Frameworks,” RFC 2571, Apr. 1999.  

  • The Net-SNMP project, available at  http://www

.net-snmp.org/ .  

  • Douglas Mauro and Kevin Schmidt, Essential SNMP, 
2 nd  edition, O’Reilly 2005.    

  VoIP 
 Here are the RFCs for the major building blocks of VoIP. 

RTCP is part of RFC 3550. Play around with Asterisk and 

immerse yourself in the VoIP world. 

   • M. Handley et al., “Session Announcement Protocol,” 

RFC 2974, Oct. 2000.  

  • J. Rosenburg et al., “SIP: Session Initiation Protocol,” 

RFC 3261, June 2002.  

  • H. Schulzrinne et al., “RTP: A Transport Protocol for 

Real-Time Applications,” RFC 3550, July 2003.  

  • Asterisk, the Open-Source PBX and Telephony 

Platform, available at  www.asterisk.org/     

  Streaming 
 Though the transport protocol for streaming applications 

may vary, from ordinary RTP to the proprietary RDT (Real 

Data Transport) from RealNetworks as an example, the 

control protocol is basically RTSP. Experience it with the 

Darwin and the Helix packages. Additionally, you do not 

want to miss the hottest RTMP protocol that empowers 

Flash video portals like YouTube. 

   • H. Schulzrinne et al., “Real Time Streaming Protocol 

(RTSP),” RFC 2326, Apr. 1998.  

  • M. Kaufmann, “QuickTime Toolkit Volume One: Basic 

Movie Playback and Media Types,” Apple Computer, 

Inc., 2004.  

  • The Darwin Project, available at  http://developer.apple.

com/opensource/server/streaming/index.html   

  • The Helix Project, available at  http://en.wikipedia.org/

wiki/Helix_(project) .  

  • The RTMP protocol specification, available at  http://

www.adobe.com/ devnet/rtmp/     

  P2P 
 Tired of the superficial P2P clients? The following re-

search works surely will take you to the underground realm 

of the P2P kingdom.

   • Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, 

“Search and Replication in Unstructured Peer-to-Peer 

Networks,” in  Proceedings of ACM Supercomputing,  
2002.  

  • S. Androutsellis-Theotokis and D. Spinellis, “A Survey 

of Peer-to-Peer Content Distribution Technologies,” 

 ACM Computing Surveys,  Vol. 36, No. 4, pp. 335–371, 

Dec. 2004.  

  • Daniel Hughes, Geoff Coulson, and James Walkerdine, 

“Free Riding on Gnutella Revisited: The Bell Tolls?,” 

 IEEE Distributed Systems,  Vol. 6, No. 6, June 2005.  

  • Javed I. Khan and Adam Wierzbicki (eds.), 

“Foundation of Peer-to-Peer Computing,” Special 

Issue,  Computer Communications,  Volume 31, Issue 

2, Feb. 2008.       

lin76248_ch06_417-545.indd   542lin76248_ch06_417-545.indd   542 24/12/10   4:25 PM24/12/10   4:25 PM

www.asterisk.org/
http://www.wu-ftpd.org/
http://developer.apple.com/opensource/server/streaming/index.html
http://developer.apple.com/opensource/server/streaming/index.html
http://en.wikipedia.org/wiki/Helix_(project)
http://en.wikipedia.org/wiki/Helix_(project)
http://www.adobe.com/devnet/rtmp/
http://www.adobe.com/devnet/rtmp/
http://www.net-snmp.org/
http://www.net-snmp.org/


 Chapter 6 Application Layer 543

     1. Why are protocol messages of most Internet applica-

tions ASCII and variable length? 

   Answer: 

   ASCII: easy to decode and fl exible to extend 

   Variable length: a wide range of parameter values and 

length  

   2. Why do servers running over TCP and UDP have 

concurrent and iterative implementations, respectively? 

   Answer: 

   Concurrent: if overlapped service times (usually long) 

   Iterative: if non-overlapped service times (usually 

short) 

   TCP: reliable connection-oriented services 

   UDP: unreliable connectionless services 

   The most common combinations are concurrent 

TCP (long and reliable) and iterative UDP (short and 

unreliable).  

   3. How do DNS servers resolve a domain name into an 

IP address? 

   Answer: 

   The local name server fi rst checks its own cache. 

If this results in a miss, it queries one of the root 

name servers, which redirects the local name server 

to a second-level name server. The second-level name 

server redirects to a third-level name server, and so 

on, until a name server responds with an RR record 

(A record) for this domain name. This process is 

iterative, which is more common than recursive (all 

involved name servers needed to keep states during 

the query process).  

   4. How do DNS servers resolve an IP address into a 

domain name? 

   Answer: 

   Same as answer to Question 3 except PTR records, 

instead of A records, are looked up.  

   5. What resource records are used in forward-DNS and 

reverse-DNS, respectively? 

   Answer: 

   Forward-DNS: A records 

   Reverse-DNS: PTR records  

   6. What entities and protocols are involved if you send 

an e-mail for your friend to read? 

   Answer: 

   SMTP: MUA (mail user agent) → MTA (mail trans-

fer agent) of local mail server 

   SMTP: MDA (mail delivery agent) of local mail 

server → MTA of remote mail server 

   MDA → mailbox in remote mail server 

   POP3 or IMAP4: MRA (mail retrieval agent) of 

remote mail server → MUA  

   7. POP3 vs. IMAP4? (Compare their number of 

commands, fl exibility, and usage.) 

   Answer: 

   Number of commands: IMAP4 > POP3 

   Flexibility: IMAP4 > POP3 

   Usage: Web mail (IMAP4) vs. download (e.g., 

Outlook) (POP3)  

   8. What POP3 messages are exchanged when you 

download mail from the server? 

   Answer: 

   STAT, LIST, RETR, DELE, QUIT, +OK, -ERR, etc.  

   9. What HTTP messages are exchanged in download-

ing, fi lling, and uploading a Web form? 

   Answer: 

   GET, POST or PUT, HTTP/1.1 200 OK, etc.  

   10. What does connection persistence mean in HTTP 1.1? 

   Answer: 

   Multiple HTTP requests can be sent in a TCP 

connection.  

   11. Forward-caching vs. reverse-caching? (Compare their 

location and cache content.) 

   Answer: 

   Forward-caching: at the content consumer side 

(clients); heterogeneous from many sites 

   Reverse-caching: at the content provider side (large 

Web site); homogeneous from this site  

   12. How does an HTTP proxy intercept HTTP requests 

destined for HTTP servers? 

   Answer: 

   It does a TCP three-way handshake with the client, 

accepts the HTTP request, handles the request (say 

caching, fi ltering, logging), and sends the HTTP 

response to the client if OK. If needed, it establishes 

a TCP connection with the HTTP server, forwards the 

HTTP request to the server, gets the response, handles 

the response (say fi ltering and logging), and sends the 

response back to the client.  

   13. What does an HTTP caching proxy do if it has a cache 

miss? How many TCP connections does it establish 

for a specifi c client? 

   Answer: 

   It establishes a TCP connection to the server and for-

wards the request to the server. The response is then 

passed back to the client. It has two TCP connections: 

one TCP connection with the client and another TCP 

connection with the server.  

  FREQUENTLY ASKED QUESTIONS 

lin76248_ch06_417-545.indd   543lin76248_ch06_417-545.indd   543 24/12/10   4:25 PM24/12/10   4:25 PM



544 Computer Networks: An Open Source Approach

   14. Active mode vs. passive mode in FTP? (Describe 

from whose perspective is the mode and how the data 

connection is established.) 

   Answer: 

   It’s from the server’s perspective. 

   Active mode: The client issues “PORT IP-address 

port-number” through the control connection to the 

server. The server replies 200 and then connects to the 

client to establish the data connection. 

   Passive mode: The client issues “PASV” through the 

control connection to the server. The server replies 

with the IP address and port number on which it 

would listen. The client then connects to the specifi ed 

port to establish the data connection.  

   15. Control and data connections in FTP? (Explain why 

we need two connections.) 

   Answer: 

   This out-of-band signaling is to exchange con-

trol messages even when a long data transfer is 

ongoing.  

   16. What protocol messages on the control connection are 

exchanged in downloading and uploading a fi le in FTP, 

using active mode and passive mode, respectively? 

   Answer: 

   Active download: PORT, 200, RETR, 200 

   Passive download: PASV, 200 IP-address port-number, 

RETR, 200 

   Active upload: PORT, 200, STOR, 200 

   Passive upload: PASV, 200 IP-address port-number, 

STOR, 200  

   17. Why is streaming quite robust to Internet delay, jitter, 

and loss? 

   Answer: 

   Many streaming sources exercise a scalable layered 

coding scheme, and they adjust their codec bit rate 

according to the measured network condition. Most 

streaming receivers have a jitter buffer to delay the 

playout time of audio/video to absorb the jitter and 

play out smoothly. Since the traffi c is one-way with-

out interaction, the increased delay is OK for users.     

  EXERCISES 

   Hands-On Exercises 
    1. Read first the “dig” manual of BIND9 (including the 

later versions), especially the “+trace” and “+recur-

sive” options, and answer the following questions.

   a. A query generated by dig is by default a recursive 

query (so that a local name server continues the 

query on behalf of the client). Why is it used by 

dig (or resolver routines in other applications)? 

Also, issue a recursive query to  www.ucla.edu , and 

explain each RR in all five sections of the reply.  

  b. Describe each consulted name server in an itera-

tive query for  www.ucla.edu  using dig.     

   2. Build an e-mail system on your Linux PC using 

qmail. The system should provide SMTP, POP3, and 

IMAP4 services. Write down your operations step 

by step. Please refer to the documents in  http://www.

qmail.org/ .  

   3. Read the SMTP and POP3 commands. Then telnet to 

your SMTP server (port 25) and send a message to 

yourself. After that, telnet to your POP3 server (port 

110) and retrieve the message. Record everything 

that happens in the sessions.  

   4. Build a Web server on your Linux PC using Apache. 

Modify the configuration file to set up two virtual 

hosts. In addition, write some HTML pages and put 

them in the document root directory of Apache. Write 

down your virtual host’s setting and capture a browser 

screen showing your HTML files.  

   5. Telnet to your Web server (port 80) and get a docu-

ment using HTTP 1.0. Observe the HTTP response 

headers. Record everything that happens in the 

session.  

   6. Build a caching proxy server on your Linux PC using 

Squid and configure your Web browser to use it. 

Browse your Web site several times and trace the log 

files of Apache and Squid to observe which server 

services the requests. Explain the contents of the log 

files.  

   7. Read the descriptions of HTTP request and 

response headers. Use Sniffer or similar software to 

observe the HTTP requests and responses generated 

in Exercise 6. Capture some screens and explain.  

   8. Install and run wu-ftpd or any other ftp server. Config-

ure it to support both virtual ftp server and on-the-fly 

compression. Write down your operations step by step 

and your configuration files.  

   9. Install and run Net-SNMP. Use snmpbulkget to re-

trieve  tcpConnTable  in the local host. Write down 

your operations step by step and record your results.  

lin76248_ch06_417-545.indd   544lin76248_ch06_417-545.indd   544 24/12/10   4:25 PM24/12/10   4:25 PM

www.ucla.edu
www.ucla.edu
http://www.qmail.org/
http://www.qmail.org/


 Chapter 6 Application Layer 545

   10. Explore the locality by changing the random selection 

code in the  getNextOptimisticPeer()  func-

tion to consider the round-trip delay. For example, 

you may give preference to peers with lower round-

trip delay. Discuss why it is important to consider 

locality in choosing optimistic unchoke peers. Note 

that optimistic unchoke plays an initiation role for 

finding potential tit-for-tat peers.    

  Written Exercises 
    1. Which port(s) and starting mode ((x)inetd or stand-

alone) do the Internet applications covered in this 

chapter use? List your answers in a table.  

   2. What are the major differences between the interactive 

connectionless server and concurrent connection-ori-

ented server when dealing with concurrent requests?  

   3. How many zones are in the nctu domain in  Figure 6.4 ?  

   4. How many root name servers are there? Please list 

them.  

   5. What RRs may be used in the following situations? 

Explain each of them using an example.

    a. In the process of a forward query.  

   b. In the process of a reverse query.  

   c.  Resolve the domain name B, which is an alias of 

domain name A.  

   d. In mail forwarding.     

   6. When sending e-mail messages, we can put the re-

cipients’ e-mail addresses in the Cc: and Bcc: fi elds. 

What are the differences between the two fi elds?  

   7. Webmail is Web browser based and includes support for 

POP3 and IMAP4. Describe the differences between 

POP3-based Webmail and IMAP4-based Webmail.  

   8. Spam is fl ooding the Internet with many copies of 

the same e-mail message, in an attempt to force the 

message on people who would not otherwise choose to 

receive it. Propose some strategies for fi ghting spam.  

   9. What is the relationship among URI, URL, and URN? 

Write two examples for each scheme and explain their 

meanings.  

   10. What are the similarities and differences between 

HTML and XML?  

   11. What are HTTP 1.1 pipelining and persistent connec-

tion? What are their benefi ts?  

   12. Describe how HTTP and HTML redirect an HTTP 

connection to a different destination.  

   13. When does a caching proxy not cache an object?  

   14. What are the major differences between strong cache 

consistency and weak cache consistency? Which con-

sistency scheme is suitable for a news site? Why?  

   15. Without setting up your browser to use a caching 

proxy manually, how do you force HTTP requests 

passing through a caching proxy?  

   16. Describe the processes of setting up an active and a 

passive connection for FTP, respectively (including 

the command and parameters used). Assume that the 

control connection has already been established on 

port 21.  

   17. Explain the reply codes in the example FTP session in 

 Figure 6.34 .  

   18. What is the relationship between ASN.1, SMI, and 

MIB?  

   19. How does a management station  effi ciently  get 

the objects in the MIB tree in  Figure 6.39  using 

GetNextRequest PDU? Please illustrate this. (Hint: 

multiple objects in variable-binding list.)  

   20. What applications does an agent have? How does an 

SNMP agent process a query request with its engine 

and applications?  

   21. Compare the pros and cons of voice transmission 

over IP and frame relay. Please compare them in 

terms of their performance and topologies/costs for 

deployment.  

   22. What is the relationship between SIP, SDP, and SAP?  

   23. What are the differences between H.323 and 

SIP? Explain it in terms of their components and 

functionalities.  

   24. What are the advantages and disadvantages between 

RTSP and HTTP streaming?  

   25. How is QoS control implemented in the streaming 

server as well as the client? What can a client do if the 

delay/jitter of the packets is high?  

   26. How do audio and video messages get synchronized 

in streaming?       

lin76248_ch06_417-545.indd   545lin76248_ch06_417-545.indd   545 24/12/10   4:25 PM24/12/10   4:25 PM



C h a pp t e rC7

546

 Internet QoS 

  The Internet has grown in a healthy manner for decades. Its healthiness has been 

greatly dependent on TCP, which exercises end-to-end congestion control to 

refrain from overloading the Internet. However, real-time applications such 

as streaming, VoIP, and parts of P2P running over UDP are not  TCP-friendly,  as 

discussed in Section 5.5. Some of them also demand a specific quality of service 

(QoS). A path that reserves enough bandwidth to guarantee QoS in terms of low or 

bounded delay, low loss rate, and low jitter is often necessary for these applications. 

 Unfortunately, it is hard for the current Internet to provide such a path because 

the Internet has been built on a freely competitive network architecture whose 

core is stateless, with complex control functions pushed to the end hosts. Thus, 

it is much easier to modify protocols at the end hosts than in the middle at the 

routers and switches. Most IP routers support the best-effort service only. Routers 

forward the arriving packets of any applications as fast as possible without caring 

whether or when end hosts could receive them. More specifically, the best-effort 

service means all packets arriving to a router are inserted into a queue until the 

queue overflows, while the router sends out packets from the queue in a sequential 

order at its maximal rate. When the network loading is light, the best-effort service 

is enough for most applications. The loading, however, depends on how fast the 

Internet bandwidth grows versus how fast new applications and users consume the 

Internet bandwidth. 

 What should we do to turn the Internet into a QoS-enabled network? The 

answer can be found by referring to the faded Asynchronous Transfer Mode (ATM) 

networking since it was capable of supporting QoS. Inspired by the QoS design in 

the ATM networks, researchers proposed a similar architecture, called  Integrated 
Services (IntServ),  to provide two end hosts a path with guaranteed bandwidth and 

delay. Similar to ATM, end hosts of a flow in IntServ have to negotiate with rout-

ers to establish a  flow  path and reserve the resources along the path before sending 

their data packets. Besides, for all routers on the reserved path, they have to know 

not only  where  a packet should be forwarded as they always do, but also  when
is the right time to send the packet to meet its QoS requirement. To achieve this 

objective, the single-queue architecture in a router is replaced by multiple  per-flow
queues where packets are no longer served in the first-in-first-out (FIFO) fashion. 

As a packet arrives at a router, it is dispatched to a dedicated queue and might be 

served sooner than another packet that arrived earlier but was dispatched to a low-

priority queue. 

lin76248_ch07_546-589.indd   546lin76248_ch07_546-589.indd   546 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 547

 Unfortunately, the  per-flow  handling of IntServ is simply  not scalable  in a large 

network like the global Internet or even a regional network belonging to a single ser-

vice provider. Therefore, another architecture named  Differentiated Services (Diff-
Serv)  was proposed. Instead of per-flow handling, the basic objective of DiffServ is 

to perform  per-class  handling to provide hosts with differentiated service  classes.
Hosts first negotiate with the service provider to identify their desired classes of 

service before using the network, while the service provider allocates the agreed-on 

amount of resources for the service classes. Then, each hop of the DiffServ network 

would treat packets with different  forward behaviors  according to their service 

classes. Since dynamic path establishment and on-demand resources reservation are 

not necessary in DiffServ, DiffServ indeed is simpler and more scalable than IntServ. 

Thus, it has a higher probability of being implemented on the Internet. 

 Aside from IntServ or DiffServ, what basic components are needed to provide 

a  total solution  to QoS at the control plane and the data plane? Section 7.1 answers 

this question in a general manner and provides a QoS framework. It also describes 

the traffic control (TC) modules of Linux systems as a  reference design  for the 

 Historical Evolution: The QoS Hype around 
2000s 

 In the 1990s, the Internet became a phenomenon due to the introduction of 

WWW. The WWW not only boosted the number of Internet users, but also 

changed the content of the Internet from text to multimedia and from static to 

dynamic. Contents originally carried by TV and phone were transmitted over the 

Internet. These unexpected changes exhausted the bandwidth of the Internet and 

triggered the demand for  resource reservation.  
 For this problem, due to the high cost of the Internet bandwidth at that 

time, researchers studied how to divide the traffic into different  classes  

and then provide high-quality service to the paying users and best-effort service 

to the public, under the assumption that all traffic is physically carried over 

the same network. Meantime, other researchers sought to increase the link 

bandwidth at a low cost. Finally, because of breakthroughs in  optical  technology, 

the Internet bandwidth became cheap, abundant, and  overprovisioned.  Internet 

service providers simply invested more in building high-bandwidth optical links 

when more bandwidth was needed. Therefore, the number of published research 

papers on Internet QoS diminished after the early 2000s. 

 Now, have QoS issues and requirements disappeard from the Internet? 

No. Its playground has just moved from the wired to the  wireless  environment 

since wireless bandwidth is still scarce today, and also from networks to  servers  

since servers become the bottleneck when the network bandwidth is large 

enough. In fact, it is easy to find QoS in new wireless standards, e.g., WiMAX. 

Nevertheless, the scope of QoS issues is now limited to  links  and  nodes,  instead 

of the global Internet. 

lin76248_ch07_546-589.indd   547lin76248_ch07_546-589.indd   547 24/12/10   4:25 PM24/12/10   4:25 PM



548 Computer Networks: An Open Source Approach

QoS framework. Section 7.2 then goes into more detail about the preceding two QoS 

architectures, per-flow IntServ and per-class DiffServ, and makes a comparison to 

differentiate them. 

 Although no large-scale QoS-enabled IP network exists so far, most IP traf-

fic control components have been provided in operating systems. In fact, some 

components are already used everywhere in routers, gateways, or servers, although 

a total solution to QoS is not deployed. Thus, it pays to study these components 

further. What alternative algorithms have been developed for them? This is answered 

in Section 7.3. Along with the algorithmic discussion of each component, the open 

source implementation of TC in Linux is presented to show the adopted algorithm in 

TC and how exactly it is implemented for a router.   

   7.1 GENERAL ISSUES 

  In order to provide QoS in the IP network, IP routers need to be equipped with many 

additional functions. First, a host needs to request resource reservation at the routers 

along the path to its destination, through a  signaling protocol.  The request might be 

routed through a path where the routers have a better chance to offer the requested re-

sources, which is called  QoS routing  in contrast to ordinary routing without concern 

for resource availability. The routers along the path then do  admission control  to 

accept or decline the request. If a host’s reservation request is accepted by all rout-

ers on the path, the routers reserve the resource and are ready to serve the flow from 

the host. The routers need to enforce the QoS provisioning by first  classifying  all 

incoming packets into per-flow or per-class queues,  policing  the queues to see if 

they consume more than the requested resources, and then  scheduling  these queues 

to make sure they get their nominal share of bandwidth. These data plane operations 

are called  classification,   policing,  and  scheduling,  respectively. 

 In the most generic form, there could be six components in a QoS framework, 

as shown in  Figure 7.1 . In this section, we introduce their concepts and capabilities. 

From the discussion, you can see the difficulties in designing them. Discussions on 

algorithmic designs for each component are left to Section 7.3. At the end, we give an 

overview of the open source Traffic Control (TC) module in Linux.  

C
on

tr
ol

Pl
an

e
D

at
a

Pl
an

e

Requirements for the QoS Network

Admission
Control

Classification Policing

Signaling
Protocol

QoS Routing

Scheduling

   FIGURE 7.1 Six components for building a QoS-aware network element. 

lin76248_ch07_546-589.indd   548lin76248_ch07_546-589.indd   548 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 549

  7.1.1 Signaling Protocol 
 A signaling protocol is a common language used to negotiate with a router for 

resource reservation. It is the first requirement in a QoS-enabled network because 

QoS is provided through cooperation between hosts and all routers in a network. Sev-

eral signaling protocols are proposed for various purposes. Among them, the most 

famous is  Resource ReserVation Protocol  (RSVP), which is used by applications to 

reserve resources in the network. Another example is  Common Open Policy Service  

(COPS) protocol, a simple query-response protocol used in the policy management 

system that is a part of the QoS management architecture. A new working group 

named Next Steps in Signaling (NSIS) was formed in IETF to investigate more 

flexible IP signaling architecture and protocols (see RFC 4080).  

  7.1.2 QoS Routing 
 If  routing  is regarded as static road signs guiding vehicles at the fork of the road,  QoS 
routing  could be viewed as an advanced road sign system that provides not only the 

distance to the destination but also the vehicles’ expected arrival time at the destination 

through various alternative roads. It provides this based on the congestion condition 

of these alternative roads. In the current IP network, routers make decisions based on 

some basic information, such as selection of the smallest hop-count path based on the 

destination IP address, which is like the distance information on the road signs. How-

ever, a QoS router needs to consider also whether the bandwidth, delay, and loss ratio 

of the path meet the requested QoS. Since this information is much more dynamic than 

the hop-count, it is more difficult to collect and exchange it in a large network.  

  7.1.3 Admission Control 
 The QoS routing, like the advanced road sign system in the preceding example, can 

guide packets to the best path, but the chosen path later may still be congested. To 

prevent packets from suffering congestion, we need to further control the number 

and the type of allowed packets on the path.  Admission control  is responsible for this 

job. It is deployed at the entries of a network, or gateway routers, to decide whether 

to allow the packets of a flow into the network by comparing the amount of  required  

resources with the amount of currently  available  resources. Such a comparison is 

difficult because the amounts of both resources  vary  with time.  Figure 7.2  shows an 

example. A bandwidth request for 3 Mbps arrives at router A. Then, router A decides 

whether to accept the request based on its time-varying available bandwidth. The 

difficulty in router A’s decision is how to correctly estimate the bandwidth usage to 

ensure there will be enough bandwidth to successfully transmit the admitted flow 

while keeping the bandwidth highly utilized.   

  7.1.4 Packet Classification 
 After a suitable path is negotiated, selected, and admitted through the signaling 

protocol, QoS routing, and admission control, respectively, data packets are on their 

lin76248_ch07_546-589.indd   549lin76248_ch07_546-589.indd   549 24/12/10   4:25 PM24/12/10   4:25 PM



550 Computer Networks: An Open Source Approach

way now toward the destination. However, the network still needs a component to 

identify packets in order to enforce QoS. For example, we need to know which flow 

a packet belongs to in order to provide QoS accordingly. Since there are various rules 

to classify packets, it might cost several comparisons to classify one packet into a 

particular  flow  or  class.  While the job of packet classification is heavy, doing it  fast  
in obedience to many classification rules is necessary. Thus, how to classify packets 

quickly becomes the major issue of the component. 

 In IntServ, the classification component is to identify which  flow  a packet 

belongs to according to the values of five fields in the packet header. In DiffServ, it 

performs range matching on multiple fields at the network edge and simple matching 

on single fields at the network core to classify packets into  classes  instead of flows.  

  7.1.5 Policing 
 There will always be some vehicles exceeding the speed limit on the road, which 

brings danger to other vehicle drivers. A similar scenario also happens in a network, 

so we need a  policing  component to monitor the traffic. If the arrival rate of a traffic 

source exceeds its allocated rate, the policing component needs to mark, drop, or 

delay some of its packets. However, in most cases the policing threshold is not an 

exact value, and a minor variation in the threshold value is tolerable. Therefore, 

source traffic is usually described by a traffic model, and policing is performed 

according to the traffic model. The most popular policing mechanism is called  token 
bucket,  which grants the policed traffic a limit on the  mean rate  while permitting it to 

send at a  maximum rate  during a time period of a  burst.   

  7.1.6 Scheduling 
 S cheduling  is the major component of QoS-enabled networks. Its general goal 

is to enforce resource sharing between different flows or classes subject to some 

predefined rules or ratios. There are various scheduling algorithms that have been 

proposed to achieve specific purposes. Some methods are simple, and some are 

complex and ingenious enough to provide an exact guarantee of fair sharing.  
 As illustrated in  Figure 7.3 , a  scheduler  should offer two basic external functions, 

 enqueue  and  dequeue,  to receive a new packet arrival and to decide the next packet to 

   FIGURE 7.2 An operating example of admission control. 

A

A path with 3 Mbps
is required

10 Mbps 
Max support BW 

Current BW 

BW

Time

• Bandwidth constraint 

• Packet loss constraint 

lin76248_ch07_546-589.indd   550lin76248_ch07_546-589.indd   550 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 551

forward, respectively. Then, there should be an internal algorithm to schedule pack-

ets in the “scheduling black pipe,” which can be divided into (1) buffer management 

within a queue and (2) resource sharing among multiple queues. Buffer management 

within a queue is also called  queuing discipline,  as we can see in the open source 

implementation of TC.     

   FIGURE 7.3 The concept and possible architectures of scheduling. 

Dequeue
Queuing discipline

black pipeEnqueue

Arrival
packets

Departure
packets

FIFO queue

FIFO queue

FIFO queue

SC
Single FIFO

queue

 Open Source Implementation 7.1: Traffi c 
Control Elements in Linux 

  Overview 
 The Linux kernel provides a wide variety of traffic control functions. One could 

use these functions to construct an IntServ router, a DiffServ router, or any other 

QoS-aware router. The relationship between TC and other router functions are 

given in  Figure 7.4 . Here TC is used to replace the role of  Output Queuing  

in the original Linux kernel. It consists of the following three types of elements: 

   � filters  

  � queuing disciplines ( qdisc )  

  � classes    

  Block Diagram 
 In  Figure 7.4 , the filters are responsible for classifying packets based on some 

particular rules or fields in the packet header. Their source-code files are named 

with the  cls_  prefix and put in the directory  /usr/src/linux/sched/ . 

For example, the file  cls_rsvp.c  implements flow identification required in 

an IntServ router.  
 The queuing disciplines support two basic functions, enqueue and de-

queue. The former function decides whether to drop or queue the packets, while 

Continued

lin76248_ch07_546-589.indd   551lin76248_ch07_546-589.indd   551 24/12/10   4:25 PM24/12/10   4:25 PM



552 Computer Networks: An Open Source Approach

the latter function determines the transmitted order of the queued packets or 

simply delays the transmission of some queued packets. The simplest queuing 

discipline is FIFO, which queues the arriving packets until the queue is full 

and sends out the packets in the queue in the order in which they arrive. How-

ever, some queuing disciplines are more complex, such as CBQ implemented 

in  sch_cbq.c , which queues packets into different classes, each subject to 

its own queuing discipline, like FIFO or RED. The source codes of queuing 

disciplines and classes are located in  /usr/src/linux/sched/  too, but 

their file names begin with  sch_ . As for the low level of the packet queuing 

structure,  sk_buff  is used to link packets whose structure has been described 

in Section 1.5.  

  Algorithm Implementations 
 The bottom half of  Figure 7.4  shows a possible combination of the control 

elements mentioned above. There could be various combinations where a 

queuing discipline might consist of multiple classes and multiple filters 

might classify packets into the same class. TC users can design the structure 

of the traffic control elements at the data plane by the Perl script according 

to their needs.  
  Figure 7.5  further illustrates the flowchart of an even simpler combination 

in TC, where only one  qdisc  is deployed. When a packet arrives TC from the 

upper layer, the packet is inserted into the corresponding queue by  qdisc_
enqueue() . Then, if it is the right time to send out the packet, the timer 

will trigger  qdisk_wakeup()  to select and send out packets by  qdisk_
dequeue()  and  hard_start_xmit() , respectively. Once a packet is sent 

out, the  net_bh()  may also ask  qdisk_run_queues()  to activate the 

transmission of the next packet.  

   FIGURE 7.4 A simple combination of TC elements in Linux. 

Input
device

IP
forwarding

Upper layers
process

Output
queuing

Output
device

Output
device

Traffic
control

Without QoS

Filter Class Queuing discipline

Filter ClassPolicing Queuing discipline

Queuing discipline

lin76248_ch07_546-589.indd   552lin76248_ch07_546-589.indd   552 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 553

  Exercises 
 Could you reconfigure your Linux kernel to install the TC modules and then 

figure out how to set up these modules? In the open source implementations in 

this chapter, we shall detail several TC elements related to the text. Thus, it is a 

good time to prepare yourself with this exercise. You can find useful references 

in the Further Readings section for this chapter.  

   FIGURE 7.5 The flowchart of the qdisc element. 

dev_queue_xmit

qdisc_enqueue

qdisc_wakeup

qdisc_restart

net_bh

qdisc_run_queues
qdisc_dequeue

hard_start_xmit

Timer

  7.2 QoS ARCHITECTURES 

  Herein we introduce two QoS architectures that were proposed to IETF in the 1990s 

and provide a guide to how to turn the Internet from a best-effort network into a QoS-

enabled one.  Integrated Services (IntServ)  is a complete architecture, able to satisfy 

any QoS requirements raised from critical network applications. It can provide these 

applications with a virtual private path with bandwidth reservation and a guaranteed 

worst-case delay bound. This, however, would be an expensive solution. Thus, a 

simplified and more practical architecture was proposed: the  Differential Services 
(DiffServ)  architecture. As implied by its name, DiffServ aims to provide differential 

service for different levels of users, instead of service with bandwidth and delay 

guarantees. Unfortunately, even though DiffServ is more practical than IntServ, it is 

also not widely deployed in the global Internet yet. Many service providers, however, 

do provide priority services to, for example, VoIP applications, through service level 

agreements (SLAs) signed with their customers. 

  7.2.1 Integrated Services (IntServ) 
 This subsection describes the general operating process of IntServ. We first intro-

duce three service types an application can get in an IntServ network. Then we 

lin76248_ch07_546-589.indd   553lin76248_ch07_546-589.indd   553 24/12/10   4:25 PM24/12/10   4:25 PM



554 Computer Networks: An Open Source Approach

talk about the reservation request, i.e., the signaling protocol, from the viewpoint 

of an application. Then we describe how the IntServ routers handle and satisfy the 

reservation request. 

  Service Types 

 Besides the best-effort service the current Internet provides for a flow, two addi-

tional service types are defined in the IntServ specifications: guaranteed service and 

control-load service, as listed in  Table 7.1 . 

 Once an application subscribes to the guaranteed service, it can deliver its traf-

fic on a path with the guaranteed available bandwidth and end-to-end worst-case 

delay bound. The guarantee on the end-to-end worst-case delay bound means that 

for all packets transmitting on this path, the delay for any packet must be smaller 

than the required bound on the packet delay. Such a service would be subscribed 

to by interactive real-time applications, such as VoIP and video conferencing, since 

any additional packet delay could significantly affect the user perception and would 

hardly be tolerated by users. 

 The control-load service in IntServ provides the subscribed flow with a path 

where the packet transmission is likely going through a low-utilization link. That is, 

when the service is subscribed, the quality required by a flow will be satisfied most 

times. Although the control-load service is not as good as the guaranteed service, it 

is cheaper and suitable for some noninteractive real-time applications. For example, 

online movies can subscribe the control-load service to ensure that most packets can 

be received at the expected time, especially when the bandwidth provided by the free 

best-effort service is far below the codec rate. Then, before playing the video stream, 

the player program can buffer a period of media data to cover the period of quality 

degradation caused by possible short-term congestion during streaming. Since the 

users of the control-load service can tolerate such short-time quality degradation, 

the network resources can be shared by more users, and thus the control-load service 

would be cheaper than the guaranteed service.  

  The Trip of a Resource Reservation Request 

 After an application, such as an on-line movie player, decides which service type 

to subscribe to and how much bandwidth and how much delay are required by its 

flow, it needs to send a QoS request with the subscription information and the source 

traffic description to reserve the resources in the IntServ domain. The request will be 

TABLE 7.1 Service Types Provided in IntServ

Service Types Guaranteed Control Load Best Effort

Provided 

QoS

- Guaranteed bandwidth 

- End-to-end delay bound

Emulate a lightly loaded 

network for applications

None

Application 

examples

VoIP and video 

conference

Video streaming Website 

browsing

RFC RFC 2212 RFC 2211 None

lin76248_ch07_546-589.indd   554lin76248_ch07_546-589.indd   554 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 555

received by the nearest IntServ router, as shown in  Figure 7.6 . The router will decide 

whether to accept the request based on its status and, if it accepts, will then forward 

the request to the next router. After all routers on the path accept the request, the 

resource reservation process is finished, and the application can begin to receive 

packets with a guaranteed QoS. RSVP is the protocol for such a reservation com-

munication in IntServ.   

  Request Handling by IntServ Routers 

 Once an RSVP request is received, the IntServ router passes it to the  signaling 
processing  component, which corresponds to the  signaling protocol  component 

shown in  Figure 7.1 . According to the result of its negotiation with the  admission 
control  component ,  the router would update the signaling packet and forward it 

to the next router .  That is, the  signaling processing  component only plays as a 

“transcriber” to transcribe the decision made by the admission control component. 

In fact, admission control is the actual component in charge of resource management 

of the output link. The functions of admission control can be divided into two parts. 

One is to gather and maintain the current usage of the output link and the other is to 

decide whether the residual resources are enough to satisfy the requirement of the 

new request. 

 Besides the two aforementioned components, another one in the control plane 

of the IntServ router is  QoS routing.  Because IntServ employs admission control to 

manage bandwidth allocation, the QoS routing component is not emphasized here. 

However, it can be used to find a path that can provide the desired QoS guarantee. 

That is, the existence of QoS routing, though optional, is helpful in increasing the 

chance of successful resource reservation along the found path.  

  Request Enforcement in IntServ Routers 

 After the path is created successfully, data packets start being transmitted on it. The 

routers on the path should guarantee that the way the packets of the application are 

treated conforms to their subscribed service. Such promises are enforced by three 

basic components in the data plane of the router:  flow identifier or classifier,   po-
licer,  and  scheduler,  as illustrated in  Figure 7.7 . For data packets, the entrance of the 

   FIGURE 7.6 The RSVP process from the viewpoint of an application. 

Application Server
A

B
C

Accept? 

IntServ domain 

N-> Reject the request 

Y-> Forward the request 
Reservation

request

QoS-Aware router 

lin76248_ch07_546-589.indd   555lin76248_ch07_546-589.indd   555 24/12/10   4:25 PM24/12/10   4:25 PM



556 Computer Networks: An Open Source Approach

router is the  flow identifier  component, which identifies whether a packet belongs to 

a reserved flow according to the five fields of the packet header (source IP address, 

destination IP address, source port number, destination port number, and protocol 

ID). Those packets belonging to a particular reserved flow are inserted into the cor-

responding flow queue. Basically, in the IntServ architecture, each reserved flow has 

an individual queue. Packets not belonging to any reserved flow are classified into 

the best-effort FIFO queue. Notably, it is necessary to reserve a portion of resources 

for the best-effort traffic to avoid starvation.  

 After a packet enters its corresponding flow queue, the next component to han-

dle the packet is the  policer.  It monitors the incoming traffic of the flow to determine 

whether the traffic conforms to the behavior as claimed in its request for resource res-

ervation. Those “out-of-profile” packets might be dropped or delayed until the traffic 

conforms to the claimed behavior. Next, the scheduler selects one packet from the 

head packets of the policed flow queues. The packet selected by the scheduler is sent 

to the output link. In most cases, the output link does not have to queue packets any-

more because the output rate must be smaller than or equal to the physical link rate. 

 The role of the scheduler is important to IntServ because it is the key to provid-

ing the characteristics of flow isolation and the guaranteed service with a critical end-

to-end delay bound. It aims to reduce the worst-case latency of a flow and provide 

fair treatment among all reserved flows. Notably, fair might not mean equal, and 

more explanation shall be given in Subsection 7.3.4.   

  7.2.2 Differentiated Services (DiffServ) 
 Although IntServ supplies an accurate QoS, the IntServ architecture is not scal-

able for an ISP to deploy. Besides, its enforcement mechanisms might consume 

too much computing resources, especially for core routers, which have to handle a 

huge number of flows. Its highly complex design would cause a bad utilization of 

network resources and a high deployment expense. Obviously, the Internet needs a 

simple, scalable, and manageable solution. The Differentiated Services (DiffServ) is 

designed for this goal.  Figure 7.8  shows the basic element tree of DiffServ. The first 

level shows the necessary functions for DiffServ, while the following levels list the 

specific protocols or components to achieve these functions.  

   FIGURE 7.7 The data plane in an IntServ router. 

Flow
identifier

Fqn

Fq2

Fq1

Scheduler

Best-effort Q

Src IP Dest IP

Dest PortSrc Port

Protocol ID
Flow queue Policer

Data plane of
IntServ router

lin76248_ch07_546-589.indd   556lin76248_ch07_546-589.indd   556 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 557

  General Model 

 A DiffServ network consists of one or many DiffServ domains, and one DiffServ 

domain consists of several routers. There are two types of routers in a DiffServ 

domain, as plotted in  Figure 7.9 . A router at the boundary of a domain is called an 

 edge router,  be it  ingress  or  egress,  while that at the interior is called a  core router.  
An ingress router is an entrance to a domain. It handles packets in two steps before 

forwarding them to core routers. The first step is to  identify  and  mark  packets based 

on some predefined policies. The mark on the packet affects the forwarding treat-

ment received by the packet in the domain. The second step is to  police  and  shape  

packets based on the traffic profile as negotiated between the customer and service 

provider before the beginning of the service. The second step assures that the traffic 

injected into the domain is within the service ability of the domain because no further 

   FIGURE 7.8 The basic element tree of DiffServ. 

Differentiated Services

Service Level
Agreement (SLA)

Traffic
Control

Service
Link-
Layers

Signaling Traffic
Engineering

Policy

Traffic
conditioning

agreement (TCA)

Service
provisioning

Service
configuration

Classification

Policer

Marker

Scheduler

Expedited 
forwarding 

Assured
forwarding

Best-effort

Pt-to-Pt

MPLS

ATM

RSVP

LDAP

COPS

   FIGURE 7.9 The architecture of a DiffServ domain. 

Edge router 

Core router 

DiffServ domain 

Ingress router Egress router 

Core routers 

Police, mark,
shape, drop
packets 

Forward packet 

lin76248_ch07_546-589.indd   557lin76248_ch07_546-589.indd   557 24/12/10   4:25 PM24/12/10   4:25 PM



558 Computer Networks: An Open Source Approach

control shall be performed at the interior of the domain. The task of the core router 

simply is to forward packets with the particular behavior according to the mark on 

the packets. Packet remarking and traffic reshaping could be performed at the egress 

router according to the service agreement negotiated between the current domain and 

the next domain.    

  DS Field 

 The edge DiffServ router marks packets entering the DiffServ domain. The mark 

on a packet tells the core router how to treat the packet. Since DiffServ is directly 

built on the IP network without introducing additional layers, the mark must be 

saved in the IP header. Thus, DiffServ reclaims the 8-bit Type of Service (TOS) 

field in the IPv4 header to indicate forwarding behaviors. The replacement field 

is called the DiffServ (DS) field, and only six bits are used as a DS Code Point 

(DSCP) to encode the per-hop-behavior (PHB), as shown in  Figure 7.10 . The 6-bit 

DSCP field can represent 64 distinct values. These values are divided into three 

pools as shown in  Table 7.2 . The code points defined in pool 1 correspond to the 

major standard PHBs. The code points in the other two pools are reserved for ex-

perimental and local uses.  

  Per-Hop Forward Behaviors 

 Here we introduce four groups of forwarding behaviors and their corresponding 

recommended code points defined in the standard. The first two groups, Default 

PHB and Class Selector PHB, provide a limited backward compatibility since the DS 

field is redefined from the original IP TOS field. The other two PHB groups,  Assured 

TABLE 7.2 Allocated Space of Code Points

Pool Code Point Space Assignment Policy

1 xxxxx0 Standard action

2 xxxx11 Experimental and local use

3 xxxx01 Similar to above but may be subject to standard action

Precedence D T R 0 0IP TOS

DS DSCP 0 0

1 2 3 4 5 6 7 8

No use

26 = 64 behaviors
12 AF PHBs
1 EF PHB
1 Best-effort PHB
8 Class selector PHBs

   FIGURE 7.10 The DS field redefined from the TOS field of IPv4 header. 

lin76248_ch07_546-589.indd   558lin76248_ch07_546-589.indd   558 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 559

Forwarding  (AF) PHBs and  Expedited Forwarding  (EF) PHB, are standardized by 

the IETF to provide DiffServ.  

  Default PHB Group 

 For most packets in the IP network, the TOS field is useless and its value is set to zero. 

In order to let these DiffServ-unaware packets pass through the DiffServ network, 

DiffServ defines the default DSCP value as 000000, simply equal to the value of the TOS 

field in most DiffServ-unaware packets. For these packets, DiffServ inserts them into 

the best-effort queue and reserves a minimal bandwidth for them.   

  Class Selector PHB Group 

 Though the TOS field is not used in most cases, some vendors actually use the 

first three bits of the TOS field to identify some IP functionalities. To allow these 

IP functionalities to coexist with the DiffServ implementations, a DSCP field that 

contains xxx000 is mapped to a group of PHBs that forward packets with different 

priorities. The packet with a large DSCP is expected to be forwarded with a higher 

priority than one with a small DSCP value. 

  AF PHB Group 

 The PHB of the AF group guarantees to forward every packet of a traffic source if 

these arriving packets conform to the traffic profile of their source; the profile is 

called the traffic conditioning agreement (TCA). Then, for the packets exceeding its 

TCA, the AF PHB forwards them if possible. 

 There are four forwarding classes in the AF PHB group, and each class is 

allocated a certain amount of bandwidth and buffer space. For each class, traffics 

are divided into three levels of drop precedence. That is, there are a total of 12 

individual PHBs in the AF group. As soon as the buffer of a class is nearly full, which 

implies the amount of the arriving traffic exceeds the allocated bandwidth of the 

class, the packet with a high drop precedence level would be discarded with a higher 

probability than the packet with a low drop level. 

 In order to avoid congestion in a class, the amount of traffic arriving to the class 

needs to be controlled. Moreover, because the class of a packet is not changed in the 

same DiffServ domain, the edge router needs to admit, shape, and even drop packets 

to keep the DiffServ domain from being overloaded. As mentioned earlier, DiffServ 

relies on the provision and monitoring at the edge routers to provide QoS. 

 In fact, to detect whether the congestion happens is an interesting research 

issue. There are many algorithms about buffer management proposed to detect the 

congestion and reduce its side effects in advance, such as random early detection 

(RED) proposed by S. Floyd and V. Jacobson in 1993. We shall look at these buffer 

management algorithms in Subsection 7.3.5.  

  EF PHB Group 

 The EF PHB is supposed to provide a performance similar to the traditional point-

to-point leased-line service, forwarding packets with low loss, low latency, and low 

jitter. To offer these three characteristics, the core router in DiffServ must be able to 

lin76248_ch07_546-589.indd   559lin76248_ch07_546-589.indd   559 24/12/10   4:25 PM24/12/10   4:25 PM



560 Computer Networks: An Open Source Approach

reserve bandwidth at any time at least an amount enough to transmit the EF traffic at 

the rate specified in the source’s traffic profile. 

 In the core router, EF traffic can preempt other traffic types to get the guar-

antee on their three “low” characteristics. The simplest way to implement such a 

guarantee in a core router is to classify different types of traffic into individual 

queues, and then always forward packets from the queue of the EF traffic until the 

queue becomes empty. However, to avoid starving other traffics or forwarding the 

EF traffic itself in burst, a strict constraint on the rate of sending the EF traffic into 

the network is necessary. Usually, a shaper implemented by a token bucket would 

be deployed at the edge router to meet such a constraint. Then, all out-of-profile 

nonconforming traffic would be forwarded with the default PHB or simply be dis-

carded at the edge router. 

 Compared to the AF PHB, the EF PHB has a higher quality of service and a 

lower burst tolerance. Obviously, the EF PHB is a good choice for traffic with a con-

stant bit rate and high quality requirement. On the other hand, the AF PHB is more 

suitable for traffics that are bursty but tolerant of packet loss. Their relative features 

are listed in  Table 7.3 . 

   A Packet’s Life in a DiffServ Domain 

 A packet’s life in a DiffServ domain can be divided into three stages: ingress, 

interior, and egress. The first and the third stages are handled by edge routers, while 

the second is handled by core routers. Here we detail each stage by describing the 

operations in the corresponding routers.  

TABLE 7.3 AF PHB and EF PHB, and Their Relative Features

PHB Group AF (Assured Forwarding)
EF (Expedited 
Forwarding) Best-Effort

Features Olympic service (an example)

four delay priority classes, each with three drop 

precedence subclasses

Premium/virtual 

leased line service
none

Recommended 

DSCP in DS-field

AF1 AF2 AF3 AF4

101110 000000
Low 010000 011000 100000 101000

Middle 010010 011010 100010 101010

High 010100 011100 100100 101100

Traffic control Static SLA policing, classification, marking, RIO/

WRED scheduling

Dynamic 

SLA policing, 

classification, 

marking, priority/

WFQ scheduling

FIFO 

scheduling

Nonconforming 

traffic

Re-mark as best-effort Drop Forward

lin76248_ch07_546-589.indd   560lin76248_ch07_546-589.indd   560 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 561

  Ingress Stage 

 As illustrated in  Figure 7.11 , in the ingress stage, each packet passes through three 

blocks: traffic classification, traffic conditioning, and traffic forwarding. In the first block, 

the classifier identifies the arrival traffic based on the predefined policies, and tells the 

components that follow which traffic profile they should take to manage the behavior of 

the traffic. The classified packets are then passed to the second block, traffic conditioning.  
 In the second block, according to the definition in the traffic profile, the meter 

measures the traffic and categorizes the packets as either  in-profile  or  out-of-profile.  
For the in-profile packets, the marker gives them the suitable code point to let them 

successfully pass through the domain. For the out-of-profile packets, they might be 

dropped or marked with a code point corresponding to the forward behavior with 

a high drop probability. Alternatively, they are just passed into the shaper as the 

in-profile packets. However, unlike the in-profile packets, which pass through the 

shaper almost without any delay, the out-of-profile packets would be  delayed  until 

they conformed to their traffic profile. 

 In the traffic forwarding block, the marked packets would be inserted into the 

corresponding class queues. The implementation of the DSCP classifier is far sim-

pler than the packet classifier mentioned in the first block, which simply looks at the 

DS field of the packet marked in the traffic conditioning block and then dispatches it 

to the corresponding class queue. Meanwhile, the class scheduler forwards the pack-

ets from each class queue at a particular forwarding rate that is configured according 

to the volume of admitted traffic.  

  Interior Stage 

 Unlike the ingress stage, which has multiple processing blocks, the interior stage 

has only one block, as shown in  Figure 7.12 . The simple architecture of the interior 

stage reduces the implementation cost of core routers and increases the forwarding 

speed. The core router is only responsible for triggering per-hop behaviors based on 

   FIGURE 7.11 The ingress stage of a packet in the edge router. 

Packet
classifier

Meter

DSCP
marker

Shaper

Dropper

Traffic conditioning

DS domain 

DSCP
classifier

Class
scheduler

Traffic forwarding

lin76248_ch07_546-589.indd   561lin76248_ch07_546-589.indd   561 24/12/10   4:25 PM24/12/10   4:25 PM



562 Computer Networks: An Open Source Approach

the DSCP of the packets, which is similar to the operation of the third block of the 

ingress stage.   

  Egress Router 

 Compared to the ingress router in charge of the normal operation of a DS domain, 

the egress router only has to collect some statistics on the packets leaving the do-

main. The statistics may include the actual throughput and delay perceived by users 

when their packets pass through the DS domain. These statistics are useful to verify 

whether the agreed levels of QoS are satisfied.  

  Comparison with IntServ 

 Compared with IntServ, the implementation of the DiffServ architecture is simpler but 

rough. First, DiffServ does not provide the on-demand reservation of resources offered 

by IntServ. Under DiffServ, the users have to sign a contract with the service provider 

statically or dynamically to define how much traffic will be injected into the network or 

what kind of QoS behavior is desired. Then, based on the contract, the service provid-

ers can build a network with enough resources to meet the user requirements. Second, 

the arrival traffic in DiffServ is divided into groups, called  forwarding classes.  Since 

the number of groups is limited, the traffic from multiple users might be aggregated 

into one class, hence one queue, implying that the transmission quality perceived by a 

user might be affected by other users of the same class. Thirdly, the five-tuple packet 

classification is handled at the boundary of the DiffServ domain. That is, only the edge 

routers need to classify and mark packets. The core routers forward the packets with 

different behaviors simply based on the mark on the packet header. 

  Table 7.4  shows the major differences between the architectures of DiffServ and 

IntServ. The design of DiffServ avoids the difficulty of classifying and scheduling a 

huge number of packets in core routers, which in fact is the major problem in IntServ.       

   FIGURE 7.12 The interior stage of a packet in the core router. 

DS domain

DSCP
classifier

Class
scheduler

Traffic forwarding

Routing
database

Control plane 

Data plane 

lin76248_ch07_546-589.indd   562lin76248_ch07_546-589.indd   562 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 563

TABLE 7.4 Differences between DiffServ and IntServ

Compared Items DiffServ IntServ

Manageable unit Class Flow

Router capability Edge and core All-in-one

Defined in the standard Forwarding behavior Service type

Guarantee required Provisioning Reservation

Work region Domain End-to-end

 Principle in Action: Why Both DiffServ and 
IntServ Failed 

 Though DiffServ is more scalable than IntServ, it still failed to become widely de-

ployed. One would argue that the bandwidth  over-provisioning  that resulted from 

advances in optical technology and investment in high-speed links has eliminated 

the need to exercise complicated QoS architecture and mechanisms to make the 

Internet QoS-enabled. Another argument is that both IntServ and DiffServ would 

turn the stateless IP network to  stateful  and  semi-stateful,  respectively. For IntServ, 

 all  routers would become stateful to keep track of all reservation states. For DiffServ, 

at least all  edge  routers would have to keep those states to classify and mark packets. 

 These of course violate the original design philosophy of the Internet, 

though whether this statelessness property of the Internet should be kept is a 

debatable issue. Multi-Protocol Label Switching (MPLS) in a sense breaks 

that statelessness in a  local  domain by allowing stateful but  faster switching  to 

substitute stateless but slower routing. MPLS succeeds in scaling to some extent. 

Scaling MPLS to the  global  Internet, however, would face the same problem 

both IntServ and DiffServ encounter. Nevertheless, QoS is an end-to-end issue 

spanning multiple domains or service providers, but MPLS can improve the per-

formance in just a domain without resorting to an end-to-end solution. 

 Principle in Action: QoS in Wireless Links 

 Although QoS architectures DiffServ and IntServ failed to be deployed in the 

Internet, we can find the QoS-related specifications in the recent wireless stan-

dards, such as IEEE 802.11e and 802.16. QoS still gets much attention in wireless 

networks because the wireless networks today have  not  provided sufficient band-

width for users. Thus, QoS-related mechanisms and algorithms are required to 

ensure the transmission quality of real-time traffic when this traffic is mixed with 

other background traffic. 

 For users in WLAN, IEEE 802.11e defines two access modes, Enhanced 

Distributed Channel Access (EDCA) and Hybrid coordination function 

Continued

lin76248_ch07_546-589.indd   563lin76248_ch07_546-589.indd   563 24/12/10   4:25 PM24/12/10   4:25 PM



564 Computer Networks: An Open Source Approach

Controlled Channel Access (HCCA), in the MAC layer to satisfy the require-

ment of QoS. EDCA provides high- priority  traffic a higher chance of being 

sent than low-priority traffic. The former traffic in EDCA would be sent after a 

shorter  waiting time and for a  longer  time interval, named Transmit Opportunity 

(TXOP), than the latter traffic. On the other hand, HCCA is a  polling-based
mode just like PCF, an access mode defined in IEEE 802.11, where an access 

point actively schedules the order and frequency of stations to be polled and thus 

determines the QoS received by each station. The key difference is that a polled 

station in PCF sends only  one  packet in one polling round, but the station in 

HCCA is free to send packets during the given TXOP of the polling round. Thus, 

HCCA has lower overhead for each packet transmission than PCF. 

 For users in WMAN, IEEE 802.16 introduces four classes of services: UGS 

Unsolicited Grant Service (UGS), real-time Polling Service (rtPS), non-real-time 

Polling Service (nrtPS), and Best Effort (BE). UGS is supposed to emulate a T1/E1 

link to  periodically  transmit fixed-length packets, while rtPS and nrtPS guarantee 

a  minimum  throughput for real-time and non-real-time traffic of variable-length 

packets, respectively. By contrast with 802.11e, which is based on CSMA/CA, 

802.16 uses TDMA to manage the wireless media. A base station (BS) in 802.16 

has to schedule the media for each subscriber station, which thus is a  central 
control  mode naturally and a convenient architecture for the deployment of QoS. 

  7.3 ALGORITHMS FOR QoS COMPONENTS 

  After presenting the architectures of QoS-enabled IP networks, we then focus on the 

techniques for constructing the components of a QoS-enabled network, which have 

more research issues than the architecture. There are many algorithms related to these 

QoS components. We first describe the algorithms for admission control and flow iden-

tification. Then we introduce shaping and policing mechanisms, such as token bucket 

and its variations. Next, the scheduling algorithms are described, which are usually 

more complicated than other components. Finally, we discuss several packet discard 

mechanisms, which can be deployed at core routers or the current Internet routers to 

alleviate the congestion problem due to bursty traffic. Five open source implementations 

of TC are picked to illustrate the implementations of classical QoS-related algorithms. 

  7.3.1 Admission Control 
 After an application sends a QoS request to a router to establish a flow, the admission 

control component needs to decide whether to accept the new flow passing through the 

router. The admission of a new flow is based on the current resource usage of the output 

link and the requirement described in the request. A good admission control design 

should admit as many requests as possible to exhaust the resources of the router while 

ensuring that the QoS requirements of all admitted flows are satisfied. The approaches 

can be classified into two types: statistics-based and measurement-based. 

lin76248_ch07_546-589.indd   564lin76248_ch07_546-589.indd   564 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 565

  Statistics-Based Control 

 For statistics-based admission control, a traffic source should describe its behavior, 

e.g., mean rate or peak rate, in the request, and the router should simply calculate 

an accumulated traffic function to estimate the total usage of resources and decide 

whether to accept the flow. However, it is hard to define the accumulated traffic func-

tion under the trade-off between bandwidth utilization and loss probability. 

 For example, we can describe the traffic source by two parameters, peak rate and 

average rate, and assume it conforms to an on-off model, which means the source 

either transmits at its peak rate or is idle. Then, the accumulated traffic function could 

simply be the summation of the  peak  rate of all flows. If the calculated result is under 

the maximum constraint after adding the peak rate asked by the new request, the re-

quest is accepted. Otherwise, it is rejected. Such a function guarantees the bandwidth 

allocation for the traffic without any packet loss, but results in low bandwidth utili-

zation. What happens if we use the summation of  average  rate as the accumulated 

traffic function? Then, although the link will have a higher utilization, the accepted 

flows might suffer congestion and experience packet losses frequently. 

 For such a trade-off, the term  equivalent capacity  was introduced in 1991 and was 

commonly used in the literature of admission control. Equivalent capacity represents the 

minimum bandwidth required by a set of multiplexed flows over a link with a  bound  on 

the probability of encountering  queue overflow.  Thus, when given the overflow probabil-

ity and the statistical characteristics of the flows, one can calculate the equivalent capac-

ity and design a mechanism to admit new flows when the required total mean bandwidth 

of admitted flows is smaller than the equivalent capacity, while guaranteeing the packet 

losses encountered by the admitted flows will be lower than the given threshold.  

  Measurement-Based Control 

 Since it is hard to have a suitable accumulated traffic function, some researchers 

suggest measuring the current bandwidth usage directly. In order to obtain a rep-

resentative measured value and avoid a sudden burst value, one could calculate the 

new usage estimation with exponentially weighted moving-average (EWMA); that 

is, averaging the new measurement with the last estimation by    

Estimationnew = (1 − w) × Estimationold + w × Measurednew ,  

 where  w  is the weight ratio of the new measurement. Large  w  makes the history 

expire quickly, which means that the algorithm is more aggressive and the resources 

have a higher probability of being highly utilized, but the flows might not get their 

desired treatment as described in their QoS requirement. For example, the admission 

control might accept a request if the current estimation is right below some maxi-

mum constraint, but it is possible that the estimation turns to the high value next time. 

Then, the acceptance might cause the resources to become overloaded and to affect 

the treatment of all accepted flows, including the new one. 

 The other measurement approach is time window. The estimation is drawn from 

several consecutive measurement intervals, as calculated by 

Estimation = f (C1, C2, C3, . . ., Cn ),    

lin76248_ch07_546-589.indd   565lin76248_ch07_546-589.indd   565 24/12/10   4:25 PM24/12/10   4:25 PM



566 Computer Networks: An Open Source Approach

 where  C i   is the average rate measured on a sample interval and  f  could be a maxi-

mum function. Again, when a smaller  n  is given, the estimated bandwidth usage is 

usually lower and thus has more room to accept new flows, and high utilization thus 

may be achieved. On the other hand, when a larger  n  is given, the algorithm becomes 

conservative in estimating the bandwidth usage, hence accepting fewer new flows. 

Then flows can receive better treatment in most cases, but at the cost of low resource 

utilization.    

 Open Source Implementation 7.2: 
Traffi c Estimator 

  Overview 
 TC provides a simple module to estimate the current transmission rate in bytes and 

in packets. You can find the module in the file net/core/gen_estimator.c. As men-

tioned, there are two approaches to measuring the transmission rate: EWMA and 

time window. Since EWMA takes less memory than the time window approach 

and is easier to implement, Linux uses EWMA to implement its traffic estimator.  

  Data Structures 
 The data structure used to keep the measured results of a flow is called  gen_
estimator , as shown below. 

  struct gen_estimator 
 { 

 struct list_head     list; 
 struct gnet_stats_basic  *bstats; 
 struct gnet_stats_rate_est *rate_est; 
 spinlock_t       *stats_lock; 
 int           ewma_log; 
 u64           last_bytes; 
 u64           avbps; 
 u32           last_packets; 
 u32           avpps; 
 struct rcu_head    e_rcu; 
 struct rb_node      node; 

 };  

 Because the rate estimator provides rate estimation in bytes and in packets, you 

can find paired names of variables in the estimator, e.g.,  last_bytes / last_
packets  and  avbps / avpps , whose usages are explained later. In fact, even 

the substructure  rate_est  as well as  bstats  also consists of two variables: 

one for the estimation in bytes and the other in packets. The  rate_est  saves 

the rate-estimation results while  bstats  records the amount of data counted 

by the estimator so far.  

lin76248_ch07_546-589.indd   566lin76248_ch07_546-589.indd   566 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 567

  Algorithm Implementations 
 The traffic estimator includes three major functions. Function  gen_new_
estimator()  handles the creation of a new estimator and function  gen_
kill_estimator()  deletes the idle estimator. Function  est_timer()  is 

invoked by the Linux kernel once the setting time is up where the time interval 

is set to (1 <<  interval ), i.e., 2 interval , seconds. In  est_timer() , a sending 

rate is calculated and EWMA is implemented by the code listed in  Figure 7.13 .  

 For the paired names of variables, you can find the paired codes in 

 Figure 7.13  (lines 4 through 7 versus lines 8 through 11). The code is performed 

for a flow every 2  (idx−2)  seconds. Each flow can have its desired idx, which is 

set in  gen_new_estimator() . Also, to avoid floating-point computing, the 

values in  avbps  and  avpps  are scaled by 2 5  and 2 10 , respectively, compared 

to their actual values. Next, to estimate the rate in bytes, as written in line 4, the 

estimator first gets the amount of data counted during the 2 idx  seconds by sub-

tracting  e->last_bytes  from  e->bstat->bytes . 

 Then, in order to get the mean rate  avbps  during the past 2 (idx−2)  seconds, the 

difference is supposed to be divided by 2 (idx−2) , i.e., right shifting it by (idx−2) bits. 

However, to have the 5-bit binary fraction as  avbps  does, the operation in line 4 

is a left shift by (7− idx ) bits, that is, >> ( idx −2) << 5. Then, after getting the new 

mean rate, Line 6 performs the EWMA operation to get the smooth rate estimation 

in bytes, and finally saves the estimated rate in  rate_est->bps . Similarly, we 

can get the smooth rate estimation in packets by running lines 8 through 11.  

  Exercises 
1. Explain how line 6 or 10 performs the EWMA operation. What is the value 

of the historical parameter  w  used in the EWMA equation?  

2. Read  gen_estimator.c  to find out how the  gen_estimator  of all 

flows are grouped. Do you know why the parameter  idx  is counted from 2?    

   1: struct gen_estimator *e; 
 … 
 2: nbytes = e->bstat->bytes; 
 3: npackets = e->bstat->packets; 

 4: brate = (nbytes - e->last_bytes)<<(7 - idx); 
 5: e->last_bytes = nbytes; 
 6: e->avbps += ((s64)brate - e->avbps) >> e->ewma_log; 
 7: e->rate_est->bps = (e->avbps+0xF)>>5; 

 8: rate = (npackets - e->last_packets)<<(12 - idx); 
 9: e->last_packets = npackets; 
 10: e->avpps += ((long)rate - (long)e->avpps) >> e->ewma_log; 
 11: e->rate_est->pps = (e->avpps+0x1FF)>>10; 

 FIGURE 7.13 A code segment in the function est _ timer() of estimator.c. 

lin76248_ch07_546-589.indd   567lin76248_ch07_546-589.indd   567 24/12/10   4:25 PM24/12/10   4:25 PM



568 Computer Networks: An Open Source Approach

  7.3.2 Flow Identification 
 In IntServ, since individual resources are reserved for each flow,  flow identification
or  classification  is necessary to decide which flow a packet belongs to. Besides, 

it is necessary to have a table with per-flow entries to store the flow identifier and 

QoS parameters. The flow identifier in IntServ is composed of five header fields 

of a packet, which are the source IP address and port, destination IP address and 

port, and protocol ID as mentioned in Subsection 7.2.1. The length of the identifier 

is 32 + 16 + 32 + 16 + 8 = 104 bits, which takes 13 bytes. We need an effective data 

structure to store the table and execute flow identification. 

 Identification or classification is a classical data search problem. Many data 

structures are capable of storing the flow table, but there is a trade-off between 

time and space. A simple data structure is the binary tree; its space requirement is 

small, but multiple memory access operations are necessary to identify a packet. 

The other extreme is direct memory mapping, but it does not meet the space 

requirement. To balance between the time and space requirements, using a hash 

structure is a common and popular approach. However, if we further study the 

hash structure, we can find there are many uncertain reasons that affect the per-

formance of flow identification in the hash table, e.g., hash function and collision 

resolution.  

 Open Source Implementation 7.3: Flow 
Identifi cation 

  Overview 
 There are many algorithms and data structures proposed to implement flow 

identification. Their common issue is how to classify packets within the shortest 

time while using the smallest memory space. As you proceed, a  double-level 
hash  structure is used in the TC of Linux. Obviously, compared with direct 

memory mapping and tree structure, the hash structure has a better trade-off 

between time and space. You can find the structure and code in  net/sched/
cls_rsvp.h.   

  Data Structures 
 According to the definition of IntServ, a flow is identified by five fields. A 

double-level hash structure is illustrated in  Figure 7.14 . The first-level hash is 

keyed by the  destination  IP address, port number, and protocol ID. Its hash result 

indicates which list of RSVP sessions the packet belongs to. Based on the defini-

tion in the RFC of RSVP, an RSVP session represents a unidirectional flow and 

is identified by the combination of the destination IP address, destination port 

number, and protocol ID. Next, by using the second-level hash with the source 

IP address and source port number as the hash key, we can further identify which 

flow the packet belongs to.  

lin76248_ch07_546-589.indd   568lin76248_ch07_546-589.indd   568 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 569

  Algorithm Implementations 
 The major function to support flow identification is  rsvp_classify() , and 

its flowchart is in the left part of  Figure 7.15 . The right part of  Figure 7.15  shows 

the flowchart of the function  rsvp_change() , which adds a new flow iden-

tification filter or modifies the existing one. Both flowcharts are easy to follow 

and are self-explanatory.    

  Exercises 
1. Is there any reason that the destination IP address and port number are used 

in hashing before the source IP address and port number?  

2. Could you find what hash function is used for the identification by reading 

the code in  net/sched/cls_rsvp.h ?    

   FIGURE 7.14 The double-level hash structure in  CLS _ RSVP.C . 

rsvp_head: First-level hash

hash_dst()

src_dst()

rsvp_session: Second-level hash

Hash bucket

Hash function

rsvp_session list

rsvp_session list

rsvp_session list

rsvp_filter list

rsvp_filter list

Total 256 (dst, protocol id, tunnelid) lists

rsvp_filter list

16 (src,src port) list + 1 wildcard src lists
A pkt. arrives

   FIGURE 7.15 The flowchart of two functions in  CLS_RSVP.c . 

hash_dst()

Sequential search in
the rsvp_session list

hash_src()

Sequential search in
the rsvp_filter list 

Match Nomatch

N

N

Has rsvp_filter
assigned ?

adjust classid

Has rsvp_session
existed?

Modify

Create

Insert a rsvp_session

Insert a rsvp_filter

Y

N

Y

The flowchart of function rsvp_classify The flowchart of function rsvp_change

lin76248_ch07_546-589.indd   569lin76248_ch07_546-589.indd   569 24/12/10   4:25 PM24/12/10   4:25 PM



570 Computer Networks: An Open Source Approach

  7.3.3 Token Bucket 
 A token bucket mechanism can  police  a flow’s arrival rate and  bound  the rate in 

a region. In DiffServ, it can be deployed at an edge router to regulate the arrival 

rate of a flow to ensure that the rate conforms to that in the contract the with the 

ISP. As illustrated in  Figure 7.16 , the mechanism consists of a  token bucket  and a 

 token stream.   
 The stream fills the bucket with tokens at a  fixed  rate  r  while the bucket can 

accumulate tokens up to a maximum volume  b,  which is the bucket depth. The 

basic principle is that a certain number of tokens are needed to permit a packet to 

pass through. The amount of tokens required for passing a packet is the same as 

the packet’s length in bytes. As packets are permitted to leave the queue, tokens 

begin to  leak  from the bucket until the bucket is empty. Then, when the bucket 

is empty, packets are blocked in the queue, and newly arriving packets are even 

dropped when the queue is full. On the other hand, if there are no packets in 

the queue or the rate of token consumption is lower than  r,  tokens would be accu-

mulated in the bucket, but the accumulated amount is no more than the volume of 

the bucket,  b.  According to the principle just described, the  maximum burst length  

permitted by the token bucket is equal to   r × t + b  , where  t  is the time elapsed since 

the beginning of a burst of packet arrivals. This happens when a burst of packets ar-

rive to an empty queue with the bucket fully loaded. On the other hand, the maximum 

burst length can also be expressed as   p × t    since the peak rate is bounded by  p.  Thus, 

we get the time period of the maximum burst length     t = b/(p − r). 

  Figure 7.17  shows a possible operating case of token bucket during 24 sec-

onds. Assume that  r  = 1 unit/s,  p  = 2 units/s,  b  = 15 units, and no packet arrivals 

for the first 10 seconds. That is, 10 tokens would be accumulated in the bucket, as 

shown in  Figure 7.17(a) . Then, suppose that three packets arrive right at the 10 th  

second, with length equal to 10, 9, and 5 units, respectively. Next, as shown in 

 Figure 7.17(b) , because the peak rate  p  = 2, the first packet is released at t = 15s, 

even though there are 10 units of tokens, enough to release the packet, in the bucket 

at  t  = 10 s. After the first packet is released, 5 units of tokens accumulated during 

   FIGURE 7.16 The operation architecture of a leaky bucket. 

Token bucket

Peak rate p

Token stream with 

average rate r

Bucket depth b

Flow queue

Rate permitted packetsIncoming packetsDrop?

lin76248_ch07_546-589.indd   570lin76248_ch07_546-589.indd   570 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 571

seconds 10 through 15 are left in the bucket. By adding another 4 units of tokens 

during seconds 15 through 19, the second packet can be released at 19 s, as seen in 

 Figure 7.17(c) . Finally, since there are no tokens left in the bucket at  t  = 19 s, the 

last packet has to wait for another 5 seconds to get enough tokens to be released, 

as seen in  Figure 7.17(d) .     

   FIGURE 7.17 An operating case of leaky bucket. 

p = 2

r = 1

h = 10

Flow queue

(a) t = 10s

p = 2

r = 1

h = 5
Flow queue

(b) t = 15s

1010 9

p = 2

r = 1

h = 0
Flow queue

(c) t = 19s

9 10

5

5

p = 2

r = 1

h = 0
Flow queue

(d) t = 24s

9 105

95

 Open Source Implementation 7.4: 
Token Bucket 

  Overview 
 The idea of the token bucket mechanism is simple, but a straightforward imple-

mentation might impose a heavy load to the kernel. In a naïve implementation, 

the mechanism is supposed to have a token generator that periodically fills 

tokens into the bucket. Moreover, to support fine-grained rate regulation, the 

generator has to add a small token in a short period, instead of a large token in 

a long period. Obviously, such an implementation becomes a nightmare for the 

kernel, particularly when there are many token buckets for many traffic classes 

and each generator has to add small tokens at a high frequency to regulate a 

high-rate flow. Fortunately, it is not implemented that way in Linux. It adds 

tokens only when checking the eligibility of a packet to leave the queue.  

  Data Structures 
 The token bucket mechanism is used widely for policing or shaping the network 

traffic. You can find its implementations in  act_police.c  or  sch_tbf.c  in 

the Linux kernel. Below we introduce the code in  sch_tbf.c . Parameters and 

variables used in the implementation of token bucket are defined as 

Continued

lin76248_ch07_546-589.indd   571lin76248_ch07_546-589.indd   571 24/12/10   4:25 PM24/12/10   4:25 PM



572 Computer Networks: An Open Source Approach

 struct tbf_sched_data 
 { 
 /* Parameters */ 

 u32    limit; /* Maximal length of backlog: bytes */ 
 u32    buffer;/* Token bucket depth/rate: MUST BE >= MTU/B */ 
 u32    mtu; 
 u32    max_size; 
 struct qdisc_rate_table *R_tab; 
 struct qdisc_rate_table *P_tab; 

 /* Variables */ 
 long tokens;         /* Current number of B tokens */ 
 long ptokens;         /* Current number of P tokens */ 
 psched_time_t t_c;    /* Time checkpoint */ 
 struct timer_list wd_timer;    /* Watchdog timer */ 

 }  

  R_tab  and  buffer  in  tbf_sched_data  are corresponding to the  r  

and  b  of the token bucket shown in  Figure 7.17 , respectively, while  tokens  

represents the number of tokens already accumulated in the bucket. Notably, in 

the structure  tbf_sched_data , the unit of the token bucket size is time in 

μs. That is, given the transmitted rate  R_tab ,  buffer  represents the maximum 

time permitted to transmit packets. Also,  token  represents the actual period 

permitted to transmit packets.  

  Algorithm Implementations 
 In the original design of token bucket, when the amount of accumulated tokens 

is larger than the packet size in the head of the queue, packets are permitted to 

be sent at a  peak rate,  where the peak rate is usually equal to the link speed. 

However, since some applications might need to limit the peak rate to a specific 

value, TC provides a second set of token buckets  (P_tab, mtu, ptokens)  

to support this requirement. These two token bucket mechanisms ensure that the 

traffic will conform to the requirement with mean rate =  R  and maximum burst 

period =  buffer  with peak rate =  P,  where  R  and  P  are indicated in structure 

 R_tab  and  P_tab , respectively. 

  Figure 7.18  shows the flowchart of  enqueue() in  sch_tbf.c . First, 

the function checks whether the packet length is smaller than the maximum 

allowed size of the queue. Then, the packet will be inserted into the queue 

if the queue is not full. Compared to  enqueue() ,  dequeue()  is more 

complicated because it has to maintain the variables of the token bucket, as 

shown in  Figure 7.19 . 

 The function first calculates the amount of tokens accumulated after the 

last checking time  t_c  and saves the amount in  toks . Surely, the accumu-

lation is limited to the maximum value of the buffer. Then, if the peak rate 

lin76248_ch07_546-589.indd   572lin76248_ch07_546-589.indd   572 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 573

is given, it estimates the residual time permitted to transmit packets if the 

current packet is sent out at the peak rate  P  and saves the estimation in  ptoks . 

Similarly, it estimates the residual time if the packet is sent out at the mean 

rate  R  and saves it back to  toks . Next, if both residual times estimated are 

larger than 0, the packet is allowed to be sent out. Otherwise, the packet will 

be inserted back to the head of its corresponding queue to wait for its next op-

portunity for transmission.    

  Exercises 
 As mentioned in the beginning of the data structure, you can find another imple-

mentation of token bucket in  act_police.c . Explain how the token bucket is 

implemented for that policer.  

   FIGURE 7.18 The flowchart of the function  enqueue()  in  scf _ tbf.c . 

Get a packet from
sk_buff

skb->len >
q->max_size

qdisc_enqueue(skb, q->qdisc)

Y

N

Drop
Full

   FIGURE 7.19 The flowchart of the function  dequeue()  of  sch _ tbf.c . 

Is the peak
rate set?

Get one packet
from skb queue

Calculate the accumulated
tokens toks after the last query

toks = min(t_c-now,buffer)

Estimate the admitted tx time
ptoks given the pkt is sent out

ptoks = ptokens + toks
– (len(pkt)/P)

Both ptoks
and toks >= 0

Reinsert the pkt into the
head of the skb queue

Estimate the admitted tx time
given the pkt is sent out

toks = tokens + toks
– (len(pkt)/R)

Admitted the packet to be
txed and update the value of

tbf_sched

Y

N

Y

N

lin76248_ch07_546-589.indd   573lin76248_ch07_546-589.indd   573 24/12/10   4:25 PM24/12/10   4:25 PM



574 Computer Networks: An Open Source Approach

  7.3.4 Packet Scheduling 
 There are many types of scheduling algorithms proposed to allocate bandwidth in 

different styles. Among them, the  fair-queuing  type is the most famous and widely 

studied one for packet scheduling. It ensures all flows get their desired bandwidth 

and guarantees the  worst-case delay bound  received by packets. Besides, if a flow 

does not use up its allocated bandwidth, the bandwidth can be proportionally and 

 fairly  shared among other busy flows. We can further categorize this type of algo-

rithm into two classes: round robin based and sorted based. 

  Round Robin Based 

 The algorithms in this class are heuristic. The most famous one is the  weighted round 
robin (WRR)  scheduler. In WRR, each active flow can send out a particular number 

of packets in one round. The number of packets sent by one flow corresponds to the 

value of its weight. For example, if the weights for two flows are 1 and 2, then the 

number of packets sent by the two flows in one round could be 100 and 200, respec-

tively. WRR is simple, but it performs well  only  in a network where all packets are 

 equal in length  because WRR does not consider the size of packets in scheduling. A 

flow with a small weight may get more data sent if the size of all its packets is larger 

than that of a flow with a large weight. 

 An improved version,  deficit round robin (DRR),  was proposed by M. Shreedhar 

and G. Varghese in 1996 for the network with packets of different sizes, e.g., the In-

ternet. Instead of the number of packets allowed to be sent in one round, DRR limits 

each flow by the number of bytes sent in one round. As illustrated in  Figure 7.20 , 

a deficit counter is maintained for each flow to keep track of the allowed amount 

of data in this round. Whenever a flow gets its turn, the counter is added by a fixed 

 quantum  proportional to the weight of the flow. Then, packets can be sent out from 

the flow queue as the counter is decremented by the size of these packets until the 

residual amount in the counter is not enough for the next packet. Then, the schedule 

would proceed to serve the next flow. In principle, the residual amount in the counter 

of a flow would be preserved for its next round. However, if the flow has no packets 

pending in the queue, its counter would be reset to zero until its next packet arrival. 

Also, the flow would be removed from the round-robin list temporarily. Since the 

   FIGURE 7.20 An illustration of the DRR algorithm. 

Flow queue 1

Flow queue N

100

200

300

400

200200200200

200200

200400200

200200

300
S

Credit

200

lin76248_ch07_546-589.indd   574lin76248_ch07_546-589.indd   574 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 575

round robin list becomes short due to the removal, active flows can be served more 

frequently and can send out more packets within a cycle to share the unused band-

width of inactive flows.  
 The four parts of  Figure 7.21  show the changes from  Figure 7.20  in the next 

four rounds. As shown in  Figure 7.21(a) , after the operation of the first round at least 

one packet is released from each flow queue except Flow 1 since the value in the 

counter of Flow 1 is not enough to release its first packet (100 < 200). On the other 

hand, 100 credits (300 – 200) are left in the counter of Flow 3, which is reserved for 

the next round since the third flow queue is non-empty. Next, in the second round, 

the four counters are added by 100, 200, 300, and 400, whose values thus become 

200, 200, 400, and 400, respectively, and now are enough to release the first packet 

of Flows 1, 2, and 3. This results in  Figure 7.21(b) . Note that the counter value of 

Flow 4, 400, is reset to 0 because the fourth flow queue is empty. Then, in the third 

round shown in  Figure 7.21(c) , while the counter of the fourth flow is kept at 0 due 

to the empty queue, the counters of the first three flows are added again, but only 

one packet is released from Flow 3. The left credits for the non-empty flow queues 

would be reserved for the fourth round. Finally, after the credit update of the fourth 

round, the counters of Flows 1 and 2 turn to 200 and 400, respectively, which are thus 

enough for each flow to release one packet, as shown  Figure 7.21(d) . Besides, since 

no packets are queued in Flows 2 and 3, the residual credits of Flows 2 and 3 would 

be discarded, just like Flow 4.  
 This type of scheduler is simple in its concept and implementation, but it only 

ensures each flow getting the desired bandwidth  over a long timescale.  As the number 

of flows becomes large, a flow might wait a long time for its turn to send out packets. 

If packets of the flow arrive at a constant bit rate, long waiting time might cause the 

flow a large delay  jitter,  which means that some packets might be sent out quickly and 

others might be served slowly, depending on their arrival time to the queue.  

   FIGURE 7.21 An operating case of DRR. 

(a) Round 1

(b) Round 2

(c) Round 3

(d) Round 4

Flow queue 1 Credit

Credit

100

0

100

0

200200200200

200
200

200

400200

200200
300

Flow queue N

F2F3F4F4

0

0

0

0

200200200

200

300

Flow queue 1

Flow queue N

200200

F1F2F3

400

200

200

Flow queue N

Flow queue 1 Credit

100

200

100

0

200200200

200

300

Flow queue 1 Credit

0

0

0

0

200200

Flow queue N

200

F1F2F3

300200

200

F3

S

S

S

S

lin76248_ch07_546-589.indd   575lin76248_ch07_546-589.indd   575 24/12/10   4:25 PM24/12/10   4:25 PM



576 Computer Networks: An Open Source Approach

  Sorted Based 

 The concept of the sorted-based scheduler is very different from that of the round-

robin-based scheduler. Before describing it, we first introduce a conceptual scheduler 

that is applied only to the  fluid-model  network architecture. Assume there are three 

flows fairly sharing a 3 Mbps link. In the fluid-model architecture, the scheduler 

is able to divide the link into three  virtual  links. Each flow can send out packets at 

1 Mbps continuously over its virtual link without any delay caused by other flows. 

In addition, when one flow has no packets to send, the residual bandwidth can be 

proportionally shared by other flows. In other words, the other two flows could each 

use 1.5 Mbps. Such ideal scheduling is called  generalized processor sharing (GPS),  
and it is impossible to implement because an output link can transmit only one packet 

at a time. The reality belongs to the packetized model.  Figure 7.22  illustrates the 

difference between the fluid model and the packetized model. Packet transmissions 

from different flows proceed  simultaneously  in the fluid model but are  interleaved  in 

the packetized model.  
 Although the optimal scheduler cannot be realized, we can calculate the order in 

which the packets are sent out in the fluid model based on the size and arrival time of 

packets. Then, a scheduler of the packetized model is considered ideal if it can send 

out packets in the same order of  transmission completion  as the optimal scheduler 

of the fluid model. The idea is easy, but it is nontrivial to achieve the transmission 

completion order as in the fluid model. There are many proposed algorithms, but 

their design can be boiled down to a trade-off between exact bandwidth sharing and 

implementation complexity. Below we detail one version of sorted-based schedulers, 

 packetized GPS (PGPS),  proposed by A.K. Parekh and R.G. Gallager in 1993, to 

illustrate the operation of such schedulers.  

  Packetized GPS 

 PGPS is also called  weighted fair queuing (WFQ).  The default operation is that each 

packet gets a  virtual finish timestamp (VFT)  as it arrives at the flow queue, and the 

scheduler selects the packet with the  smallest  VFT among all flow queues to send 

out. The computation of VFT is related to the arrival  virtual system time (VST),  the 

size of the packet, and the reserved bandwidth of the flow the packet belongs to. 

Since the VFT of packets determine their transmission order, the VFT computation is 

the key to determining whether the packetized model scheduler effectively emulates 

the fluid model scheduler. 

   FIGURE 7.22 Packet transmission order in the fluid and packetized models. 

A1 A2 A3

B1 B2

Flow A 

Flow B Fluid model 

Packetized model 

C1 C2 C3Flow C 

A1 B1 A2 B2 C3 C1 C2 A3 

lin76248_ch07_546-589.indd   576lin76248_ch07_546-589.indd   576 24/12/10   4:25 PM24/12/10   4:25 PM



 Chapter 7 Internet QoS 577

 According to the algorithm, if the flow is active, which means there are packets 

pending in its flow queue, the VFT of the next arrival packet is equal to

   F F
L

i
k

i
k i

k

i

= +−1

f     

 where  F  i  
k   is the VFT of the  k  th  packet of flow  i,   L i  

k   is the length of the  k  th  packet of 

flow  i,  and  fi    is the allocated bandwidth. Theoretically, if the first packet of each flow 

arrives at the same time and all flows are backlogged forever, according to the pre-

ceding equation, it is easy to get the same transmission completion order of packets 

as in the fluid model scheduler. Unfortunately, it is a rare case. In the real case, a flow 

might become idle and later busy again. Thus, it is necessary to consider how to set 

the VFT for the first packet of an active flow. In general, the VFT of the first packet 

arrival is calculated by

   F V t
L

i
k i

k

i

= +( )
f

     

 where  V(t)  is the VST which is a linear function of real time  t  in each of the time 

intervals split by the events of packets arriving to or departing from any empty queue. 

Assume the whole time is split into  n  intervals.  T i   and  S i   denote the starting actual 

time and virtual time of the  i  th  interval, respectively, where  i  = 1… n.  Then,  V ( t ) in the 

 i  th  interval can be expressed as

   V t S t T Ki i i( ) ( )= + −   , where 

   S S T T Ki i i i i= + −− − −1 1 1( ) , S0 = 0, T0 = T, Ki i
i A

=
⎛

⎝⎜
⎞

⎠⎟∈

−

∑ f
1

,   

 and  A  is the set of the active flows during the  i  th  interval. 

 Again, based on the case shown in  Figure 7.20 ,  Figure 7.23  shows the packet 

scheduling results when WFQ is used, where the weights of the four flows are 0.1, 

0.2, 0.3, and 0.4, respectively, whose proportions are just like that of their quantum 

given in  Figure 7.20 . Assume all packets arrive at the same time, meaning their 

 V(t)  = 0. Also, besides displaying the length of packets, each packet is tagged with 

an id in  Figure 7.23(a) . Then,  Figure 7.23(b)  shows the VFT of each packet, calcu-

lated based on the formula given above. For example, the VFT of the first packet 

in Flow queue 2 can be obtained by adding  V (0) to the quotient of its length 200 and 

its flow weight 0.2, which thus is equal to 1000. Then, the VFT of its next packet, the 

packet of id 6, would be equal to  V (0) + (200/0.2) + (200/0.2), or 2000. Finally, after 

getting the VFTs of all packets, it is easy to get the releasing order of packets under 

the WFQ scheduler, as shown in  Figure 7.23(c) .  
 Actually, the definition of  V ( t ) is the key issue to designing such a sorted-based 

scheduler. While it takes too much effort to compute a  V ( t ) that can ensure the trans-

mission completion order of packets in PGPS exactly equal to that in GPS, an easy-

to-compute  V ( t ) might cause a newly active flow to get a small or large VFT and thus 

to share more or less bandwidth than other active flows, which not only degrades 

the fairness of bandwidth allocation but also affects the scheduler’s guarantee on the 

worst-case delay.    

lin76248_ch07_546-589.indd   577lin76248_ch07_546-589.indd   577 24/12/10   4:26 PM24/12/10   4:26 PM



578 Computer Networks: An Open Source Approach

   FIGURE 7.23 An operating case of WFQ. 

12,2008,2005,20013,2001,2006,2009,40010,2007,3002,200 11,200

(c) 

S

1,2002,2003,2004,200

6,200

9,40010,200

7,300

Flow queue 1 (f1 = 0.1)

Flow queue 1 (f1 = 0.1)

5,200

8,200

13,200 12,200

2000400060008000

2000

20002666

3500 1000

666

1000 500

F4F3F2F4F1F2F3F3F2F1

Output queue

3,2004,200

F1F1

11,200

3332

id packet length

VFT

id packet length

Flow queue 2 (f1 = 0.2)

Flow queue 2 (f1 = 0.2)

Flow queue 4 (f1 = 0.4)

Flow queue 4 (f1 = 0.4)

Flow queue 3 (f1 = 0.3)

Flow queue 3 (f1 = 0.3)

(b) 

(a) 

S

 Open Source Implementation 7.5: Packet 
Scheduling 

  Overview 
 Many algorithms have been proposed to handle the scheduling issue. In fact, it 

is a long list even if we consider only the fair-queuing schedulers. The reason 

for so many algorithms is the difficulty of scheduling packets accurately and 

efficiently. Explained below is the implementation of the sorted-based PGPS 

algorithm, which is the ancestor of many existing algorithms but the most dif-

ficult one to implement.  

  Data Structures 
 The PGPS algorithm is implemented in the  csz_qdisc_ops  module of  net/
sched/sch_csz.c . The module allocates a structure  csz_flow  for each 

flow to keep its information. There are two variables,   start   and   finish  , 
keeping the minimal and maximal finish timestamp of packets in its flow queue. 

In principle, the head packet of a flow queue has the smallest finish timestamp 

and the tail packet has the largest timestamp. Besides the structure  csz_flow , 

the  csz_qdisc_ops  module maintains two lists,  s  and  f , to implement the 

lin76248_ch07_546-589.indd   578lin76248_ch07_546-589.indd   578 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 7 Internet QoS 579

PGPS scheduler. The item in the lists is the address that points to the structure 

csz_flow . Although both lists are used to link the active flows, the list  s
is ordered based on the variable  start  in the structure  csz_flow , where 

the  start  of each flow keeps the virtual finish timestamp (VFT) of the head 

packet in the flow queue. The list  s  thus helps  csz_dequeue()  to quickly 

pick up the next transmission packet from the proper flow queue since the 

head packet of the first flow queue in the list  s  must have the smallest VFT. On 

the other hand, the list  f  is ordered based on the variable  finish , where the 

finish  of each flow keeps the VFT of the tail packet in its queue. The list  f
is involved in the calculation of the virtual system time of PGPS, as introduced 

later along with the function  csz_update() .  

  Algorithm Implementations 
 Next we introduce the three major functions in the  csz_qdisc_ops  module 

and show their flowcharts. The function  csz_enqueue()  is the entry of the 

module and a flowchart is illustrated in  Figure 7.24 . For  a  packet arrival, the 

csz_enqueue()  first calculates its VFT. To calculate the VFT of the first 

packet of an active flow, a current virtual system time (VST) is necessary. Thus, 

the function  csz_update()  is invoked before the calculation. For the flow 

turning active, the  csz_enqueue()  needs to wake it up by inserting it into the 

list   s,   which gives the flow a chance to send packets again.  
 As illustrated in  Figure 7.25 , the function  csz_dequeue()  keeps on 

sending out the head packet of the flow queue pointed to by the first entry in 

the list  s.  Whenever the packet of a flow is sent out,  csz_dequeue()  shall 

   FIGURE 7.24 The flowchart of the function  csz _ enque() . 

csz_classify(): Get the flow id

csz_update(): Update VST

Check the len.
of flow queue

Drop the pkt
full

Calculated new VFT
based on the last VST

Is the flow active?
Calculated new VFT

based on the VST

csz_insert_finish():
Wake up the flow

csz_insert_start():
Wake up the flow

skb_queue_tail()

Y

N

Continued

lin76248_ch07_546-589.indd   579lin76248_ch07_546-589.indd   579 24/12/10   4:26 PM24/12/10   4:26 PM



580 Computer Networks: An Open Source Approach

call  csz_insert_start()  to re-insert the flow into the list  s  again to keep 

its chance in the next round if the flow queue is not empty. For the flow whose 

queue is empty, it would be removed from the list   s   to avoid wasting system 

resources. 

 The third function,  csz_update(),  plays a key role in the  csz_qdisc_
ops  module, as plotted in  Figure 7.23 . It is in charge of calculating the VST. 

Based on the description in PGPS, a VST is calculated whenever a packet arrives 

and departs. However, by the maintenance of list  f , the  csz_qdisc_ops
recalculates the VST only when a packet arrives. It is maintained by the function 

csz_update() , as mentioned previously. First, the  csz_update()  records 

the time elapsed from the last invocation time to a variable delay. Second, it 

assumes that all flows are still active since last invocation and calculates the 

current VST. Then the VST is compared with the variable finish of the first entry 

in the list  f,  denoted as F. If the VST is smaller than F, the flow must be inactive. 

The  csz_update()  will remove it from the list  f  and calculate the VST at 

the time when the flow becomes inactive, i.e., the time that the inactive flow sent 

out the last packet. The delay will also be corrected to the time elapsed from the 

flow becoming inactive. Next, the  csz_update()  goes back to the step with 

double-borders in  Figure 7.26  until the correct VST is obtained and all inactive 

flows are removed from the list  f .    

  Exercises 
1. Compared to the complicated PGPS, DRR is much easier both in concept 

and implementation. You can find its implementation in  sch_drr.c . 

Please read the code and explain how this simple yet useful algorithm is 

implemented.  

   FIGURE 7.25 The flowchart of the function  csz _ deque() . 

Get the csz_flow where
the head packet

has the smallest VFT

skb_dequeue(): Get the
head packet of the flow

Recalculate the min
VFT in the flow

If the flow is non-empty

csz_insert_start()
Return the packet
for sending out

Y

N

lin76248_ch07_546-589.indd   580lin76248_ch07_546-589.indd   580 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 7 Internet QoS 581

2. There are several implementations of scheduling algorithms in the folder 

sched . For each implementation, can you find how it differs from others? 

Do all of them belong to the fair-queuing scheduling?    

   FIGURE 7.26 The flowchart of the function  csz _ update() . 

Set delay to the time elapsed
from last arrival packet

If any active flow exists

Get the minimum VFT, F,
from the head flow 

of the list f

Assume all flows are active and
calculate the current VST

VST<F

All residual flows are active
and we get the correct F.

The first flow in the list f
is inactive

Calculate VST at the time that
the flow became inactive and

adjust delay.

Y

N

  7.3.5 Packet Discarding 
 Besides the scheduling algorithms handling multiple queues, the packet discarding 

mechanism for a  single  queue is necessary in the QoS architecture, where multiple 

flows might pump packets into one single-class queue to share allocated bandwidth 

for the queue. Such a discarding mechanism might stop the misbehaving flows from 

pumping more packets into a queue to overuse its bandwidth. Two types of packet 

discarding mechanisms are introduced as follows. 

  Tail Drop 

 Tail drop is the simplest packet discard policy and is normally used with FIFO 

queuing. This policy drops new packet arrivals when there is no more space left 

in the queue, as shown in  Figure 7.27(a) . Packet arrivals will be dropped until 

the queue space becomes available. Because tail drop is the default policy of 

FIFO queuing, some problems that often appear in FIFO queuing would also 

occur in tail drop. For example, as a bursty source shares a FIFO queue with 

other sources having a smooth rate, the bursty one might occupy all available 

queue space for a short period, which forces new packet arrivals of other sources 

to be dropped. The problem could be avoided if we divide the single queue into 

multiple queues. That is, each traffic source owns its length-limited queue. 

lin76248_ch07_546-589.indd   581lin76248_ch07_546-589.indd   581 24/12/10   4:26 PM24/12/10   4:26 PM



582 Computer Networks: An Open Source Approach

However, this means some packets might be dropped even when the router still 

has queue space.  
 Thus, the current implementation in many routers is  longest queue tail drop 

(LQTD).  All service queues share a  common  memory pool, and the packet located 

at the tail of the  longest  queue will be dropped first when there is no more space to 

queue a new packet arrival. This refinement makes the service classes whose arrival 

rate exceeds their allocated service rate have a high dropping probability, while the 

service classes operating within their allocated rate would experience a low dropping 

probability since they usually have a shorter queue.  

  Early Drop 

 Although LQTD can efficiently prevent any flow from over-occupying the 

queue space, it needs packet classification to identify which flow a packet be-

longs to, which is burdensome if there are many flows passing the router. Thus, 

if using one queue for all flows is preferred, a possible way of preventing re-

source abuse is to drop new packet arrivals with some  probability  that the queue 

is going to be full, as shown in  Figure 7.27(b) . Such an idea is called  early drop.  
The policy is expected to warn traffic sources early that the queue size would be 

insufficient so that these sources might reduce their rate to prevent packet loss. 

Such a policy can avoid dropping  consecutive  packets in a short time, as can 

occur with the tail drop policy. Consecutive dropping often heavily degrades the 

throughput of TCP flows. 

 The key issue in designing such a policy is to decide whether the queue space 

is going to be full. A  threshold  on the queue length might be the most heuristic 

way. Once the queue length is longer than the threshold, new packet arrivals will be 

discarded with a probability. However, due to the large variation of queue length, a 

suddenly accumulated long queue might not always imply an upcoming event of full 

queue. The consequence of early drop might result in a total of more dropped packets 

than in the tail drop policy under the same packet arrivals, though consecutive drop-

ping is avoided by early drop.        

   FIGURE 7.27 Illustrations for (a) Tail Drop and (b) Early Drop. 

(a) Tail Drop (the natural method) : Drop packet as queue is full 

Queue Drop  

(b) Early Drop : To early drop packets before queue is full 

Queue 

Drop

Drop
with P

Queue  

lin76248_ch07_546-589.indd   582lin76248_ch07_546-589.indd   582 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 7 Internet QoS 583

 Open Source Implementation 7.6: Random 
Early Detection (RED) 

  Overview 
 Just like the situation of the scheduling algorithms, there are many queuing 

management (QM) algorithms proposed to determine how to drop packets in 

order to avoid the congestion of a queue and the degradation in TCP throughput. 

Among them, we introduce an early-drop style of the QM algorithms,  random 
early detection  (RED). We introduce RED here because it is the most well 

known early-drop QM algorithm.  

  Data Structures 
 The implementation of the RED algorithm can be found in  net/sched/
sch_red.c . The structure  red_sched_data  keeps the necessary parameters 

to operate the algorithm, e.g.,  qave ,  qth_max , and  qth_min . RED relies on 

the average queue length  qave  to predict the upcoming of a full queue and avoid 

unnecessary packet dropping. When  qave  is smaller than the minimum threshold 

 qth_min , all arrivals can be inserted into the queue. Then, when  qave  is larger 

than  qth_min , the arrival is dropped based on a probability Pb calculated as

   Pb _P
qave qth_max qth_min

qth_max qt
= ⋅ −

−
max

(min{ , } )

( hh_min)
,    

 where  max_P  is the maximum probability of dropping packets when  qave  >= 

 qth_max , whose value, however, is suggested to be 0.1 or 0.2, instead of 1. 

Setting  max_P  to 1 would drop all arrival packets, which is unnecessary since 

there is still space to  queue  packets even when qave is longer than  qth_max .  

  Algorithm Implementations 
 Here we examine the code segment that determines whether to enqueue or drop 

(mark) a packet. 

  1 if (++q->qcount) { 
 2 if (((q->qave - q->qth_min)>>q->Wlog)*q->qcount < q->qR) 
 3 goto enqueue; 
 4 q->qcount = 0; 
 5 q->qR = net_random()&q->Rmask; 
 6 sch->stats.overlimits++; 
 7 goto mark;  

 In the code segment, line 2 judges whether to enqueue an arrival or not. And  qR  

is an integer random variable between 0 and  Rmask , where  Rmask  = 2  Plog  . In the 

implementation, to ensure that all arithmetic uses only shift operations,  qave , 

 qth_max , and  qth_min  are fixed floating-point numbers with the fixed floating 

Continued

lin76248_ch07_546-589.indd   583lin76248_ch07_546-589.indd   583 24/12/10   4:26 PM24/12/10   4:26 PM



584 Computer Networks: An Open Source Approach

point stored at  Wlog , i.e., their actual values are equal to their present value di-

vided by 2 Wlog . Obviously, line 2 is much different from the probabilistic equation 

shown above. To figure out how line 2 implements the equation, we first ignore the 

variable  qcount . Next, since  max_P  in the implementation is carefully chosen as

  
qth_max qth_min

Wlog Plog

−
+2

,   

 we can rewrite the equation for  Pb  as

  Pb
qave qth_min

Wlog Plog
= −

+
( )

2
   

 Then, the packet would be enqueued if    Pb
q qR

Plog
< − >

2
 , where the right side of the 

inequality is a random variable between 0 and 1 based on the definition of  qR  writ-

ten in line 5. Finally, by multiplying both sides of the inequality by 2  Plog  , we get the 

implementation of line 2. Here we come back to explain the purpose of  qcount . 

The value of  qcount  at line 2 is 0 when  qave  first falls in the range between the 

two thresholds and is kept at 1 until  qave  leaves the range. Thus, it ensures that the 

first packet to arrive after the  qave  falls into the range can be inserted. 

 Another key design in RED is the calculation of the average queue length 

 qave , which is an  exponential  average of the real queue length, i.e.,

     qave = qave ∗(1 − w) + sch− > stats.back log ∗ w, 

 where  sch->stats.backlog  is the current queue length. The  w  is a weight of 

the old  qave  in calculating the new one and is set to 1/(2 Wlog ). Then, since  sch-
>stats.backlog  is an integer, by transferring it into a number with a fixed float-

ing point at  Wlog  as  qave , the preceding equation is implemented as    q->qave 
= q->qave - (q->qave >> q->Wlog) + sch->stats.backlog.   

  Example 
 Next,  Figure 7.28  gives an example to illustrate the operation of RED. Let   qth_
min   = 1,   qth_max   = 4,   max_P   = 0.1 and   w   = 1. Such a   w   implies that   qave   is 

always equal to the present queue length. Then, as shown in  Figure 7.28(a) , since 

no packets are in the queue,   qave   = 0 and the dropping probability   Pb   is set at 0. 

However, after packets 1 and 2 are inserted as shown in  Figure 7.28(b) ,   qave   is in-

creased to 2, leading   Pb   to be adjusted to 0.033. In this situation some packets may 

be discarded, e.g., packet 3. Finally, as shown in  Figure 7.28(c) , more packets are 

inserted, increasing   qave   over the bound of   qth_max   of 4, and thus a higher   Pb  , 
0.1, is applied. That is, more packets would be discarded, e.g., packets 8 and 10.   

  Exercises 
 From  /net/sched/  you can find a variant of RED, named generic RED 

(GRED), implemented in  sch_gred.c . Figure out how it works and how it 

differs from RED.  

lin76248_ch07_546-589.indd   584lin76248_ch07_546-589.indd   584 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 7 Internet QoS 585

 Principle in Action: QoS Components in Daily 
Usage Today 

 Though IntServ and DiffServ were never deployed on a global scale to achieve 

the QoS-enabled Internet, some QoS components have a daily presence in our In-

ternet on a  local  scale. None of them are  control-plane  components, which would 

require the RSVP protocol that tends to change the stateless nature of the Internet. 

 Here let us review real examples. Flow identification or classification 

is heavily used in firewalls for access control, for security rather than QoS 

purposes, where certain IP subnets or port numbers are banned. Token bucket is 

used in Ethernet switches to limit the rate well below the link capacity on certain 

switch ports. Packet scheduling is commonly applied to access links to enforce 

bandwidth management on some applications, especially P2P, which consumes 

a lot of bandwidth. Packet discarding or queue management is exercised in 

many backbone routers to alleviate congestion and avoid consecutive packet 

loss. In conclusion, though IntServ and DiffServ might be history, many of their 

technology components have prevailed. 

qth_max=4

Drop

Drop
with P

Queue
1

qth_min=1

Drop
with P

Queue

Queue

2345

12

3

Drop  

5

(a) qave = 0 and then Pb = 0 

(b) qave = 2; then Pb = 0.1*(2–1)/(4–1) = 0.033

67

Drop
with P

24

8

Drop  

511

(c) qave = 6; then Pb = 0.1*(4–1)/(4–1) = 0.1

1213 67

10

9

qth_max=4 qth_min=1 

qth_max=4 qth_min=1

4

   FIGURE 7.28 An operating case of RED. 

lin76248_ch07_546-589.indd   585lin76248_ch07_546-589.indd   585 24/12/10   4:26 PM24/12/10   4:26 PM



586 Computer Networks: An Open Source Approach

  COMMON PITFALLS 

   Shaping and Scheduling 
 Although both operations would regulate the throughput of 

a flow, their purposes are different. The goal of shaping is 

to  change  or  limit  the throughput of a flow on its mean or 

variance to make sure the throughput from the shaper con-

forms to the profile of the flow. Its operation is on one flow 

only. However, scheduling is usually for a group of flows 

competing for a link with limited bandwidth. Scheduling is 

in charge of allocating the bandwidth for these flows based 

on a predefined policy, e.g., equally or proportionally 

sharing. How about using a bunch of shapers to replace a 

scheduler? It is really a bad idea. First, operating a bunch 

of shapers costs more in hardware resources than a sched-

uler. Second, since there is no communication between 

these shapers, it is hard to allocate the  unused  bandwidth 

in real time to those flows that need more.  

  WRR and WFQ 
 It is important to re-emphasize the difference be-

tween weighted round robin (WRR) and weighted 

fair queuing (WFQ) since they are two representative 

scheduling algorithms. WRR is a simple way to schedule 

packets for a group of flows. Each flow queue is assigned 

a weight, and the scheduler simply serves these flows in 

 round-robin  fashion. Then, whenever a flow is served, 

the number of packets permitted to be sent out would be 

a multiple of its weight. Although the WRR concept and 

implementation are simple, each flow might wait a long 

time to get served when the number of flows increases, 

particularly if packets of the flow happen to miss their 

turn. WFQ is designed to avoid just this problem. It 

serves flow queues in a  dynamic  order, sorted by the 

timestamp of the head packet of each flow. Therefore, 

at the moment that a packet should be sent out, WFQ 

would serve it and then change to another flow. Since 

no missing case would happen under WFQ, WFQ can 

guarantee shorter  worst-case delay bound  and better 

 fairness  than DRR.    

  This chapter began by introducing six key compo-

nents involved in building a QoS network. The three 

control-plane components,  signal protocol,   QoS 
routing,  and  admission control,  take charge of the 

negotiation of resources among routers, the determi-

nation of a QoS-guaranteed path, and the control of 

a network loading, respectively. The two data-plane 

components,  policer  and  scheduler,  control the for-

warding time and order of received packets, accord-

ing to the third data-plane component,  classifier,  
which classifies packets into different queues. 

 With these complements as building blocks, 

IETF proposed two Internet QoS architectures, 

IntServ and DiffServ, to build a QoS-enabled Inter-

net. The  IntServ  is an expensive solution, although 

it can provide a virtual private network with the 

bandwidth and delay guarantee. Conversely, the 

Diff Serv is a practical architecture but provides 

only differential service for different levels of users. 

After presenting the architectures of QoS-enabled 

IP networks, we detailed the techniques to construct 

the components of a QoS-enabled network, which 

have more research issues than the architectures. 

Although IntServ and DiffServ failed to be deployed, 

many QoS components have prevailed in our daily 

usage, though on a rather limited scale.   

   7.4 SUMMARY 

  FURTHER READINGS 

   QoS Architectures and Protocols 
 Among the readings cited here, the first is a specialized book 

to introduce QoS and the second is a good tutorial paper 

on IP QoS topics. The third describes the general idea and 

architecture of IntServ, while the following two define its 

guaranteed and control-load services, respectively. The sixth 

paper is a useful tutorial paper for RSVP. The seventh de-

fines the architecture of DiffServ, and from the seventh you 

can learn how the ToS field of the IPv4 header is reclaimed 

lin76248_ch07_546-589.indd   586lin76248_ch07_546-589.indd   586 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 7 Internet QoS 587

in DiffServ. The following two RFCs describe two types of 

forwarding behaviors in DiffServ. Finally, the last two are 

related to the QoS deployment in wireless and Web services, 

respectively. 

   • Z. Wang,  Internet QoS: Architectures and Mechanisms 
for Quality of Service,  Morgan Kaufmann Publishers, 

2001.  

  • X. Xiao L.M. Ni, “Internet QoS: A Big Picture,”  IEEE 
Network,  Vol. 13, Issue 2, pp. 8–18, Mar. 1999.  

  • R. Braden, D. Clark, and S. Shenker, “Integrated Ser-

vices in the Internet Architecture: An Overview,” RFC 

1633, June 1994.  

  • S. Shenker, C. Partridge, and R. Guerin, “Specification of 

Guaranteed Quality of Service,” RFC 2212, Sept. 1997.  

  • J. Wroclawski, “Specification of the Controlled-Load 

Network Element Service,” RFC 2211, Sept. 1997.  

  • L. Zhang, S. Deering, D. Estrin, S. Shenker, and 

D. Zappala, “RSVP: A New Resource Reservation 

Protocol,”  IEEE Network,  Vol. 7, Issue 5, Sept. 1993.  

  • S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, 

and W. Weiss, “An Architecture for Differentiated Ser-

vices,” RFC 2475, Dec. 1998.  

  • K. Nichols, S. Blake, F. Baker, and D. Black, “Defini-

tion of the Differentiated Services Field (DS Field) in 

the IPv4 and IPv6 Headers,” RFC 2474, Dec. 1998.  

  • J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, 

“Assured Forwarding PHB Group,” RFC 2597, June 

1999.  

  • B. Davie et al., “An Expedited Forwarding PHB,” RFC 

3246, Mar. 2002.  

  • H. Zhu, M. Li, I. Chlamtac, and B. Prabhakaran, 

“A Survey of Quality of Service in IEEE 802.11 Net-

works,”  IEEE Wireless Communications,  Vol. 11, No. 

4, pp. 6–14, Aug. 2004.  

  • R. Pandey, J. Fritz Barnes, and R. Fritz Barnes, “Sup-

porting Quality of Service in HTTP Servers,”  Proceed-
ings of ACM Symposium on Principles of Distributed 
Computing,  pp. 247–256, 1998.    

  QOS COMPONENTS 

 Following is a list of classic papers about the QoS com-

ponents. The first three are for admission control, and the 

fourth is for packet classification. The next five papers are 

on scheduling and the final two are on RED and another 

AQM algorithm. 

   • R. Guerin, H. Ahmadi, and M. Naghshineh, “Equiva-

lent Capacity and Its Application to Bandwidth Al-

location in High-Speed Networks,”  IEEE Journal on 
Selected Areas in Communications,  Vol. 9, No. 7, pp. 

968–981, Sept. 1991.  

  • S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang, 

“A Measurement-Based Admission Control Algo-

rithm for Integrated Service Packet Networks,”  IEEE 
Transactions on Networking,  Vol. 5, Issue 1, pp. 56–

70, Feb. 1997.  

  • J. Qiu and E. W. Knightly, “Measurement-Based Ad-

mission Control with Aggregate Traffic,”  IEEE/ACM 
Transactions on Networking,  Vol. 9, Issue 2, pp. 199–

210, Apr. 2001.  

  • T. V. Lakshman and D. Stiliadis, “High-Speed Policy-

Based Packet Forwarding Using Efficient Multi-

Dimensional Range Matching,”  ACM SIGCOMM,  
pp. 203–214, Oct. 1998.  

  • A. K. Parekh and R.G. Gallager, “A Generalized Pro-

cessor Sharing Approach to Flow Control in Integrated 

Services Networks: The Single Node Case,”  IEEE/

ACM Transactions on Networking,  Vol. 1, Issue 3, 

pp. 344–357, June 1993.  

  • M. Shreedhar and G. Varghese, “Efficient Fair Queueing 

Using Deficit Round Robin,”  IEEE/ACM Transactions 
on Networking,  Vol. 4, Issue 3, pp. 375–385, June 1996.  

  • D. Stiliadis and A. Varma, “Latency-Rate Servers: 

A General Model for Analysis of Traffic Scheduling 

Algorithms,”  IEEE/ACM Transactions on Networking,  
Vol. 6, Issue 5, pp. 611–624, Oct. 1998.  

  • J. C. R. Bennett and H. Zhang, “WF2Q: Worst-Case 

Fair Weighted Fair Queueing,” in  Proceedings of the 
IEEE INFOCOM,  Mar. 1996.  

  • J. Golestani, “A Self-Clocked Fair Queueing Scheme 

for Broadband Applications,” in  Proceedings of the 
IEEE INFOCOM,  June 1994.  

  • S. Floyd and V. Jacobson, “Random Early Detection 

Gateways for Congestion Avoidance,”  IEEE/ACM Trans-
actions on Networking,  Vol. 1, Issue 4, pp. 397–413, 

Aug. 1993.  

  • S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM: 

Active Queue Management,”  IEEE Network,  Vol. 5, 

Issue 3, pp. 48–53, May/June 2001.    

  Linux Traffic Control Modules 
 Here are two Web pages on how to set up and configure the 

traffic control modules in Linux. 

lin76248_ch07_546-589.indd   587lin76248_ch07_546-589.indd   587 24/12/10   4:26 PM24/12/10   4:26 PM



588 Computer Networks: An Open Source Approach

     1. What control-plane and data-plane mechanisms are 

needed to provide a QoS guarantee in the Internet? 

   Answer: 

   Control plane: signaling protocol, admission control, 

QoS routing 

   Data plane: classifi cation, policing, scheduling  

   2. WFQ (weighted fair queuing) vs. WRR (weighted round 

robin)? (Compare their complexity and scalability.) 

   Answer: 

   Complexity: WFQ (O(log n)) > WRR (O(1)) 

   Scalability: WRR > WFQ  

   3. Why is RED (Random Early Discard) better than FIFO 

(First-In First-Out), especially for real-time traffi c? 

   Answer: 

   RED avoids bursty dropping, i.e., contiguous packet 

losses, that would happen to FIFO. Real-time traffi c 

usually has redundant and layered coding where data 

can be recovered as long as the loss is scattered, i.e., 

noncontiguous.  

   4. IntServ vs. DiffServ? (Compare their QoS granular-

ity, complexity at edge routers, complexity at core 

routers, and scalability.) 

   Answer: 

   QoS granularity: IntServ (per-fl ow) > DiffServ 

(per-class) 

   Complexity at edge routers: DiffServ > = IntServ 

   Complexity at core routers: IntServ > DiffServ 

   Scalability: DiffServ > IntServ  

   5. What are the barriers to deploying IntServ? (List at 

least two barriers.) 

   Answer: 

   Scalability (per-fl ow QoS), stateful routers, QoS 

signaling by applications  

   6. What are the barriers to deploying DiffServ? (List at 

least two barriers.) 

   Answer: 

   Stateful edge routers, QoS signaling by applications, 

or bandwidth brokers     

  FREQUENTLY ASKED QUESTIONS 

   • Jason Boxman, “A Practical Guide to Linux Traf-

fic Control,” URL:  http://blog.edseek.com/~jasonb/

articles/traffic_shaping/ .  

  • Martin A. Brown, “Traffic Control HOWTO,” URL: 

 http://tldp.org/HOWTO/Traffic-Control-HOWTO/in-

dex.html .      

  EXERCISES 

   Hands-On Exercises 
    1. RSVP is a signaling protocol designed for end hosts 

to negotiate resource reservation with routers. Send 

RSVP requests from your Linux-based PC running 

the TC (Traffi c Control) module, and use  Wireshark  

to capture them. Then see whether you can under-

stand the meaning of the value in each fi eld of the 

request.  

   2. Assume there is a router connecting two links, A and 

B. Set up the router to measure the average through-

put (bytes/s) of the traffi c passing from A to B. The 

measurement should be reported on a per-minute 

basis. You are encouraged to show in real time the 

measurement in a chart to let the network administra-

tors remotely check it via the Web browser.  

   3. Follow up on Exercise 2 by setting up an admission 

controller at the router to monitor the establishment of 

TCP connections with TCP SYN requests passing from 

B to A. Then let the controller begin to fi lter out such 

requests when the average throughput from A to B, or 

B to A, approaches 80% of the bandwidth of link B.  

   4. As a follow-up to Exercise 3, instead of only fi ltering out 

the requests, could you emulate a TCP reject message at 

the router to inform the requester about the failure?  

   5. Set up the token bucket in your Linux system to regu-

late the maximum output rate of your network adaptor 

to a smaller value. Then observe the regulation effect 

by measuring the throughput of an FTP connection.  

   6. Assume you are an ISP and plan to provide a bandwidth 

management service for your business customers on 

their access links. One of your customers hopes to 

reserve 50% of the downlink bandwidth for the R&D 

group. Set up a QoS-aware ISP-side edge gateway to 

meet the goal. The classifi er in the gateway should 

classify inbound packets into two classes. The fi rst class 

is for packets sent to the PCs in the R&D group, while 

the other class is for other packets. You can demonstrate 

lin76248_ch07_546-589.indd   588lin76248_ch07_546-589.indd   588 24/12/10   4:26 PM24/12/10   4:26 PM

http://blog.edseek.com/~jasonb/articles/traffic_shaping/
http://blog.edseek.com/~jasonb/articles/traffic_shaping/
http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html


 Chapter 7 Internet QoS 589

that the service is workable by showing that the quality 

of watching an online streaming at a PC in the R&D 

group is totally unaffected by the overloaded download 

traffi c to the PCs in the other groups.  

   7. First install RED for the queuing management of your 

outgoing link. Then, establish multiple long-live TCP 

fl ows over the link and compare their total throughput 

with that of a link managed with FIFO. Also, try to ob-

serve the difference between  qave , mentioned in Open 

Source Implementation 7.6, and the real queue length.    

  Written Exercises 
    1. As mentioned in Section 7.1, there are six basic 

components required by a QoS-aware router. Draw 

a block diagram to illustrate an IntServ router with 

the six components and the operating relationship 

among them. Of course, adding extra components is 

allowed.  

   2. Assume the traffi c is regulated by a token bucket with 

parameters ( r, p, B ). Discuss the effect caused by the 

token bucket. For example, what is the behavior of 

the traffi c after the regulation? Or, if we tune any one 

parameter, how does the behavior change?  

   3. There are two common traffi c estimation methods 

introduced in measured-based admission control. One 

is EWMA and the other is time window. Further com-

pare the difference in estimation between them.  

   4. There is a 10 7  bits/sec link and WRR is used to sched-

ule. Suppose that the link is shared by N fl ows whose 

packet size is 125 bytes. Assume we plan to  equally  

allocate 8*10 6  bits/sec bandwidth for half of the fl ows 

and the residual bandwidth for the other half. Then, 

if N−1 fl ows are active and  backlogged,  what is the 

possible worst delay suffered by the fi rst packet of the 

only nonactive fl ow?  

   5. Generally speaking, WRR is suitable for the network 

whose packet size is of a fi xed length, and DRR is an 

improved version that can handle packets of variant 

lengths. In fact, due to its simple implementation, 

DRR is more popular, but it cannot guarantee a 

small worst-case delay. Study their abilities about 

the worst-case delay guarantee. Is it possible to 

improve DRR to provide a smaller worst-case delay 

than WRR?  

   6. A trace on queue length and calculation on average 

queue length periodically are required in the original 

algorithm of RED, which poses a big load in the 

implementation. In TC, a better technique is provided 

to reduce the load. You should observe the source 

code in the fi le  sch_red.c  and try to picture a fl ow-

chart and describe how the problem is solved in the 

implementation.  

   7. In an access link, the bandwidth management for the 

downlink traffi c is performed at the ISP-side edge 

router. However, if the ISP does not provide such a 

service, then is it possible or meaningful to do it at the 

customer-side edge gateway? Justify your answer.  

   8. Find a business case that successfully deployed QoS-

aware routers on their network to provide QoS for 

their customers.  

   9. The queuing management algorithm RED was pro-

posed to alleviate the congestion in a router. There 

are lots of research papers analyzing and improving 

the RED algorithm. What are the issues addressed by 

these papers? Why is it so interesting to the research 

community? Also, has RED been widely deployed in 

the routers of the Internet?  

   10. List the typical traffi c classes required by an enter-

prise and then identify the QoS requirement of each 

class in term of packet loss, bandwidth, delay, and 

jitter.  

   11. There have been numerous and mature scheduling 

algorithms proposed in the past two decades, but most 

of them are designed for wired networks. Identify the 

new requirements or diffi culties in applying these 

algorithms on the wireless network to provide users 

with QoS.  

   12. Describe the pros and cons of using WFQ to imple-

ment bandwidth management.  

    13. Figure 7.17  illustrates how a token bucket is operated. 

Assume that  r  = 1 unit/s,  p  = 4 units/s,  b  = 20 units and 

no packet arrivals for the fi rst 15 seconds. Then, sup-

pose that 4 packets arrive right at the 15 th  second, with 

length equal to 2, 10, and 4 units, respectively. Take the 

assumption described above and calculate the releasing 

time of the 4 packets.       

lin76248_ch07_546-589.indd   589lin76248_ch07_546-589.indd   589 24/12/10   4:26 PM24/12/10   4:26 PM



C h a pp t e rC8

590

 Network Security 

  Network security has become a very important issue since many security fail-

ures have occurred on the Internet, particularly in recent years. Computer 

scientists are not the only ones interested in these incidents; the general 

public also frequently learns about them from the news. Naïve Internet users may 

become the victims in these incidents, as when their personal data are compromised 

for malicious purposes. 

 Security concerns began with data security, then focused on access security, 

and more recently on system security. The first of these issues is related to pro-

tecting  private  data transmitted on the  public  Internet so that the data will not be 

eavesdropped or faked. The second issue is associated with controlling  access  to the 

internal and external networks based on the  policy  of an organization or an Internet 

service provider. That is, it decides  who  can access  what.  Finally, the third issue is 

about protecting networks and systems so that they are not  vulnerable  to attacks from 

the Internet. In this chapter we discuss the major problems and the design issues 

involved in solving them. 

 Data transmitted on the Internet are insecure as they could be easily captured en 

route for analysis. The content may be revealed to a third party, stealthily modified 

in the middle, or faked from a malicious source. Therefore, the essential problem of 

data security is how to protect the data from being peeped, modified, or faked. First, 

the data should be  encrypted  into scrambled  ciphertext  so that only the receiver can 

 decrypt  them back to the original data. The encryption and decryption mechanisms 

must be very difficult and time-consuming for a third party to crack but efficient 

enough for the sender and receiver to execute. Second, the transmitted data must be 

authenticated to prove the content’s integrity. 

 An organization or an Internet service provider may want proper control over its 

access to network resources and systems on the Internet based on its own policy. The 

key problem of access security is therefore who can access what. The information to 

identify “who” can access may be located in the network layer and transport layer 

headers in the packets, such as IP addresses, port numbers, and protocols, or in the 

packet payload, such as URLs. The administration can deploy a  firewall  or a filtering 

device between the internal and the external network and enforce the control policy 

as a set of rules. These devices examine the information in the incoming or outgoing 

packets, which may be in the network, transport, or application layer, to determine 

whether to pass or drop them. 

lin76248_ch08_590-653.indd   590lin76248_ch08_590-653.indd   590 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 591

 Finally, let us look at system security. An attacker may try to find and exploit 

vulnerabilities of a system to intrude into that system for various purposes, such 

as stealing critical information, controlling that system to launch another attack, 

disabling an important service, and so on. The key problem in system security is 

how to identify the various types of intrusions and defend the systems against them. 

Identification includes checking for attacking signatures or discovering anomalous 

behaviors. Checking signatures may miss unknown attacks (i.e., false negatives) but 

anomaly analysis may lead to false positives if normal traffic behaves unusually, so 

there is a trade-off between  false positives  and  false negatives.  Therefore, the iden-

tification approach must be designed precisely in order to minimize false positives 

and false negatives. 

 We cover data security, access security, and system security in Sections 8.2, 8.3, 

and 8.4, respectively. In Section 8.2, we present several cryptographic algorithms 

to show how they are designed for protecting data, and how they are realized in the 

Internet protocols and architectures, such as  Secure Socket Layer  (SSL) and  Virtual 
Private Network  (VPN). We interleave into the text the open source implementations 

of the 3DES encryption algorithm (in the VHDL hardware language), the MD5 au-

thentication algorithm (in the Linux kernel), and the IPsec VPN (in the Linux kernel). 

 In Section 8.3, we introduce the types of firewalls and filtering devices that real-

ize the access control. Netfilter/iptables and Firewall Toolkit (FWTK) are given as the 

open source implementations for network/transport-layer firewalls and application-

layer firewalls, respectively. In Section 8.4, we examine common attack techniques 

and malicious programs, and then elaborate on how to identify them, while also con-

sidering the design issues and trade-offs. The well-known ClamAV and Snort serve 

as the open source implementations for antivirus and intrusion detection, respectively. 

Another open source package for anti-spam, SpamAssassin, is also examined due to 

its similarity to ClamAV and Snort, which heavily rely on checking signatures.  

   8.1 GENERAL ISSUES  

 As explained above, the security topics include data security, access security, and 

system security. The foundation of data security is cryptography. We first cover the 

cryptography algorithms and their applications in protecting private data transmitted 

on the public network. For access security, firewall systems are the most popular de-

vices. The types of firewalls and how they work are then introduced. Today’s Internet 

is vulnerable to various network attacks. Thus, we examine the issues about various 

attacks and how to protect systems from attacks. 

  8.1.1 Data Security 
 As e-transactions via networks grow in popularity, the security issues of sending sen-

sitive data such as banking data, passwords, and credit card numbers become critical. 

Such sensitive data may be intercepted for recording, analyzing, reproducing, or 

spoofing purposes. It is challenging to solve this problem. If the network security is 

not guaranteed, fewer people will use the network for these purposes. 

lin76248_ch08_590-653.indd   591lin76248_ch08_590-653.indd   591 24/12/10   4:26 PM24/12/10   4:26 PM



592 Computer Networks: An Open Source Approach

 In this chapter, we explain cryptography operations and examples through three 

virtual characters: Alice (represented as sender A), Bob (represented as receiver B), 

and Trudy (represented as intruder T). For example, when Alice sends plaintext data 

to Bob without protection, the middle person Trudy can easily read and collect the 

plaintext between them, and may reproduce, modify, or spoof these data. When the 

fake data reach Bob, Bob will think they are from Alice. The plaintext data should 

be encrypted before being sent. We first discuss the techniques of encryption and 

decryption. 

 We begin with the traditional theory of cryptography. The  symmetric encryp-
tion  or  single-key encryption  system was proposed first. This uses a common key 

to encrypt and decrypt data. Since the common key must be exchanged, efficiently 

distributing this key in a secure manner is essential. Diffie and Hellman proposed 

the asymmetric encryption method in 1976. This method uses different keys to 

encrypt and decrypt data, thus the name  asymmetric  encryption. Therefore, the key 

distribution in networks becomes simple and secure. Several representative systems 

are developed according to these two encryption systems. For instance, Data Encryp-

tion Standard (DES) and International Data Encryption Algorithm (IDEA) are based 

on symmetric encryption, while RSA (from the initials of the three inventors’ last 

names) is based on asymmetric encryption. 

 Let us assume that the sender Alice and receiver Bob are located at different 

sites. Since they are unable to recognize each other in person, they have to authen-

ticate each other to ensure the identity of the person in communication. They also 

need to ensure that the received data are identical to the original copy, and were not 

modified, spoofed, or maliciously forged during the network transaction. We have 

a detailed description of  digital authentication  and the techniques of ensuring  data 
integrity  in this chapter. 

 After introducing the algorithms in cryptography, we introduce how network 

protocols of the link layer, the network layer, and the transport layer realize network 

security based on cryptography. Besides the tunneling protocols in the link layer, the 

Internet Security Protocol (IPSec) operates in the network layer. Operating security 

protocol in the network layer has a few advantages. First, not only applications on 

top of TCP but also other applications can have security provided by IPSec. Second, 

it is not susceptible to common attacks on TCP, such as forging RSTs to disconnect 

a connection. IPSec supports two types of security protocols in the IP network layer: 

 Authentication Header  (AH) protocol and  Encapsulation Security Payload  (ESP) pro-

tocol. The former provides the authentication of source node and data integrity. The 

latter supports complete authentication, data integrity, and security mechanisms, so it 

is more complicated than the AH. The description of the IPSec protocol and its ap-

plication, Virtual Private Network (VPN), shall be explained in detail in this chapter. 

 The Secure Socket Layer (SSL) protocol serves as a security mechanism for 

transferring encrypted data. The protocol is widely used in applications such as 

secure Web browsing and secure mail delivery. Although SSL is secure for data com-

munication, it is still insufficient to provide a complete secure environment for online 

payment via credit cards in electronic commerce. The receiver has a chance to abuse 

the credit card information elsewhere. Therefore, we introduce the Secure Electronic 

Transaction (SET) standard and explain its operations.  

lin76248_ch08_590-653.indd   592lin76248_ch08_590-653.indd   592 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 593

  8.1.2 Access Security 
 Imposing access control on the border between the external and the internal net-

works is important to network security. The access control is generally bidirectional. 

Restricting access from the external to the internal can protect hosts in the internal 

network from illegal access, and restricting access from the internal to the external is 

usually based on policy considerations. For example, an organization may not want 

its employees to access any external FTP sites during working hours, and so traffic 

destined for the common FTP port, i.e., port 21, are simply dropped by the organiza-

tion’s filtering devices. 

 The firewall systems enforce access control by filtering incoming and outgoing 

packets according to a set of rules in the security policy. They either permit or deny 

the packets by matching the information in the packets against the rules. Therefore, 

fast rule matching is essential to the firewall’s performance. If the matching is not 

fast enough, the firewall itself becomes a bottleneck. 

 Firewall systems generally come in two types:  packet filter-based firewall  and 

 application gateway-based firewall.  The former filters packets by referring to the 

fields in the network layer (referred to as L3) and transport layer (referred to as 

L4) headers, and thus it operates at the network layer and the transport layer. The 

filtering is fast since those fields are usually only a few bytes at fixed positions. 

However, access control by looking at only L3 and L4 information may not be 

sufficient, as it is possible to hide services on ports other than well-known ports. 

For example, if an FTP service is located on port 1234, then blocking accessing 

to port 21 simply does not work. Therefore, looking for signatures of applications 

is sometimes necessary if the filtering is meant to be precise, and this is referred 

to as gateway-based firewall. Moreover, if the policy is associated with the packet 

contents, examining the application information is also a must. For example, both 

allowed and banned URL requests may be destined to port 80. Neither restricting 

nor opening port 80 can work. The solution is to match the requests against a set of 

blacklist or whitelist URLs. 

 Examining application content is no free lunch. First, the packets may need to 

be assembled to restore the application content for examination. Second, the fire-

walls may need to keep the connection states to reflect the status of each connection. 

Third, scanning the packet content for application signatures is more complicated 

than matching fixed fields in the packet headers, so the performance issues are even 

more critical. Section 8.3 introduces two examples of open source implementation: 

a packet filter–based firewall, NetFilter, and an application gateway–based firewall, 

Firewall Toolkits (FWTK).  

  8.1.3 System Security 
 Defects in protocol, software, and system design result in vulnerabilities that hack-

ers can exploit. The hackers may intrude into a vulnerable system to steal secret 

information, make a system’s service crash, gain the administrator authority of that 

system, and propagate malicious programs. These malicious behaviors must be 

detected and curbed for system security. Given the huge amount of network traffic 

lin76248_ch08_590-653.indd   593lin76248_ch08_590-653.indd   593 24/12/10   4:26 PM24/12/10   4:26 PM



594 Computer Networks: An Open Source Approach

every day, it is impossible for network administrators to manually examine what 

is going on from the traffic log file. An intrusion detection (or prevention) system 

is therefore deployed to analyze the traffic to  detect  attacks. It may either gener-

ate  alerts  that indicate the attack type and related information (e.g., source of the 

attacker), or  prevent  the attacks by blocking them upon detection. The detection 

may be based on a set of rules that describe the attacking scenario or signatures for 

 known  attacks, or look for anomalies in the traffic. The former may ignore unknown 

attacks (so-called  false negatives ) since no rules describe them. The latter could 

find out unknown attacks, but may also generate  false positives  more easily since 

normal traffic may behave like anomalous traffic. There is a trade-off between the 

two techniques. Moreover, intrusion detection is usually for purpose of forensics 

since it only monitors the traffic and does not  block  an attack. If the system is too 

slow to catch up with the amount of traffic, it just drops some packets and perhaps 

loses the alerts of a few possible attacks, but does not harm normal communica-

tions. An intrusion prevention system, on the other hand, is deployed at the gateway 

of incoming and outgoing traffic. It has the ability to  block  a detected attack but if 

it is unable to catch up with the amount of traffic, it becomes a bottleneck to system 

performance, and the bidirectional communications might be slowed down. 

 Wild propagation of malicious programs, also known as  malware,  has become 

a major threat on the Internet. Those programs may do harm on an infected system, 

such as making a service crash or stealing confidential information. They may look 

indistinguishable from other normal programs, or even run stealthily without a user’s 

awareness. A common approach to detecting them is scanning the code for signatures 

of these malicious programs, but detection is getting difficult as they tend to hide 

themselves in various ways. For example, they may encrypt the code with various 

keys, and decrypt the code only when they are executed. Therefore, scanning the 

executables for signature matching becomes ineffective. A possible solution is actu-

ally running the malware and watching its behavior. However, the malware may be 

equipped with several  antidetection  mechanisms, such as detecting the existence of 

the analysis program and pretending to behave well if it discovers that someone is 

analyzing it. We also cover these issues in Section 8.4.    

  8.2 DATA SECURITY 

  Section 8.1 discussed the evolution of cryptography and its applications. This section 

first dives into the principles of cryptography. For the symmetric key systems, we 

cover Data Encryption Standard (DES), Triple-DES (3DES), and Advanced Encryp-

tion Standard (AES). For the asymmetric key systems, we examine RSA (Rivest, 

Shamir, and Adleman). Next we introduce Message Digest algorithm 5 (MD5) for 

authentication. Finally, the applications of cryptography to virtual private networks 

(VPNs) are presented, including Point-to-Point Tunneling Protocol (PPTP) and 

Layer 2 Tunneling Protocol (L2TP) at the link layer, IP Security (IPsec) at the net-

work layer, and Secure Socket Layer (SSL) and Secure Electronic Transaction (SET) 

at the transport layer. The example open source implementations are on 3DES, MD5, 

and IPSec. 

lin76248_ch08_590-653.indd   594lin76248_ch08_590-653.indd   594 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 595

  8.2.1 Principles of Cryptography 
  Figure 8.1  shows the procedure of data encryption and decryption. To achieve data 

security, Alice could encrypt important data before transmitting. Even though Trudy 

intercepts the encrypted data, she cannot get the original plaintext. As a result, data 

encryption protects the confidentiality of the original text. After Bob receives the 

encrypted data, Bob can understand the plaintext from Alice by decrypting it with 

the decryption key.  

 Symmetric key systems adopt a common key to encrypt and decrypt the plain-

text, while the keys are different for encryption and decryption in the asymmetric key 

system. Since Alice and Bob share a common key, the key value must be distributed 

from one to the other in a secure manner, or the encrypted data would be revealed 

to unauthorized people. Simply encrypting the key and then transmitting it faces the 

same problem as encrypting the data. A  key distribution center  (KDC) can provide the 

service for the users to register and share their secret keys. A well-known example that 

uses a KDC is the Kerberos protocol, in which two entities in the work can identify 

each other. However, the KDC itself must be trusted, and it could become a single 

point of failure. Therefore, the asymmetric key system is the solution. The keys for en-

cryption and decryption are paired. Alice uses a key in the pair to encrypt the data such 

that only Bob owns the other key to decrypt. As a result, there is no need to distribute 

Bob’s key to Alice. Although this system looks ideal, a critical problem with it is that 

the computation of encryption and decryption is slow. In practice, the asymmetric key 

system is therefore used to distribute only the common key in the symmetric key sys-

tem. After both peers own the symmetric key, they can use the key to transmit a large 

volume of data. The security and efficiency are thus balanced. 

  Symmetric Key System 

 A well-known example of the symmetric key system is the Data Encryption Standard 

(DES) adopted by the U.S. government to secure data in 1977. DES uses a 56-bit 

symmetric key for encryption and decryption. The International Data Encryption 

Algorithm (IDEA) also uses the symmetric key system. At present, the 56-bit DES 

algorithm is still popular, although a more secure system, the 112-bit DES algorithm, 

can be used, but only in the United States. 

Encryption key

Plaintext

Encrypted
data

Plaintext

Decryption keyE D

if (Encryption key = = Decryption key)
    “It is a symmetric key system.”
else
    “It is an asymmetric key system.”

Alice Bob

   FIGURE 8.1 Data encryption and decryption. 

lin76248_ch08_590-653.indd   595lin76248_ch08_590-653.indd   595 24/12/10   4:26 PM24/12/10   4:26 PM



596 Computer Networks: An Open Source Approach

 The 56-bit DES encrypts each 64-bit data block unit via a 56-bit key, and pro-

duces the monoalphabetic result; therefore, the DES will obtain the same encrypted 

data of the same plaintext if it uses the same key for the encryption. The operations of 

DES include the permutation ciphers, substitution ciphers that are repeated for 16 it-

erations in the computation.  Figure 8.2  shows the principle of DES operation, which 

is also described as follows: First, the plaintext is partitioned into 64-bit data blocks. 

Each block, T = t 1  t 2 … t 64 , performs the initial transposition to obtain T 0 , where T 0  is 

t 58  t 50  t 42 …t 23  t 15  t 7 , which forms two 32-bit blocks, R 0  and L 0,  as

    T 0  = L 0  R 0,  

 where

    L 0  = t 58  t 50  t 42  … t 16  t 8 

R 0  = t 57  t 49  t 41  … t 15  t 7 . 

 The data blocks of L 0  and R 0  are the inputs of the next iteration as 

     L 1  = R 0  

 R 1  = L 0 ⊕f(R 0 , K 1 ), 

 where K 1  is derived from the 56-bit key. 

   FIGURE 8.2 Encryption procedure of DES. 

Li = Ri–1
Ri = Li–1 ⊕ f(Ri–1,Ki)

64 bits

Input
T = t1 t2 ... t64

Initial transposition
IP

T0

Key
selection

16 keys:
K1,...,K16

Key

IP–1

Output

16 iterations
48

64 bits

64 bits
64 bits

64 bits

64 bits

lin76248_ch08_590-653.indd   596lin76248_ch08_590-653.indd   596 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 597

 After that, the result becomes T 1  = L 1 R 1 . The 56-bit key is pre-computed as six-

teen 48-bit keys: K 1 ,   K 2 ,…, K 16 .  Figure 8.3  shows the process of f(R 0 , K 1 ), where the 

32-bit R 0  and the 48-bit K 1  are the encryption inputs. First, the 32-bit R 0  is expanded 

to get a 48-bit result by the operation of E(R 0 ). Second, both the 48-bit E(R 0 ) and 

48-bit K 1  perform an XOR operation to obtain a 48-bit result, which will be parti-

tioned into eight 6-bit inputs, B 1 , B 2 …B 8 , for the following substitution. 

 After substitution of S i , eight 4-bit blocks, S i (B i ), are obtained. The computa-

tion then performs a 32-bit permutation to get f(R 0 , k 1 ), and finally R 1  can also be 

obtained by the operation L 0 ⊕f(R 0 , k 1 ).   

 Repeating the same iteration 16 times, i.e., L i+1 R i+1 ←L i R i , i = 0,…,15, can 

obtain T 16  = L 16 R 16 . The computation then performs the inverse initial transposition 

to get 64-bit encrypted data. Reversing the procedure of encryption can decrypt the 

plaintext from the encrypted data. 

 RSA Data Security once offered $10,000 to whomever could decrypt the plain-

text from the text encrypted by the 56-bit DES algorithm. A team decrypted the 

encrypted data in fewer than four months. Another person decrypted the latest round 

of the DES challenge in 22 hours in 1999. Therefore, DES is not secure enough if 

the data is vitally important. For ordinary applications, it could be considered secure 

enough, as preceding decryption attempts relied on heavy computation by a large set 

of computers. Repeating the DES algorithm several times could be more secure than 

the single DES system since the attackers may need to find out more keys in the it-

erations. For instance, the U.S. government recommends the triple-DES (3DES) and 

128-bit DES algorithms as the standard for encryption and decryption in the United 

   FIGURE 8.3 Computation process of f(R i-1 , K i ). 

Ri–1 Key

KiE(Ri–1)

E KS

+

S1 S2 S3 S4 S5 S6 S7 S8

32 bits

48 bits

64 bits

48 nits

p

f(Ri–1,Ki)

32 bits

B1 B2 B3 B4 B5 B6 B7 B8

S8(B8)S7(B7)S6(B6)S5(B5)S4(B4)S3(B3)S2(B2)S1(B1)

lin76248_ch08_590-653.indd   597lin76248_ch08_590-653.indd   597 24/12/10   4:26 PM24/12/10   4:26 PM



598 Computer Networks: An Open Source Approach

States. Suppose K1, K2, and K3 are the three keys in the three iterations. The encryp-

tion and decryption procedures are

    Encryption: E K3 (D K2 (E K1 (P))) = C, and 

 Decryption: D K1 (E K2 (D K3 (C))) = P, 

 where P is the plaintext, C is the ciphertext, E is the DES encryption, and D is the 

DES decryption. The procedures are all composed of the DES computation, and can 

reuse the existing DES functional blocks in implementation. Open Source Imple-

mentation 8.1 describes an implementation of 3DES.  

 Open Source Implementation 8.1: 
Hardware 3DES 

  Overview 
 Here we introduce a  hardware  implementation of 3DES, as it is a common 

approach for accelerating 3DES computation. The 3DES computation involves a 

large number of bit-level operations, such as substitution and permutation (see 

the introduction to the DES computation). If the 3DES computation is imple-

mented in software, each operation will take several instructions to complete, as 

the inherent operands are usually a word consisting of multiple bytes. Moreover, 

hardware implementation allows operations on the data blocks in parallel. It is 

therefore more natural to implement the 3DES computation in hardware. 

 An open source project on the opencores Web site (  www.opencores.org  ) is 

dedicated to 3DES implementation in VHDL. We use this project as an example to 

explain the open source implementation, which supports three 64-bit DES keys, 

and is compliant with the NIST FIPS 46-3 standard. Since 3DES computes DES 

three times, the components in each stage of the hardware design are mapped to 

the functional blocks in the DES computation, such as S-box for substitution and 

P-box for permutation. The design is straightforward, realizing the aforemen-

tioned operations with a large number of signal assignments in turn.  

  Block Diagram 
  Figure 8.4  illustrates the major functional blocks. Three blocks of the DES 

computation are cascaded in sequence to perform the computation with three 

   FIGURE 8.4 Functional blocks in the 3DES module. 

des_cipher_block1des_cipher_block2des_cipher_block3

key1key2key3

data_indata_out1data_out2data_out

lin76248_ch08_590-653.indd   598lin76248_ch08_590-653.indd   598 24/12/10   4:26 PM24/12/10   4:26 PM

www.opencores.org


 Chapter 8 Network Security 599

different keys. The data output of each block is the input of the next block. Inside 

each block are the functional blocks of key expansion, substitution, permuta-

tion, and so on. Their relationship is mapped from the computation illustrated in 

Figures 8.2 and 8.3. 

    Data Structures 
 The signals in the interface of the main functional blocks are listed in  Table 8.1 . 

 Note that even though each key length is 64 bits long, eight of the bits are 

for parity check and will be discarded before the encryption/decryption compu-

tation. Each key has indeed only 56 bits.  

  Algorithm Implementations 
 Upon initialization, the main functional block (in  tdes_top.vhd ) sets the 

next state to  WaitKeyState , and reads  FUNCTION_SELECT  to determine 

whether to execute encryption or decryption. The block then waits for the keys 

until they are available ( LDKEY  == 1), and enters  WaitDataState , in which 

the block waits for data until they are available ( LDDATA  == 1). The code seg-

ment for the initialization is as follows: 

  if reset = ‘1’ then 
      nextstate         <= WaitKeyState; 
      lddata_internal    <= ‘0’; 
      out_ready         <= ‘0’; 
      fsel_internal       <= function_select; 
      fsel_internal_inv  <= not function_select; 

TABLE 8.1 Signals in the Interface of the Main Functional Block

Signal Direction Description

KEY1_IN[0:63] IN The first 64-bit key

KEY2_IN[0:63] IN The second 64-bit key

KEY3_IN[0:63] IN The third 64-bit key

FUNCTION_SELECT IN Encryption or decryption

LDKEY IN Indicates the keys are ready

LDDATA IN Indicates the data are ready

RESET IN Reset to the initial state

CLOCK IN Synchronous clock input

DATA_OUT[0:63] OUT 64-bit encrypted/decrypted data

OUT_READY OUT Output data are ready

Continued

lin76248_ch08_590-653.indd   599lin76248_ch08_590-653.indd   599 24/12/10   4:26 PM24/12/10   4:26 PM



600 Computer Networks: An Open Source Approach

  else 
     data_out         <= data_out_internal; 
     out_ready        <= des_out_rdy_internal; 
     case nextstate is 
       when WaitKeyState => 
        if ldkey = ‘0’ then 
         nextstate     <= WaitKeyState; 
        else 
        // read keys here; the codes not shown; 
        nextstate  <= WaitDataState; 
        end if; 
      when WaitDataState => 
       if lddata = ‘0’ then 
         nextstate      <= WaitDataState; 
         ld_data_internal   <= ‘0’; 
       else 
       // read data here; the codes not shown; 
       end if; 

 end if;  

 Three DES blocks (in the block named  des_cipher_top ) are in the design, 

each of which reads the three keys, respectively. The operations of the DES 

are in  e_expansion_function.vhd ,  p_box.vhd ,  s_box.vhd , and 

so on. For example, the substitution operation is further divided into eight 

modules, from  s1_box.vhd  to  s8_box.vhd , as there are eight such sub-

stitutions (See  Figure 8.3 ). The code segment for substitution in  s1_box.
vhd  is as follows: 

  begin 
    SPO    <= “1110” when A = x“0” else 
         “0000” when A = x“1” else 
         “0100” when A = x“2” else 
         “1111” when A = x“3” else 
         “1101” when A = x“4” else 
         “0111” when A = x“5” else 
         “0001” when A = x“6” else 
         …. // all combinations of 6-bit A’s 

 end  

 For brevity, we do not look deeply into each block, and leave the details to the 

reader.  

  Exercises 
    1. Point out which components in the design are likely to be inefficient if it 

were implemented in software.  

   2. Find out in the code how the initial 56-bit key is transformed into the 48-bit 

keys in each of the 16 iterations.    

lin76248_ch08_590-653.indd   600lin76248_ch08_590-653.indd   600 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 601

 Although DES and 3DES can be easily implemented in hardware, they are slow 

in software implementation due to their bit-level operations. The AES (Advanced 

Encryption Standard) algorithm can be better implemented in software. The substi-

tutions and permutations in its encryption/decryption procedure are all in the  byte  

level. The operations are much more suitable to software implementation because 

it is trivial to swap two bytes or replace the content of a byte in software. The AES 

algorithm comes with keys of 128 bits, 192 bits, and 256 bits. Besides the efficiency 

of AES, it is much more secure than DES for its vast key space. Even a 128-bit key 

takes a great deal of effort to crack. Therefore, AES is secure enough for the purpose 

of data security.  

  Asymmetric Key System 

 The symmetric key system uses the same key for both encryption and decryption, but 

the key should be distributed in a secure approach first. The asymmetric key system 

(or public key system) uses a pair of keys to encrypt and decrypt data, respectively. 

One key can be well-known, the  public key,  and the other key must be private, the 

 private key.  In  Figure 8.5 , for example, Alice uses Bob’s public key for encryption, 

and Bob uses his private key to decrypt the encrypted data. Because only Bob has 

the private key, nobody else could decrypt the encrypted information, even though 

the public key is well-known. Moreover, Alice can also be uniquely identified by 

encrypting the data with her private key because nobody else has her private key (see 

Subsection 8.2.2).  
 RSA is the most famous asymmetric key algorithm, named after three MIT 

professors, Ronald Rivest, Adi Shamir, and Leonard Adleman. Although RSA can 

solve the problem of key distribution, its computation complexity is high and thus 

inappropriate for encrypting/decrypting normal data. Therefore, RSA is often used 

for key distribution or authentication, while a symmetric key system encrypts and 

decrypts a vast amount of data.  Figure 8.6  describes the procedure of selecting public 

and private keys in RSA: 

    1. Select two very large primes,  p  and  q.  The larger the primes are, the harder the 

crack is, but the computation time will also be increased significantly. RSA Labs 

suggests the selected primes be larger than 10 100 .  

   FIGURE 8.5 Asymmetric key cryptography. 

Bob’s public key

c = EBob(m)

c = EBob(m)

m = DBob(EBob(m))

Plaintext, m

Encrypted
data

Plaintext, m

Bob’s private keyE D

Alice Bob

lin76248_ch08_590-653.indd   601lin76248_ch08_590-653.indd   601 24/12/10   4:26 PM24/12/10   4:26 PM



602 Computer Networks: An Open Source Approach

   2. Compute  n  by  p*q  and  z  by ( p-1 ) * ( q-1 ), i.e.,  n=p*q  and  z= ( p-1 ) * ( q-1 ).  

   3. Choose a value  e  as the public key, which is less than  n  and a relative prime to  z.   
   4. Compute a value  d  as the private key, where  e * d -1 should be divisible by  z.    

 Therefore, Bob can distribute the public key ( n,  e ) to anyone, and then Alice can use 

this key to encrypt data and Bob can use his private key ( n,  d ) to decrypt data. For 

instance, Alice wants to transmit a bit stream  m  to Bob, where  m  <  n.  Alice first com-

putes  m e   and divides it by  n  to get the remainder  c,  where  c  is the cipher or encrypted 

data. Once Bob receives the encrypted data  c,  he computes  c d   and divides it by  n  to 

get the remainder  m,  where  m  is the original plaintext. The following equations sum-

marize the process:

       c  =  m e   mod  n       // use the ( n,  e ) public key to encrypt plaintext into 

encrypted data  c.  

  m  =  c d   mod  n       // use the ( n,  d ) private key to decrypt the encrypted 

data, and then get plaintext  m.   

 Next, we give a trivial example to describe the procedure. First, Bob selects  p  = 11 and 

 q  = 17, and then computes  n  by  p * q  ( n  = 187) and  z  by ( p -1)*( q -1) (i.e., 160). Second, 

Bob selects 23 as  e,  where  e  is a relative prime to  z.  Finally, Bob computes ( z  + 1)/ e  

to obtain  d  = 7. Therefore, Bob distributes the public key ( n  = 187,  e  = 23) to Alice. 

   FIGURE 8.6 Procedures of public key and private key selection by RSA. 

Select  two very large
prime values, p and q

n = p × q
z = (p – 1) × (q – 1)

Choose a number, e, less
than n, which has no

common factors with z

Find a number, d, s.t. ed – 1
is exactly divisible by z

Get
public key (n,e)

and private key (n,d)

1.

2.

3.

4.

5.

lin76248_ch08_590-653.indd   602lin76248_ch08_590-653.indd   602 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 603

She uses the public key to encrypt the plaintext  m  and gets the encrypted data  c.  After 

Bob receives the encrypted data  c,  he decrypts it with his private key ( n  = 187,  d  = 7). 

 Assume that Alice sends the plaintext of “clap” to Bob. She first maps characters 

a~z to numbers 1~26 and obtains ‘c’ = 3, ‘l’ = 12, ‘a’ = 1 and ‘p’ = 16. Figure 8.7(a) 

shows the encryption procedure with public key ( n  = 187,  e  = 23), and  Figure 8.7(b)  

shows the decryption procedure with private key ( n  = 187,  d  = 7).   

 Both the encryption and decryption procedures have exponential operation, 

which results in high computation complexity. The efficiency of DES is about 

100 times faster than that of RSA in software computation and 10 3 ~10 4  times 

faster in hardware computation. Therefore, most applications combine the sym-

metric and asymmetric key systems. The sender Alice randomly generates a session 

(symmetric) key to encrypt the plaintext into the ciphertext  c.  She then uses Bob’s 

public key (asymmetric) to encrypt the session key, and sends  c  to Bob. After Bob 

receives  c,  he first uses his private key (asymmetric) to decrypt the encrypted session 

key, and then derives the session key for future encryption and decryption. Hence, the 

key distribution procedure is safe and leads to efficient data transmission. 

 In practice, the public key of a user can be derived from the  Certificate Authority  

(CA), an organization that maintains the credibility of these public keys as well as 

the user’s identity. In this mechanism, a user must register his/her public key first, 

and the CA must carefully verify the identity of the user, or it can be easily subverted. 

The public key as well as the information of the user’s identity will be included in a 

digitally signed certificate issued from the CA. Therefore, the other users can verify 

the user’s identity from the digital certificate and make sure the public key is really 

from that user. 

Plaintext m me c = me mod n

‘c’ 3 94143178827 181

‘l’ 12 6.6247E+24 177

‘a’ 1 1 1

‘p’ 16 4.9517E+27 169

   FIGURE 8.7(a) Procedure of Alice encrypting plaintext “clap” by using public 
key ( n  = 187,  e  = 23). 

Encrypted text, c cd m = cd mod n Plaintext

181 6.3642E+15 3 ‘c’

177 5.4426E+15 12 ‘l’

1 1 1 ‘a’

169 3.9373E+15 16 ‘p’

   FIGURE 8.7(b) Procedure of Bob decrypting by using secret key ( n  = 187,  d  = 7). 

lin76248_ch08_590-653.indd   603lin76248_ch08_590-653.indd   603 24/12/10   4:26 PM24/12/10   4:26 PM



604 Computer Networks: An Open Source Approach

 Principle in Action: Secure Wireless Channels 

 Wireless networks broadcast frames in essence. Securing wireless transmis-

sion channels is critical, otherwise anyone could easily sniff the traffic. In the 

wireless LAN technology, IEEE 802.11 comes with a Wired Equivalent Privacy 

(WEP) standard, which protects data in the wireless medium. In this standard, 

a data stream is encrypted with the RC4 algorithm. RC4 is pretty simple. At the 

transmitting station, RC4  XOR s the data stream with a key stream to generate 

the cipher stream. At the receiving station, RC4 XORs the cipher stream with 

exactly the same key stream to recover the original data. Both the transmitting 

and receiving stations can synchronize the key stream because both use the same 

seed to generate the key stream with a pseudorandom number generator. 

 WEP is not very secure, due to its design flaw. In August 2001, a paper 

titled “Weakness in the Key Scheduling Algorithm of RC4” by Fluhrer et. al. 

was published to attack the WEP. Simply put, it is possible to deduce the content 

of the key stream from the weak initialization vector (IV) that is part of the WEP 

key. The IV value is transmitted in clear text, and by collecting a sufficiently 

large number of frames, the key stream can be recovered from the weak IV 

values present in the frames. A program called AirSnort (airsnort.shmoo.com) is 

available publicly for this attack. 

 To address the severe flaw, the Wi-Fi Alliance introduced the Wi-Fi 

Protected Access (WPA) specification, which was later extended to be the IEEE 

802.11,i ratified in 2004. In 802.11i, the Advanced Encryption Standard (AES) 

becomes the approach for encrypting wireless data, and the IEEE 802.1X serves 

as the authentication mechanism. This new standard is available in many new 

products, making the wireless LAN a more secure environment. 

     8.2.2 Digital Signature and Message Authentication 
 Besides data encryption, Bob needs to ensure the data are really from Alice because 

the intruder Trudy may pretend to be Alice to send the data. In the asymmetric key 

system,  digital signature  is the most popular authentication method. There are three 

advantages of applying digital signature to transmission data: (1) the receiver can en-

sure the data are really from the sender, (2) the sender cannot deny the transmission, 

and (3) nobody can modify the received data, producing data integrity. 

 An asymmetric key system and a hash function can realize digital signature. In 

Figures 8.8 and 8.9, Alice uses a digital signature to authenticate herself when send-

ing the plaintext to Bob. In  Figure 8.8 , Alice first computes the plaintext via a hash 

function to derive a unique hash value of “12340782”, then encrypts the hash value 

with her private key, and sends the encrypted text “??!!??!!”, i.e., Alice’s digital sig-

nature, with the plaintext to Bob. After Bob receives the plaintext Alice’s with digital 

signature, he decrypts the digital signature of “??!!??!!” with Alice’s public key to 

get the hash value of “12340782”, and computes the plaintext with the same hash 

function to obtain the hash value of “12340782”. If both hash values are equal, Bob 

lin76248_ch08_590-653.indd   604lin76248_ch08_590-653.indd   604 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 605

can be sure that the plaintext is sent by Alice. In other words, digital signatures can 

realize the following three functions: 

    Alice cannot deny she has sent this document because she encrypts the hash 
value via her private key.   

   Bob cannot modify the received document; otherwise both hash values will be 
distinct.   

   The document has not been modified because it contains the same hash value 
of “12340782”.     

  If the sender uses a secret key to encrypt the hash value of the plaintext, and the receiver 

also uses the same secret key to decrypt the encrypted hash value for verification, the 

encrypted hash value is called message authentication code (MAC). The concept is 

similar to digital signature, but the secret key to encrypt and decrypt the hash value is 

 symmetric.  Therefore, the receiver must share the secret key beforehand. The MAC 

mechanism can provide  data integrity  and  authentication,  but not  nonrepudiation,  
since anyone who owns the secret key can generate the MAC of other messages. 

   FIGURE 8.8 Alice sends the document with digital signature. 

Plaintext
Hash

function
12340782

Unique hash value

??!!??!!

Alice’s 
private key

??!!??!!

Plaintext

Encrypted text

Plaintext with
digital signature

Plaintext

+

(a) Alice can NOT deny sending
this document because she
encrypts the hash value via her
private key.

   FIGURE 8.9 Bob identifies whether the received document with digital signature is 
from Alice or not. 

Hash
function

12340782

Unique hash value

??!!??!!

Alice’s 
public key

??!!??!!

Plaintext

Plaintext

(c) The document has not been
modified because of  the same
hash value of “12340782”.

12340782

(b) Bob can NOT modify the
received document; otherwise
these two output values will not
be distinct.

The document is sent by
Alice if these two output
values are the same. 
Otherwise, Bob can NOT
confirm it has been
sent by Alice.

lin76248_ch08_590-653.indd   605lin76248_ch08_590-653.indd   605 24/12/10   4:26 PM24/12/10   4:26 PM



606 Computer Networks: An Open Source Approach

 We have mentioned that Alice should generate a hash value for the correspond-

ing plaintext. The hash value is called the message digest (MD). The function of mes-

sage digest is to keep data integrity. Popular hash functions include MD4, MD5, and 

Secure Hash Algorithm (SHA), etc. MD4 and MD5 were proposed by Ron Rivest in 

1992, and MD5 is the most commonly adopted algorithm to generate a 128-bit mes-

sage digest. The U.S. government uses SHA-1, which generates a 160-bit message 

digest and is more robust than MD5.   

 Open Source Implementation 8.2: MD5 

  Overview 
 MD5 is common in many security applications that verify whether the data has 

been stealthily modified. The computation goes through the data to derive the 

MD5 value. An open source implementation of MD5 is available in the  md5.c  

file under the  crypto  directory of the widely available Linux 2.6.x kernel 

source. The MD5 algorithm keeps updating a 128-bit state (i.e., four 32-bit 

words) after reading each batch of 512 bits from the source message during the 

computation. In the final iteration, the last batch of data is padded up to 512 bits 

if it is shorter than 512 bits.  

  Block Diagram 
 The main three functions in md5.c are  md5_init() ,  md_update() , and 

 md_final() . The first initializes the 128-bit state, the second keeps updat-

ing the state in each iteration, and the last computes the final MD5 value from 

the last batch of data.  Figure 8.10  illustrates the execution flow of the MD5 

computation.   

   FIGURE 8.10 Main functional blocks in md5.c and the execution flow. 

md5_init

md5_update

md5_final

Last batch
of data?

lin76248_ch08_590-653.indd   606lin76248_ch08_590-653.indd   606 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 607

  Data Structures 
 The 128-bit state is initialized in the  md5_init()  function as follows, where 

the  mctx  structure also includes auxiliary variables such as the  block  array 

and the  byte_count  variable for computation: 

  mctx->hash[0] = 0x67452301; 
 mctx->hash[1] = 0xefcdab89; 
 mctx->hash[2] = 0x98badcfe; 
 mctx->hash[3] = 0x10325476;   

  Algorithm Implementations 
 After initialization, the  md5_update()  function grabs the source message in 

batches of 64 bytes (equivalent to 512 bits), and proceeds with the MD5 compu-

tation with the following code segment: 

     const u32 avail = sizeof(mctx->block) - (mctx->byte _
count & 0x3f); 
    mctx->byte _ count += len; 
    if (avail > len) { 
        memcpy((char *)mctx->block + 
(sizeof(mctx->block) - avail), data, len); 
        return 0; 
    } 
    memcpy((char *)mctx->block + 
(sizeof(mctx->block) - avail),data, avail); 
    md5 _ transform _ helper(mctx); 
    data += avail; 
    len -= avail; 

    while (len >= sizeof(mctx->block)) { 
        memcpy(mctx->block, data, 
sizeof(mctx->block)); 
        md5 _ transform _ helper(mctx); 
        data += sizeof(mctx->block); 
        len -= sizeof(mctx->block); 
    } 
    memcpy(mctx->block, data, len); 

   return 0;  

 Here the  data  array is the source message to be transformed into the MD5 

value, and the message length is  len . The  md5_update()  function attempts 

to read from  data  until the  block  array (64 bytes) is filled up. Once the array 

is filled up, the  md5_transform_helper()  function is invoked, in which 

the  md5_transform()  function is invoked in turn. 

 The  md5_tranform()  function is the main part of the MD5 computation (see 

RFC 1321 for details). The function performs four similar  rounds  of 16 operations in 

order. For example, the 16 operations in the first round are as follows: 

Continued

lin76248_ch08_590-653.indd   607lin76248_ch08_590-653.indd   607 24/12/10   4:26 PM24/12/10   4:26 PM



608 Computer Networks: An Open Source Approach

 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); 
 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); 
 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); 
 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); 
 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); 
 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); 
 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); 
 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); 
 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); 
 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); 
 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); 
 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); 
 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); 
 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); 
 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); 
 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);  

 Here  a ,  b ,  c , and  d  are the states of four 32-bit words from the  hash  array, and 

MD5STEP  is a macro defined as follows: 

 #define MD5STEP(f, w, x, y, z, in, s) \ 
 (w += f(x, y, z) + in, w = (w<<s | w>>(32-s)) + x)  

 The nonlinear functions from   F1   to   F4   applied in the four rounds are defined as 

follows: 

  #define F1(x, y, z) (z ^ (x & (y ^ z))) 
 #define F2(x, y, z) F1(z, x, y) 
 #define F3(x, y, z) (x ^ y ^ z) 
 #define F4(x, y, z) (y ^ (x | ~z))  

 If the message length is not a multiple of 64 bytes, the last part will be padded 

until the total length is a multiple of 64 bytes. Simply put, the padding is a bit 1 

followed by a number of zeros, and finally the original message length repre-

sented in bits. The  md5_final()  function does the padding and computes 

the final output by calling the  md5_tranform()  function on the last  block  

array. The  md5  value will be finally stored in the  hash  field of  mctx  structure.  

  Exercises 
    1. Numerical values in a CPU may be represented in little endian or big en-

dian. Explain how the  md5.c  program handles this disparity in representa-

tion for the computation.  

   2. Compared with  sha1_generic.c  in the same directory, find where and 

how the  sha_tranform()  function is implemented. What is the major 

difference between the implementations of  md5_transform()  and 

 sha_tranform() ?    

lin76248_ch08_590-653.indd   608lin76248_ch08_590-653.indd   608 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 609

  8.2.3 Link Layer Tunneling 
 A popular security mechanism in the link layer is  tunneling,  which is based on packet 

encapsulation. Tunneling builds a private communication tunnel over public net-

works. If a user wants to access the corporate network, he/she just dials to the local 

network access server (NAS) of that company and uses the NAS to establish a tunnel 

to the corporate network. The Layer-2 tunneling can support IP, IPX, NetBEUI, and 

AppleTalk at the same time. 

 A well-known example of Layer-2 tunneling is PPTP (abbreviation of Point-to-

Point Tunneling Protocol) defined in RFC 2637, which is developed to be used on 

VPN. PPTP encapsulates encrypted PPP frames in IP datagrams in the tunnel. PPTP 

tunnels have two modes: the client-initiated mode, in which the client initiates a 

direct connection to the PPP server, and the ISP-initiated mode, in which the client 

establishes a PPP session with the ISP access server first and then establishes tunnels 

with a remote PPTP server. Several connections can share the established tunnel by 

means of call identifier. 

 L2TP (Layer-2 Tunneling Protocol) combines the merits of Cisco’s Layer-2 

Forwarding (L2F) and Microsoft’s PPTP. L2TP has several advantages over its 

predecessors. For example, PPTP supports only one tunnel at a time per user, while 

L2TP can support multiple simultaneous tunnels. Note that an L2TP packet is carried 

within a UDP datagram, even though L2TP usually carries PPP sessions within its 

tunnel and has “Layer-2” in its name. 

 Each end of the L2TP tunnel acts as an L2TP access concentrator (LAC) on 

the client side and L2TP network server (LNS) on the server side. The L2TP has 

two message types: control and data. The control message for establishing and 

managing tunnels is sent over a lower-level reliable transport service. The data 

message carries the actual data over unreliable transfer modes such as UDP. The 

tunnel establishment, like that in PPTP, can also be shared by many connections by 

means of call ID. L2TP can also be implemented along with IPSec to be introduced 

in Subsection 8.24. After negotiation and establishment of the L2TP tunnel, L2TP 

packets are then encapsulated by IPSec to provide confidentiality.  

  8.2.4 IP Security (IPSec) 
 The IETF establishes an open standard of network security protocol in the network 

layer, i.e., Internet Protocol Security (IPSec). We first introduce the concept of 

IPSec, and then describe its mechanism by defining the IP Authentication Header, IP 

Encapsulation Security Payload, and the key management to achieve data integrity, 

authentication and privacy in secure communication. 

 Many commercial services were built to run over the Internet, so private com-

munication over the Internet is of concern. Several standards for network security in 

the session layer and application layer have been proposed. For example, SET and 

SSL can achieve secure HTTP. Since the Internet is Internet Protocol (IP)-based, a 

secure mechanism in the IP layer is necessary to integrate various security mecha-

nisms in the upper layer. Therefore, the IETF established IP Security (IPSec) for 

lin76248_ch08_590-653.indd   609lin76248_ch08_590-653.indd   609 24/12/10   4:26 PM24/12/10   4:26 PM



610 Computer Networks: An Open Source Approach

IPv4/v6 to achieve the following goals: authentication, integrity, confidentiality, and 

access control. 

 The first version of IPSec (RFC 1825 to RFC 1829) was proposed in 1995. It has 

two primary modes: IP Authentication Header (AH) and IP Encapsulation Security 

Payload (ESP). The former provides the integrity and authentication of data, while 

the latter provides secure data transfer. The AH and the ESP header include two op-

tional headers for using IPSec in IPv6. The first version of IPSec has no description 

of key exchange and management. It defines only the packet format. In 1998, the 

second version (RFC 2401, RFC 2402, RFC 2406) was proposed to include Security 

Association (SA) and key management, IKE (Internet Key Management). Conse-

quently, the IPSec became complete. 

  Security Association 

 For private communication in IPSec, Security Association (SA) is designed to 

establish a unidirectional connection of secure transfer, and it is also the most 

important concept in the IPSec. Several important parameters are defined: the au-

thentication algorithm and its keys, the encryption/decryption algorithms and the 

keys, a valid period of keys, etc. A unique SA can be defined by the IP address of 

a host, a security identification code (represents AH or ESP), and a 32-bit Security 

Parameter Index (SPI). Since SA is unidirectional, it requires two SAs to build a 

bidirectional point-to-point connection. An SA can use either AH or ESP as the 

security protocol.  

  Authentication Header 

 RFC 1828 suggests IPSec use the MD5 algorithm for authentication. The sender 

computes a message from the transmitted IP packet and a secret key with the 

MD5 algorithm, and then adds the message into the packet. After receiving this 

packet, the receiver performs the same MD5 calculation to obtain the message 

value. The receiver compares the value with that in the packet. If both are equal, 

the authentication is successful. Because the MD5 calculation is applied to the 

entire IP packet, this method not only performs authentication but also certifies 

the data integrity. 

   FIGURE 8.11 Authentication types. 

Router/
Firewall

Intranet

Internet

End-to-intermediate

End-to-end authentication

lin76248_ch08_590-653.indd   610lin76248_ch08_590-653.indd   610 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 611

 For authentication, IPSec defines two modes: the end-to-end mode and the 

end-to-intermediate mode.  Figure 8.11  shows the main difference. In the former 

mode, both parties of the communication perform the authentication. This mode is 

used when both parties do not have confidence in the security of network facilities 

but still expect to ensure the transmission security. In the latter, the authentication 

is performed at one party and at the router or firewall in the local area network 

of the other party. In this way, the router or firewall plays the role of a “security 

gateway.” In other words, the gateway should guarantee the security of the local 

area network. 

        Figure 8.12  shows the format of the authentication header. The first field, Next 

Header, represents the protocol type of the next payload after the authentication 

header. Following is the 8-bit Length field. The 16-bit Reserved field is reserved 

for future use and is set to 0 at present. The SPI field represents a unique SA. The 

Sequence Number represents the sequence number of packets to prevent the replay 

attack.    

  Encapsulation Security Payload 

 Encapsulation Security Payload (ESP) adopts DES or 3DES to provide secure IP 

packet transmission. ESP not only guarantees data security, but also achieves au-

thentication and data integrity. ESP can run in two modes: the  transport mode  that 

encrypts the block in the transport layer and the  tunnel mode  that encrypts the entire 

IP packet. 

 Figures 8.13 and 8.14 show the two modes. In the transport mode, the ESP 

header is located before the data block. This mode has a shorter encrypted part than 

the tunnel mode, so the required bandwidth is also less. In the tunnel mode, the 

ESP header is located before the encrypted IP packet. The mode produces a new 

IP header. It is suitable in an environment protected by a security gateway. During 

   FIGURE 8.13 Transport mode ESP. 

IP Header Ext. Header Transport layer segment

Unencrypted Encrypted

ESP Header

Security Parameter Index (SPI)

Authentication Data (variable)

Sequence Number

ReservedLengthNext Header

0 8 16 31

   FIGURE 8.12 The Authentication header. 

lin76248_ch08_590-653.indd   611lin76248_ch08_590-653.indd   611 24/12/10   4:26 PM24/12/10   4:26 PM



612 Computer Networks: An Open Source Approach

transmission, the sender or the gateway encrypt an IP packet, and then the encrypted 

packet is sent to the receiver’s gateway, which then decrypts the IP packet and sends 

the original plaintext data to the receiver.    

  Key Management 

 Because AH authentication and ESP encryption need both encryption and decryption 

keys, key management is important in the IPSec standard. The main key management 

protocol includes SKIP (Simple Key management for IP) and ISAKMP/Oakley (Internet 

Key Exchange, IKE). SKIP, proposed by Sun Microsystems, adopts the Diffie Hellman’s 

key exchange algorithm to transmit the secret key based on the public key system. 

 The ISAKMP consists of two major steps. In the first step, both ends of ISAKMP 

set up a secure and authenticated channel, the first ISAKMP SA, via negotiation. In 

the second step, it uses the first SA to build the AH or ESP SA. The primary differ-

ence between ISAKMP SA and IPSec SA is that ISAKMP SA is bidirectional, but 

IPSec SA is unidirectional.    

FIGURE 8.14 Tunnel mode ESP. 

ESP HeaderIP Header Ext. Header IP header + Transport layer segment

Unencrypted Encrypted

 Open Source Implementation 8.3: AH and ESP 
in IPSec 

  Overview 
 The implementation of IPSec is available in both open source packages and the 

Linux kernel. The former includes Openswan ( http://www.openswan.org ) and 

strongSwan ( http://www.strongswan.org ); the latter is Linux kernel 2.6. Inte-

grating IPSec into the Linux kernel is an independent work from scratch. Since 

the Linux kernel is very popular among Linux users, we introduce the IPSec 

implementation in the Linux kernel herein. 

 IPSec has two primary modes: AH and ESP. The source code of the AH 

implementation for IPv4 is in  net/ipv4/ah4.c  (or  ipv6/ah6.c  for IPv6), 

while that of the ESP implementation for IPv6 is in  net/ipv4/esp4.c  (or 

 ipv6/esp6.c  for IPv6).  

  Block Diagram 
  Figure 8.15  presents the block diagrams of the implementation. Both  ah4_
init()  and  esp4_init()  register the pointers to related handlers, and the 

states in both are also initialized. When packets are received or to be delivered, 

the  xfrm_input()  and  xfrm_output()  functions invoke the correspond-

ing function according to which mode is used: AH or ESP.   

lin76248_ch08_590-653.indd   612lin76248_ch08_590-653.indd   612 24/12/10   4:26 PM24/12/10   4:26 PM

http://www.openswan.org
http://www.strongswan.org


 Chapter 8 Network Security 613

  Data Structures 
 In both modes, the authentication header and the ESP header are both defined in 

include/linux/ip.h  as follows: 

struct ip_auth_hdr { 
      __u8 nexthdr; 
      __u8 hdrlen; 
      __be16 reserved; 
      __be32 spi; 
      __be32 seq_no; 
      __u8 auth_data[0]; 
 }; 
 struct ip_esp_hdr { 
      __be32 spi; 
      __be32 seq_no; 
      __u8 enc_data[0]; 
 };   

  Algorithm Implementations 
 In the beginning of the AH implementation, the  ah4_init()  function calls 

inet_add_protocol ( &ah4_protocol,  IPPROTO_AH ) to register the 

structure of the AH handler, i.e.,  ah4_protocol . The handler field of this 

structure is the  xfrm4_rcv()  function, which will receive and handle the IPSec 

packets. Note that the structure of the ESP handler also points to  xfrm4_rcv()
(see  esp4.c ), meaning which protocol to parse is left to later work. The  xfrm4_
rcv()  function will eventually call the function to decode the packet and get 

the input state (see the  xfrm_input()  function in the  net/xfrm/xfrm_
input.c ), which will in turn call the  ah4_input()  function (hooked to the 

   FIGURE 8.15 Main functions in the AH and ESP implementation in the Linux kernel. 

ah_init_state

ah4_init esp4_init

esp_init_state

xfrm_input xfrm_output

ah_input esp_input ah_output esp_output

Continued

lin76248_ch08_590-653.indd   613lin76248_ch08_590-653.indd   613 24/12/10   4:26 PM24/12/10   4:26 PM



614 Computer Networks: An Open Source Approach

  8.2.5 Transport Layer Security 
 In network security, an important approach for offering secure and reliable transac-

tions between client and server hosts is to combine cryptography and authentication 

in the transport layer. A good solution to transport layer security is the Secure Socket 

Layer (SSL). Nevertheless, e-commerce needs more protection for transactions 

as well as integration with credit card systems, so Security Electronic Transaction 

(SET) was proposed for this purpose. 

ah_type  structure as seen in  ah4.c ). After parsing the AH header, this function 

performs the following code to verify whether   ah -> auth_data   (i.e., the authenti-

cation data in the AH header) is identical to the ICV (integrity check value). 

 u8 auth_data[MAX_AH_AUTH_LEN]; 
 memcpy(auth_data, ah->auth_data, ahp->icv_trunc_len); 
 skb_push(skb, ihl); 
 err = ah_mac_digest(ahp, skb, ah->auth_data); 
 if (err) 
       goto unlock; 
 if (memcmp(ahp->work_icv, auth_data, ahp->icv_trunc_len)) 

      err = -EBADMSG;  

 In the code, the original  ah->auth_data  is first backed up in  auth_data , 

and then the  ah_mac_digest()  function computes the ICV (in the ahp 

structure) just like the  ah_output()  function does (see below). Both values 

are compared to check whether the packet is valid. If it is valid, the packet is ac-

cepted; otherwise, the packet is discarded. 

 The  ah_output()  function also calls  ah_mac_digest()  to generate 

the ICV for verification on the receiver side, and then copies this value to  ah-
>auth_data  in the AH header with the following code: 

  err = ah_mac_digest(ahp, skb, ah->auth_data); 
 memcpy(ah->auth_data, ahp->work_icv, ahp->icv_trunc_len);  

 For simplicity, we introduce only the AH implementation herein. The ESP 

implementation is left to the reader for further study.  

  Exercises 
    1. Find in  xfrm_input.c  how the  xfrm_input  function determines the 

protocol type and calls either the  ah_input()  or the  esp_input()  

function.  

   2. Briefly describe how a specific open source implementation of hash al-

gorithm, e.g., MD5, which consists of  md5_init ,  md5_update  and 

 md5_final , is executed in the  ah_mac_digest  function.    

lin76248_ch08_590-653.indd   614lin76248_ch08_590-653.indd   614 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 615

   FIGURE 8.16 SSL transaction flow. 

Client Server
SSL client HELLO

client certification

client key exchange (RSA)

certificate verification

SSL server HELLO

server certification

request client certification

change cipher spec

finished

Encrypted data stream (DES)
Encrypted data

SSL handshake

  Secure Socket Layer (SSL) 

 NetScape proposed SSL to support encryption and authentication of data exchange 

between a Web client and the server. It was later standardized as the Transport Layer 

Security protocol (TLS) in RFC 2246. SSL/TLS operates between the transport and 

application layers. Before performing SSL, the client and server should negotiate 

the data encryption algorithm such as DES or IDEA. After the negotiation, the 

encryption and decryption processes follow in the data transmission.  Figure 8.16  

shows the SSL transaction flow: 

   � Client sends “SSL Client Hello” message to start the encryption mechanism 

with Server.  

  � Server replies with “SSL Server Hello” message to Client, and then sends its 

certification back to Client to request Client’s certification.  

  � Client sends its certification to Server. (Client’s certification should be optional 

as most clients do not have certification.)  

  � After that, Server and Client negotiate the key exchange, in which the session 

key is encrypted with Server’s public key. Finally, Client and Server both share 

the session key and perform secure data exchange with it.    

 SSL supports data encryption between Client and Server, but it lacks an integrated 

secure payment mechanism at the backend, e.g., secure payment with credit card. 

Assume that Alice orders something from Bob and pays for it by credit card. The 

credit card information should be securely sent to Bob. Since Bob has the key to 

decrypt the encrypted information of Alice’s credit card, Bob may abuse Alice’s 

credit card information. SSL also lacks a certification mechanism to certify Client’s 

credit card transactions. Once a hacker has somebody’s credit card number, he may 

abuse it.    

lin76248_ch08_590-653.indd   615lin76248_ch08_590-653.indd   615 24/12/10   4:26 PM24/12/10   4:26 PM



616 Computer Networks: An Open Source Approach

  Secure Electronic Transactions (SET) 

 Visa, MasterCard, IBM, Microsoft, and HP cooperatively proposed Secure Elec-

tronic Transactions (SET) in February 1996. The Secure Electronic Transaction LLC 

(also called the SETC) organization was established in July 1997 to manage and 

promote the SET protocol. The characteristics of SET are:  

� SET provides only the encryption of related information in payment, while SSL 

encrypts information between the client and server.  
� SET encrypts highly sensitive data transferred among the buyer, selling party, 

and selling party bank, all required to have the digital certification.  
� The main difference between SET and SSL is that SET will not give the credit 

card number to the seller, so the seller cannot abuse the number.   

  Figure 8.17  illustrates the operation of SET, which involves four main roles: buyer 

Bob, e-shop seller Alice, cardholder’s bank, and e-shop’s bank. Bob’s public key (E B ) 

and private key (D B ), Alice’s public key (E A ) and private key (D A ), and certifications 

of four parties are involved in the operations of SET. The flow of the transaction is 

as follows: 

 Historical Evolution: HTTP Secure (HTTPS) and 
Secure Shell (SSH) 

 HTTP Secure (HTTPS) uses the SSL/TLS protocol to provide data encryption 

and secure identification to HTTP. Therefore, an outsider is unable to view the 

real content in the payloads, even though the packets might be  eavesdropped.  
The Web  server  must be provided with a public-key certificate signed by a 

certificate authority (CA). The certificate contains a public key and the owner’s 

identity. The CA is an organization that issues such a certicate, and guarantees 

that the certificate can be trusted. The  browser  will  verify  the truth of the certifi-

cate when the user browses a Web site providing HTTPS access, and will warn 

the user if the certificate is susceptible. The user therefore will not be easily 

cheated by a  fake  Web site. However, it is still the user that defines the security of 

HTTPS. If a user simply ignores the warning and goes on viewing the Web site, 

the security will be void. As opposed to HTTP, HTTPS runs on port 443 by 

default, and is accessed with the URL beginning with “https.” 

 Like HTTPS, SSH (standing for Secure Shell), running on port 22, can 

provide similar security. As opposed to telnet, the data transmitted in SSH is en-

crypted, so it is a good replacement for the insecure telnet. The usage of SSH is 

versatile, including SSH FTP (known as SFTP) or Secure Copy (known as SCP) 

for secure file transmission. Also similar to HTTPS, SSH supports key exchange 

and server authentification. It also supports a public-key mechanism for user au-

thentication, in addition to the password mechanism. For example, a user can gen-

erate a public key and store it on the server. The user keeps its own private key, and 

the key pairs can be verified when the user logs into the server. Due to its security, 

SSH is very popular for execution in a remote shell and secure file transmission. 

lin76248_ch08_590-653.indd   616lin76248_ch08_590-653.indd   616 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 617

    1. Bob selects a product from Alice’s e-shop and informs Alice that he will pay by 

credit card.  

   2. Alice returns the transaction ID of this order to Bob.  

   3. Alice sends her certification and public key and the public key of her bank to Bob.  

   4. Bob receives the messages at Step 3.  

   5. Bob makes the order through the network and has order information (OI) and 

purchase information (PI). He encrypts OI with Alice’s public key and sends it 

to her. At the same time, Bob encrypts PI with the public key of Alice’s bank and 

sends it to the bank.  

   6. Alice sends “Request to Certificate” message to Bob’s credit card bank with the 

order ID.  

   7. Alice uses the public key of her bank to encrypt the following messages: Bob’s 

encrypted PI, her certification, and “Request to Certificate” message, and sends 

them to her bank.  

   8. Alice’s bank decrypts these encrypted messages and checks whether they have 

been modified.  

   9. Alice’s bank uses the original exchange mechanism of credit card to process the 

related operation.  

   10. Bob’s bank replies the certification result to Alice’s bank.  

   11. If Alice’s bank receives “successful certificated,” then it replies the message to Alice.   

 If everything is fine, Alice sends the reply of the order message to Bob to ensure that 

the transaction has been done. Each pair of request and response needs two parties 

to protect any third party from modifying or gathering secure information. Further-

more, Alice cannot obtain Bob’s credit card number. As a result, SET can ensure a 

secure transaction environment through networks.    

   FIGURE 8.17 The flow of SET operation. 

MerchantInternet

Internet

Cardholder

1

6,7

9

10

11

12

2,3

4

5

8

Credit
card

Issuer/credit
card bank

Merchant
server

Acquirer
(bank)

CA

Payment
gateway

lin76248_ch08_590-653.indd   617lin76248_ch08_590-653.indd   617 24/12/10   4:26 PM24/12/10   4:26 PM



618 Computer Networks: An Open Source Approach

  8.2.6 Comparison on VPNs 
 It is a good time to compare the VPN technologies presented in the preceding three 

subsections. According to the protocols on which the VPN is based, the VPN tech-

nology can be classified into L2TP/PPTP (at the link layer), IPSec (at the network 

layer), and SSL (above the transport layer) VPNs. Generally, the  higher  the layer 

within which the VPN operates, the  easier  the setup and configurations can be; how-

ever, operating at a  lower  layer could support a  wider  range of upper-layer protocols. 

 L2TP VPN supports authentication and privacy derived from PPP. The authenti-

cation protocols that L2TP supports include PAP, CHAP, MS-CHAP v1 and v2, etc., 

while the data can be encrypted with algorithms such as 3DES. Its best advantages 

are the ability to transport a wide range of L2 protocols: Ethernet, Frame Relay, PPP, 

ATM, etc., and non-IP protocols, such as IPX or Appletalk. However, L2TP is  not  
secure enough, and may be subject to several attacks. Simply put, L2TP provides au-

thentication between the LAC and the LNS in the tunnel level, but the authentication 

is still not on a per-packet basis. For example, the attacker has a chance of  hijacking  

an L2TP tunnel  prior  to the tunnel establishment. Moreover, L2TP does not provide 

key management services. Due to the dominance of Internet Protocol, the need for 

non-IP support is also  decreasing.  L2TP also requires the installation of L2TP client 

software before using it. 

 In the tunnel mode of IPSec, the entire IP packet is encrypted, and the packet is 

encapsulated with a new IP header. Therefore, IPSec can serve the purpose of creat-

ing VPN. We will not repeat the details of IPSec but will summarize the advantages 

and disadvantages of IPSec VPN here. Like L2TP VPN, IPSec can support all upper-

layer protocols besides TCP. Moreover, it is  immune  to TCP-related attacks such as 

 denial of service  and forged RST to terminate a connection. Its primary disadvantage 

is that it is harder to  deploy.  First, the system must support IPSec and have related 

client software. This drawback has negative effects on deployment at a large scale. 

Second, traffics in IPSec VPN must be  explicitly  permitted by the corporate firewalls, 

and thus using IPSec VPN requires extra work in firewall configuration. 

 SSL VPN has become popular recently because it is very user friendly. A user 

can simply use an ordinary browser to set up the VPN. The operation of SSL VPN is 

simple. In the beginning, the user contacts the VPN gateway through a browser. After 

the user logs in, the gateway will authenticate itself to the user and send an encrypted 

 session cookie  to the browser. Both of them then start to communicate and exchange 

the session key. Since so many devices can now browse Web, this feature is quite 

advantageous and is the main reason for the popularity of SSL VPN.    

  8.3 ACCESS SECURITY 

  Controlling access between the private and the public networks is an essential 

solution to network security. In this section, we cover the network devices for ac-

cess control—the firewalls. Firewalls can filter network traffic according to the 

information in the network/transport layers, such as IP addresses and port numbers, 

or application-layer information, such as URLs. After a brief overview of firewall 

lin76248_ch08_590-653.indd   618lin76248_ch08_590-653.indd   618 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 619

systems, we introduce each type of firewall.  Netfilter / iptables  and  FWTK  are 

two example open source implementations. 

  8.3.1 Introduction 
 A firewall is a common product to protect enterprise networks by providing access 

control between the private and the public network. The packets can pass through 

the firewall if they are permitted by access rules; otherwise they will be blocked. 

The blocking action may be also audited. Since the hosts in the private network are 

hidden behind the firewall, accessing them must be explicitly permitted by the fire-

wall. Unauthorized outside users are not aware of the servers or hosts in the private 

network behind the firewall. 

 Firewall filtering is bidirectional. An organization can also restrict its users’ access 

to the Internet from its private network based on some access policies. For example, 

the employees may not be allowed to access external FTP sites during working hours. 

 Since packets from either direction must pass through a firewall, the effi-

ciency with which the firewall classifies a large number of packets is critical, or 

the firewall could become a bottleneck. Although the examined packet informa-

tion is generally L3 and L4 information, such as IP addresses and port numbers, 

examining only the L3 and L4 information becomes insufficient as (1) a given 

service may not run on a standard well-known port, making it easy to evade the 

control policy, and (2) finer-grained control based on application-layer informa-

tion is needed. For example, a Web filter can examine whether the URL request 

points to a permitted site. 

 Therefore, two types of firewalls are needed: network/transport layer firewalls 

and application layer firewalls, in terms of the checked fields of a packet. Detailed 

descriptions are given in the next two subsections.  

  8.3.2 Network/Transport Layer Firewall 
 A network/transport layer firewall is also called a packet filter; i.e., it filters the 

packets based on fields in the network layer and the rules configured by the ad-

ministrators. The fields can be protocol ID, source/destination IP address, source/

destination port number of TCP or UDP, etc. Such firewalls can be further separated 

into screened host firewall and screened subnet firewall.  Figure 8.18  shows the 

framework of screened host firewall. In a screened host firewall, both incoming and 

   FIGURE 8.18 Screened host firewall. 

Internet

Bastion host

IP filtering router

Private
network

Allow

Disallow

lin76248_ch08_590-653.indd   619lin76248_ch08_590-653.indd   619 24/12/10   4:26 PM24/12/10   4:26 PM



620 Computer Networks: An Open Source Approach

outgoing packets must pass through the bastion host. In other words, the IP filtering 

router can permit or prohibit packets across the bastion host according to the rules 

that specify the IP addresses to be allowed or disallowed.  
 In this framework, the bastion host is outside the private network and must resist 

any attack. This framework has the advantage that setting packet filtering in the IP 

filtering router is simple because packets in both directions must pass through the 

bastion host. Its drawback is that if the administrator permits a particular service in 

the private network, the entire private network will be exposed to the public network. 

The security would decrease dramatically if packets could access the private network 

via these services.  
  Figure 8.19  shows the framework of a screened subnet firewall, which utilizes 

two IP filtering routers in the private network and DMZ (Demilitarized Zone). In 

practice, this framework can also be implemented with a single router with multiple 

interfaces (to the Internet, private network, and DMZ). Because an IP filtering router 

is built near the private network, the hosts in the private network do not expose 

themselves to the public network even though the IP filtering router near the Internet 

opens some services in the private network without passing through the bastion host. 

This can avoid the drawback of screened host firewall. Setting the IP filtering router 

is similar to screened host firewall. The IP filtering router next to the public network 

sets the access rules to confirm the destination IP address to the private network, and 

the source IP address from private network to public network must be that of the 

bastion host. The IP filtering router next to the private network sets the access rules 

to confirm that the destination IP address of the packets from the private network 

and the source IP address of packets to the private network must be the bastion host. 

 If an organization provides some services to the Internet, such as e-mail, Web, 

and DNS, these servers should not be located inside the private network. If these 

servers are compromised, an attacker then can reach all the hosts in the private net-

work via the compromised servers as if there were no firewalls. The DMZ, an area 

between the external firewall and the internal firewall, is the right location to place 

the servers. Even if an attacker has compromised the servers in the DMZ, he or she 

is still unable to access the hosts in the private network behind the internal firewall. 

Note that the servers in the DMZ should not be allowed to actively access the private 

network, or the attacker still has a chance to reach the private network if the servers 

in the DMZ are compromised. 

     FIGURE 8.19 Screened subnet firewall. 

Internet

Bastion host

IP filtering router

Private
network

IP filtering routerDMZ

lin76248_ch08_590-653.indd   620lin76248_ch08_590-653.indd   620 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 621

 Open Source Implementation 8.4: Netfi lter and 
iptables 

  Overview 
 Netfilter is a set of checkpoints in the system kernel that monitor the packets passing 

through individual communication protocols. These checkpoints are called  hooks.  
With these hooks, it becomes possible to manipulate the packets on the packet path 

in the kernel. Each hook has a unique hook number so Netfilter can check whether 

the current communication protocol has a registered hook for the packets being 

processed via Netfilter. If a registered hook exists, these packets must be checked 

and must follow the definitive rules to be processed with the following five actions: 

   � NF_ACCEPT : Accept the packet.   
  � NF_DROP : Drop the packet without processing it.   
  � NF_STOLEN : Netfilter processes packet, but not the following communication 

protocol.   
  � NF_QUEUE : Save packet into the queue.   
  � NF_REPEAT : Call this hook to process packet again.     

  Block Diagram 
 In Netfilter, IP tables perform packet checking against five registered hooks: 

    1. NF_INET_PRE_ROUTING  

   2. NF_INET_LOCAL_IN  

   3. NF_INET_FORWARD  

   4. NF_INET_POST_ROUTING  

   5. NF_INET_LOCAL_OUT   

  Figure 8.20  shows the relation between five hooks. 

   NF_INET_PRE_ROUTING  represents the hook before the host receives the 

packet and before it has processed the routing function.  NF_INET_LOCAL_IN  

is the hook to find which destination address is the host after processing the 

routing function.  NF__INET_FORWARD  is the hook for the packets that must 

be transferred to another host after processing the routing function.  NF_INET_
POST_ROUTING  is the hook after completing the routing function.  NF_INET_
LOCAL_OUT  represents the hook before processing the routing function. 

 When the hooks proceed to examine packets, the packet-filtering rules from 

 iptables,  which is a user-space program that specifies the conditions to accept, 

drop, or queue the packets, must be applied.  

  Data Structures 
 The following three data structures represent an iptables rule: 

     1. struct ipt_entry , includes the following fields.

    � strcut ipt_ip  : the IP header to be matched.  

Continued

lin76248_ch08_590-653.indd   621lin76248_ch08_590-653.indd   621 24/12/10   4:26 PM24/12/10   4:26 PM



622 Computer Networks: An Open Source Approach

� nf_cache : the bit sequence representing which fields in the IP header 

must be checked.  
� target_offset : represents the initial location of  struct 
ipt_entry_target .  

� next_offset : the offset from the beginning of a rule at which the 

ipt_entry_target  structure is.  
� comefrom : a field for the kernel to track the packet transmission.  
� struct ipt_counters : records the number of packets and the 

packets themselves that match a rule.     

2. struct ipt_entry_match : records the compared packet content.  

3. struct ipt_entry_target : records actions (i.e., the targets) after 

comparison.    

  Algorithm Implementations 
 The source codes of iptables are located in the  net/ipv4/netfilter
directory (relative to the kernel source tree). The  ipt_do_table()  function 

in  ip_tables.c  handles a packet examined by a rule specified in the 

iptables   program. The prototype of the hook is as follows: 

 ipt_do_table(struct sk_buff *skb, unsigned int hook, 
const struct net_device *in, const struct net_device 
*out, struct xt_table *table);  

 Here  skb  points to the packet,  hook  is the hook number that identifies a 

hook,  in  and  out  are the input and output network devices, and  table  is 

   FIGURE 8.20 Hooks registered with Netfilter. 

ROUTEA C D

Local Process

B E

ROUTE

lin76248_ch08_590-653.indd   622lin76248_ch08_590-653.indd   622 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 623

the rule table. In the beginning, the  ipt_do_table()  function attempts to 

locate the list of rules indexed from  hook  in the following statements: 

private = table->private; 
 table_base = (void *)private->entries[smp_processor_id()]; 
 e = get_entry(table_base, private->hook_entry[hook]);  

 Here   e   is a pointer to the  ipt_entry  structure of the rule. After the list of rules 

indexed from  hook  is found, the code starts to match the IP header information, 

e.g., the source and destination IP addresses, of each rule with that of the incom-

ing packet. If the header information is matched, then the code continues to 

match the packet content specified in the  ipt_entry_match  structure. The 

following code corresponds to the matching process. 

 if  (ip_packet_match(ip,  indev,  outdev,  &e->ip, 
mtpar.fragoff)) { 
  struct ipt_entry_target *t; 
   if (IPT_MATCH_ITERATE(e, do_match, skb, &mtpar) != 0) 
      goto no_match;  

 Here the  ip_packet_match()  function matches the header information, and 

the  IPT_MATCH_ITERATE  macro matches the packet content. The following 

statement is then called to get the target (i.e., action) of the rule if the packet is 

matched. 

  t = ipt_get_target(e);  

 Otherwise the execution just continues matching the next rule (from the  no_
match  label).  

  Exercises 
    1. Indicate which function is eventually called to match the packet content in 

the  IPT_MATCH_ITERATE  macro.  

   2. Find out where the  ipt_do_table()  function is called from the hooks.    

   8.3.3 Application Layer Firewall 
 An application layer firewall filters the packets in the application layer against a set 

of application signatures such as URLs. This type of firewall can provide finer ac-

cess control than those examining only the L3 and L4 information. For example, the 

destination port number of HTTP requests is usually 80. If a network administrator 

wants to block access to only a blacklist of Web sites, it will be insufficient for a fire-

wall to examine only the port number, as all HTTP requests are targeted at port 80. 

Therefore, it is necessary to examine the packet content. 

 Since the application content is not available until a TCP connection has been 

established, a common type of application layer firewall is the proxy server. For 

lin76248_ch08_590-653.indd   623lin76248_ch08_590-653.indd   623 24/12/10   4:26 PM24/12/10   4:26 PM



624 Computer Networks: An Open Source Approach

example, a host that accesses a Web resource first establishes a connection with the 

local proxy, and then it sends out the URL request, which is examined by the firewall. 

If the URL is permitted, the proxy forwards the URL request via another connection 

to the Web server; otherwise, the request is simply not forwarded. Not only HTTP 

but also other protocols such as FTP, SMTP, POP3, and so on can be filtered in a 

similar manner. Open Source Implementation 8.5 shows the example of FireWall 

Toolkit (FWTK), which is an application-layer firewall that supports filtering these 

application protocols.  

 Open Source Implementation 8.5: FireWall 
Toolkit (FWTK) 

  Overview 
 FireWall Toolkit (FWTK) is a set of proxy programs for building an 

application-layer firewall. In the set are the firewalls for major application 

protocols such as SMTP, FTP, and HTTP proxy servers. Development of the 

original FWTK package stopped more than 10 years ago, but it was later 

resurrected as a package named  openfwtk  in SourceForge to resume the 

development. 

 When a program in this package is executed, the file  netperm-table  

is loaded for the settings and rules of packet filtering. The file is common 

for the applications in FWTK, and contains two rule types: generic proxy 

rules and application-specific rules. The  cfg_append()  function in  cfg.c  

calls the  read_config_line()  function to read and parse each line in 

 netperm-table . 

 The primary entry in  netperm-table  has three fields: application 

name, parameter name, and parameter content. We use the configuration for the 

 squid-gw  HTTP application proxy as an example. For example, the following 

two rules forbid all accesses that give an IP address as the host name and allow 

accesses to the .edu domain in plain HTTP URLs. 

  squid-gw: deny-destinations http*://*.*.*.* 
 squid-gw: destinations http://www.*.edu   

  Block Diagram 
 We use the  squid-gw  proxy as the example to introduce the execution flow 

of application-layer firewalls.  Figure 8.21  presents the major blocks invoked 

in the  main()  function of the  squid-gw  proxy. In the execution flow, the 

configuration is first read in  config_global() . When the HTTP request 

arrives, it is processed and matched against the rules within  http_process_
request() . If the access is granted,  http_send_request()  sends the 

request and  http_response()  processes the response.   

lin76248_ch08_590-653.indd   624lin76248_ch08_590-653.indd   624 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 625

  Data Structures 
 The most important data structure in this package is the   Cfg   structure, which 

stores the configuration and the rules. Its definition is presented below. 

 typedef struct cfgrec { 
     int   flags;      /* see below */ 
     int    ln;        /* line# in config file */ 
     char     *op;         /* facility name */ 
     int    argc;       /* number of arguments */ 
     char     **argv;        /* vector */ 
     struct cfgrec  *next; 
 } Cfg;  

 From the  next  field, it can be found that the structure is a node in a list. After 

reading each line in  netperm-table , the  cfg_append()  function stores 

each line of the configuration into a node, which is appended to the list. The 

flags  field is  PERM_ALLOW ,  PERM_DENY  or 0 (if the configuration line 

is related to neither permission nor denial). The  op  field is the object, such as 

 connect  and  href , that the action refers to. The associated arguments and 

their number are stored in  argv  and  argc .  

  Algorithm Implementations 
 The primary functions executing such rules are in  squid-gw.c . When receiving 

a forwarding request from a client,   squid-gw   iteratively compares the request 

with each stored rule. The rule-matching code segment in  static int match_
destination (Cfg *cf, const char *s, const struct url 

   FIGURE 8.21 Block diagram of the  squid-gw  execution flow. 

main

config_global

http_read_request

http_process_request

http_send_request

http_response

Continued

lin76248_ch08_590-653.indd   625lin76248_ch08_590-653.indd   625 24/12/10   4:26 PM24/12/10   4:26 PM



626 Computer Networks: An Open Source Approach

*u, const char *method)  called from  http_process_request()
indirectly (two other functions in between) is presented as follows: 

 if (cf->argc > 0 && (strcmp (cf->argv[0], “GET”) == 0 
            || strcmp (cf->argv[0], “HEAD”) == 0 
            || strcmp (cf->argv[0], “POST”) == 0)) 
  { 
   if (strcmp (cf->argv[0], method) != 0) 
    return -1; /* Skip the complete rule */ 
   ++i; /* Skip the request method */ 

 }  

 In this piece of code, the configuration is stored in the  cf  structure after 

 netperm-table  is parsed. If the request method, i.e., GET, HEAD, or POST, is 

specified in a rule ( cf->argv[0] ), the method of the forwarding request is first 

checked. The complete rule is simply ignored if the two methods do not match. 

After comparing the request method, the following code segment is executed: 

 while (i < cf->argc && cf->argv[i][0] != ‘-’) 
   { 
    if (strcmp (cf->argv[i], “*”) == 0) 
     cmp = 0; 
    else 
     { 
     if (url_parse (&pattern, (octet*) cf->argv[i], 
strlen (cf->argv[i]), UPF_WILDCARD | UPF_NODEFPORT) != 0) 
       url_error (“destinations”, cf->ln); 
      cmp = url_compare ((octet*) cf->argv[i], 
&pattern, (octet*) s, u, UCF_IGNORE_CASE | UCF_WILDCARD); 
     } 
    if (cmp == 0) 
    // A URL match is found. Details skipped here. 

  }  

 The URLs specified in that rule are matched against those in the forwarding 

request in turn. If the URL in comparison is a wildcard character, a match is 

asserted ( cmp == 0 ); otherwise, the URL is parsed and compared with that 

in the forwarding request. The comparison continues until a match is found. 

The access will be granted if a match is not found (not shown in the above 

code segment). The two functions for URL parsing and URL comparison are 

url_parse()  and  url_compare() . They are implemented in  url.c . We 

leave the details of URL parsing and comparison to readers.  

  Exercises 
    1. Find out how the  url_parse()  and  url_compare()  functions are 

implemented in this package.  

   2. Do you think the rule-matching approach is efficient? What are possible 

ways to improve the efficiency?    

lin76248_ch08_590-653.indd   626lin76248_ch08_590-653.indd   626 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 627

 Compared with firewalls that examine the network layer and the transport layer 

header information, an application-layer firewall is more complicated. The fields in 

the network-layer header or transport-layer header are fixed in position and length. 

The complexity of packet filtering in the former firewall, which matches these fixed 

fields against the policy rules, is moderate. In comparison, an application-layer fire-

wall needs to examine the packet content in the same view as the destination appli-

cation, parse the application protocol to restore its semantics, and search the packet 

content (within the related application fields) for a set of signatures. The position in 

which a signature may occur is not fixed, and the lengths of the signatures may vary 

a lot. The signature may be represented in a complex form, such as regular expres-

sions, making signature matching even more complicated. 

 In addition to the complexity of signature matching, if the application-layer fire-

wall is implemented as a proxy like FWTK, it can leverage the protocol stack in the 

operating system to perform all the work to restore the packet content, such as packet 

reassembly, but the firewall is not  transparent  to the users. The users must configure 

their application to use the proxy. An application-layer firewall can be made trans-

parent by silently eavesdropping the packets and reassembling the packets to restore 

the content, but the program should deal with the complexities that the TCP protocol 

stack handles. This overhead is nontrivial. All of these issues make the efficiency of 

an application-layer firewall a great challenge.      

  8.4 SYSTEM SECURITY 

  Methods of attacking a system involve three tasks: gathering information, exploit-

ing vulnerabilities, and then attacking with malicious codes. Gathering information 

means obtaining critical or private information by means of monitoring, scanning, 

and social engineering. Knowing the system information, an attacker then attempts 

 Principle in Action: Wireless Access Control 

 A trivial approach to wireless access control is allowing access only from 

wireless interfaces whose MAC addresses are on the  white  list. However, this 

approach can be easily compromised because the source MAC address can be 

easily  spoofed.  A stronger access control is mandatory. 

 The access control mechanism can be implemented in the link layer or even 

in a higher layer. In the link layer, the pre-shared key mode in the Wi-Fi Pro-

tected Access (WPA) specification provides passphrase protection  without  the 

need of an authentication server. The Extended Authentication Protocol (EAP) 

mode in IEEE 802.1X defines the whole procedure to identify and authenticate 

the user before granting the network access. In higher layers, deploying Virtual 

Private Network (VPN) is a good choice for securing wireless networks. The 

VPN technology, which provides authentication, privacy, and confidentiality, is 

an  additional  protection on top of WPA. 

lin76248_ch08_590-653.indd   627lin76248_ch08_590-653.indd   627 24/12/10   4:26 PM24/12/10   4:26 PM



628 Computer Networks: An Open Source Approach

to find and leverage the vulnerabilities on that system. Finally, the attacker launches 

an attack by infiltrating malicious programs into the system or directly attacking the 

system. We cover the techniques in each of these tasks. After introducing the tech-

niques from an attacker’s perspective, we present various defense techniques. We 

pick ClamAV, Snort, and Spamassassin as the example open source implementations. 

  8.4.1 Information Gathering 
 An attacker usually scans a target system to gather information such as service-

providing programs, open ports, or even exploits before launching the subsequent 

attacks. The gathering techniques involve  scanning  and  monitoring.  Two typical 

types of scanning are  remote scanning  and  local scanning.  Monitoring gathers infor-

mation about network or computer systems, such as passwords. Two typical types of 

monitoring are  sniffing  and  snooping.  Jung et. al in 2004 discussed how to detect port 

scanning with a statistical approach. 

  Remote Scanning 

 Remote scanning means to scan a remote target system to gather information such as 

host name, open-service, service-providing program, and possible remote exploits. 

An example of remote scanning software is Nessus ( www.nessus.org ), which adopts 

a client/server framework and provides a GUI for easy operation.  

  Local Scanning 

 Local scanning means to scan a local target system to gather information such as 

significant system files, privileged programs, and possible exploits within the host. 

Its representative is COPS in UNIX. TIGER is another local scanning program and 

also works under UNIX.  

  Sniffing 

 Sniffing suggests intercepting packets to access the information via local area net-

works. A host normally accepts only packets destined to itself, but it can eavesdrop 

all the packets through it by configuring its network interface in the “promiscuous 

mode.” A well-known program for this type of monitoring is Sniffer. 

 A sniffing program called a distributed network sniffer can be hidden at the 

server and client ends. An attacker can invade a host and install a “client” program to 

monitor all the packets, analyze user identifiers and passwords, and send those data 

to the “server.”  

  Snooping 

 This type of system monitoring means monitoring memory, disks, and/or other 

stored data to gain information inside the host: e.g., monitoring and recording which 

key is struck on the keyboard. Based on the gathered information, an attacker can 

intrude into other hosts later. 

 Snooper usually uses a pack of backdoor programs. We will describe the back-

door programs in malicious code as well as the functions of system monitoring.  

lin76248_ch08_590-653.indd   628lin76248_ch08_590-653.indd   628 24/12/10   4:26 PM24/12/10   4:26 PM

www.nessus.org


 Chapter 8 Network Security 629

  Social Engineering 

 Social engineering tries to manipulate human weakness rather than attack through 

systems or the Internet. An example is that the attacker sends an e-mail or makes a 

call to the user, claiming he is the system operator and asking the user for his private 

information. Social engineering also includes peeking for the password while the 

hacker stands behind the user.   

  8.4.2 Vulnerability Exploiting 
 Vulnerabilities are design errors in programs or software that an intrusion can exploit 

to obtain important system information or administrator authority or to disable the 

system. There are numerous programs in the world, and many may have errors. Even 

when programs have no errors in their design, their users may still make mistakes in 

operation that create vulnerabilities. 

 Buffer overflow is the most well-known design error. Input data may overflow 

the buffer space without careful checking on the buffer’s capacity. If the user stores 

101 bytes in a 100-byte array, the extra one byte may overwrite other variables and 

lead to unexpected execution results.  Figure 8.22  shows an example in which the user 

uses the vulnerability of buffer overflow to run his program. When the  called()  

function is called, the operating system will set up a stack for the function. In this ex-

ample, the user just needs to store data containing attacking codes in the buffer. If the 

program does not check the input size, the data could be arbitrarily long and hence 

overwrite the returning address in the stack with the starting address of the piece of 

attacking code. When the function finishes, the control will return to the caller by 

referring to the fake returning address, and the program flow will go to the attacking 

code.  

  Remote Vulnerabilities 

 A hacker may intrude into remote systems to get unauthorized data, user’s ID and 

password, or system administrator authority by remote exploits. Since the target is 

a remote system, such exploits usually take place in online service, e.g., the mail 

   FIGURE 8.22 An example of buffer overflow. 

Stack pointer

Return address

Buffer (200 bytes)

Stack pointer

Cracked file address

Buffer (200 bytes)

. . . . . .

. . .

. . .

. . .

. . .

Put more data into buffer,
then cause buffer overflow
and point to the cracked
file address

void called()
{
    . . .
    char buffer[200];
    . . .
}

lin76248_ch08_590-653.indd   629lin76248_ch08_590-653.indd   629 24/12/10   4:26 PM24/12/10   4:26 PM



630 Computer Networks: An Open Source Approach

service provided by  sendmail,  which was reported to have exploits several times. 

Most of these exploits are buffer overflows. 

 Another example is  wu-ftpd , whose 2.6 version has the buffer overflow 

problem. It occurs in the function  *printf()  in the command   site exec  . 
A hacker may use a formatted string to overwrite the return address to get the 

buffer overflow. 

 A package of Web clustering named Piranha comes with a default user ID 

 piranha  with the password  q  after installation. If the system operator installs the 

package without changing the default account, the hacker may apply this user ID 

to access the program, resulting in a remote exploit.  Table 8.2  lists several remote 

exploits that can provide access to the operator’s password. 

 One more example of remote vulnerability is the protocol-based attack. The 

protocol-based attack tries to attack a remote host by exploiting errors, poor design, 

or ambiguous definition in TCP/IP. For example, IP spoofing can attack an address-

based authentication system, in which a hacker intrudes into a system by spoofing the 

destination IP address as acceptable by the system.  

  Local Vulnerabilities 

 In an attack on local vulnerabilities, a hacker acquires unauthorized data or higher-

priority authority, such as an administrator’s password, from a normal user identity 

on a system. This vulnerability usually occurs in the design of a privileged program 

or an implementation error. 

TABLE 8.2 A List of Remote Vulnerabilities to Obtain the Administrator’s Rights

Vulnerabilities Application Version Reason

phf remote command execution 

vulnerability

Apache Group Apache 1.0.3 Input validation error

Multiple vendor BIND (NXT 

oveflow) vulnerabilities

ISC BIND 8.2.1 Buffer overflow

MS IIS FrontPage 98 extensions 

buffer overflow vulnerability

Microsoft IIS 4.0 Buffer overflow

Univ. of Washington imapd buffer 

overflow vulnerability

University of Washington 

imapd

12.264 Buffer overflow

ProFTPD remote buffer overflow Professional FTP proftpd 1.2pre5 Buffer overflow

Berkeley Sendmail daemon mode 

vulnerability

Eric Allman Sendmail 8.8.2 Input validation error

RedHat Piranha Virtual Server 

package default account and 

password vulnerability

RedHat Linux 6.2 Configuration error

Wu-ftpd remote format string stack 

overwrite vulnerability

Washington University 

wu-ftpd

2.6 Input validation error

lin76248_ch08_590-653.indd   630lin76248_ch08_590-653.indd   630 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 631

 For example, Xterm is a terminal emulator in the X Window system. In its early 

version, it was vulnerable to a buffer overflow exploit: If the system replaces Xterm 

with SUID root, i.e., Xterm is executed with the identity of root, the attacker might 

get the administrator authority.  

  Password Cracking 

 Password cracking is an attempt to find out the passwords on a system by trying 

possible passwords, which may be directly derived from a dictionary file, and from 

a number of combinations and mutations of the words in the dictionary. A password-

cracking program requires a system file in which the accounts and encrypted pass-

words on a system are stored, say  /etc/shadow  in UNIX systems. Password 

cracking proceeds as follows: 

    1. Pick up a possible password from the dictionary file. The password may be a 

combination of or mutations from one or multiple words from the file.  

   2. Encrypt the password in exactly the same way as that in the system password 

file, say using SHA1.  

   3. Compare the encrypted password with that to be cracked. If both are the same, 

the cracking succeeds. Otherwise, go back to step (1) and try another password 

until the cracking program guesses correctly.   

 The password file is normally well protected, and only the administrator can 

read that file. Password cracking is nontrivial in practice. Common approaches 

are exploiting vulnerabilities (e.g., using buffer overflow attacks) of a system, 

executing a program in the context of administrator’s rights to get the file, or 

finding that the administrator has stored a copy of the password file in an unsafe 

manner. If the password file is unavailable, it is still possible to guess the pass-

words by attempting to log in. However, it is quite possible that the host will record 

the attacker’s attempts and allow only a few password errors. The efficiency of 

cracking depends on the system speed and the complexity of passwords. It would 

take less time if the system is very fast and the password is easy to guess (e.g., the 

password is an ordinary English word).  

  Denial of Service (DoS) 

 The denial-of-service (DoS) attack can block services on a server so that others are 

unable to access them. Its trick is to exhaust the limited resources so the service can-

not be carried on. For example, the TCP SYN flood attack fills up the waiting queues 

of the target host, and the ICMP echo reply flood attack exhausts the bandwidth of 

the host. In the case of the TCP SYN flood attack, since TCP sets up a connection 

with three-way handshaking, the attacker stages continuous SYN packets with fake 

addresses, but never supplies the ACK packets in the third step of the handshaking, 

resulting in full waiting queues. The host cannot accept any more connections when 

the queue is full. In the ICMP echo reply flood attack, the hacker simultaneously 

produces a huge number of ICMP echo requests to the target system. Since the target 

system will reply the same number of replies back to the requesters, the huge number 

of ICMP packets will completely exhaust the network bandwidth. Schuba et. al in 

1997 analyzed how the DoS works in depth. 

lin76248_ch08_590-653.indd   631lin76248_ch08_590-653.indd   631 24/12/10   4:26 PM24/12/10   4:26 PM



632 Computer Networks: An Open Source Approach

 Launching the DoS attack on a large scale is called distributed DoS (DDoS). 

 Figure 8.23  shows an example of the DDoS attack. The hacker controls a number 

of agents on the victim hosts. Once the hacker sends the attack command to all the 

agents, they can generate a large number of attacks at the same time.  
 Trinoo is a client/server denial-of-service attacking program based on the UDP flood 

attack. The attacker sends out a large number of UDP packets (which probably have 

spoof addresses to avoid being tracked) to the victim system, which will result in a traffic 

jam or even stop the service. A Trinoo program includes several masters and numerous 

daemons. The attacker first connects to the master and issues an attacking command with 

several important parameters such as IP addresses of targets and when to start the attack. 

After receiving an attack order, the master will connect to all the daemons, which then 

start the attack to all predefined victim systems. The attack proceeds as follows: 

    1. The attacker connects to the master using port 27665/TCP.  

   2. The master connects to the daemons using port 27444/UDP.  

   3. The daemons respond to the master using 31335/UDP.  

   4. The daemons start the attack to the victim systems using UDP flood attacks.    

  8.4.3 Malicious Code 
 The attack with malicious code, also known as malware, involves the hacker attack-

ing a target system via an external device or network. Several types of malicious code 

are introduced here.  

   FIGURE 8.23 Distributed denial of service (DDoS). 

command command

attackattack attack

port 27665/TCP

request: port 27444/UDP
reply: port 31335/UDP

1. UDP flood attack
2. TCP SYN flood attack
3. ICMP echo request flood
4. M attack
5. Targa3 attack

MasterMaster

AgentAgentAgent

Target Target Target Target

Attacker

command

lin76248_ch08_590-653.indd   632lin76248_ch08_590-653.indd   632 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 633

  Virus 

 Viruses demonstrate self-replication and destruction in their behaviors. Originally, a 

virus referred to a program that modified other programs to include a copy of itself. 

The usual infection path in early days was copying a file from a disk. The term virus 
has become a generic name for malware to the ordinary public.  

  Worm 

 Due to its popularity, the Internet has become the major path of malware propagation. 

A worm is a self-propagating program on the Internet. An attack implants a worm into a 

target system, attacks the target, and then propagates the worm to other systems. It begins 

with scanning from an infected host for other vulnerable hosts and then replicating itself 

to them. The network may be choked with the large number of worms propagating on 

the network. Staniford et. al in 2002 studied several ways to propagate worms efficiently. 

 Two well-known examples are Code Red and Nimda. These use distributed de-

nial-of-service (DDoS) to attack Microsoft IIS systems. The propagation occupies a 

large amount of network bandwidth, and prevents the servers from accepting normal 

requests. The DDoS attack quickly spreads all over the world, and results in serious 

traffic jams in networks.  

  Trojan 

 A Trojan disguises itself as an innocent program or file. This term comes from the 

ancient Greek tale in which an attacking force penetrates a walled city by hiding 

inside a huge horse figure that is pulled through the gates. Since the Trojan looks 

benign, a user will be tricked into executing or opening it. After the user acts on the 

program or file, the Trojan can do something harmful, such as installing another 

malware or crashing a program.  

  Backdoor 

 For easy access to the victim system next time after a successful intrusion, the hacker 

can implant a hidden backdoor program in it. For example, Back Orifice 2000 (BO2K) 

is a backdoor program in the Windows environment for fully controlling the system 

via a TCP or UDP connection. It also supports file transfer, monitoring, and recording 

user operations. Furthermore, it can be enhanced with additional plug-ins, such as the 

code to send an e-mail to the attacker while the host is connected to the Internet.  

  Bot 

 A bot is short for “robot,” meaning that the infected systems can be controlled by 

a “botmaster” through a command & control (C&C) channel. The infected systems 

and the botmaster are referred to as “botnet.” After a botmaster takes over these sys-

tems, it can order the infected systems to launch a distributed denial-of-service, steal 

valuable information from these systems, and send a huge number of spam e-mails. 

Rajab et. al in 2006 had studied botnet behaviors in depth. 

 Based on differences between C&C channels, a botnet can be classified as an 

IRC botnet, a P2P botnet, or a hybrid. A botmaster in an IRC botnet controls the bots 

using the IRC protocol. Since the botmaster controls the bots in a centralized manner, 

lin76248_ch08_590-653.indd   633lin76248_ch08_590-653.indd   633 24/12/10   4:26 PM24/12/10   4:26 PM



634 Computer Networks: An Open Source Approach

it is subject to a single point of failure. Therefore, P2P botnets, which transmit the 

commands through P2P networks such as Overnet, are getting popular as they are 

more robust.    

 Open Source Implementation 8.6: ClamAV 

  Overview 
 ClamAV is an open source package for virus scanning. Due to the rapid propaga-

tion of malicious codes and their variants, ClamAV claims have detected over 

570,000 malicious codes (viruses, worms and trojans, etc.) with the release of 

the 0.95.2 version. The signatures exist in several forms, including MD5 for the 

entire executable, MD5 for a certain PE section (part of an executable file), basic 

signatures of fixed strings (to be scanned in the entire file), extended signatures 

(in a simplified form of regular expressions containing multiple parts, plus the 

specification of target file types, offset of a signature, and so on), logical signa-

tures (multiple signatures combined with logical operators), and signature based 

on archive metadata. Please read the  signatures.pdf  in the ClamAV documents 

for details.  

  Block Diagram 
 We present the block diagrams in two major execution flows. The first flow is 

loading the signature database, and the second is scanning a file for viruses. 

 Figure 8.24  presents the block diagram for signature loading. The  cl_load()  

function does a few initial checks and then calls  cli_load()  to read the 

signature file. Accorinding to the file’s extension name (i.e., the type of signature 

file),  cli_load()  calls different functions for loading and parsing signatures. 

   FIGURE 8.24 The block diagram for signature loading. 

cl_load cli_cvdload

cli_loadmd5

cli_loadndb

cli_loadldb

cli_loadwdb

cli_loadpdb

cli_loaddb

cli_parseadd

cli_load

lin76248_ch08_590-653.indd   634lin76248_ch08_590-653.indd   634 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 635

Take the  ndb  file, for example. The  cli_loadndb()  function is called, and 

each line in the  ndb  file is parsed and added into the data structure representing 

the signatures.  

  Figure 8.25  presents the block diagram for signature matching. The 

cli_scanfile()  opens the file and calls  cli_magic_scandesc()  to 

scan the file. The  cli_magic_scandesc()  attempts to identify the file 

type, and calls the corresponding routines to handle the file. For example, if 

the file is compressed in an RAR format,  cli_magic_scandesc()  calls 

cli_scanrar()  to uncompress the file. Note that the file may pack several 

files in a compressed file. Therefore,  cli_scanrar()  may again recursively 

call  cli_magic_scandesc()  to handle these files. In the last level of 

recursion (if any),  cli_scandesc()  will be called to read the file into a 

buffer batch by batch. Then the scanning routines,  cli_ac_scanbuff()  and 

cli_bm_scanbuff() , are called to scan the buffer for viruses. The former 

scans the buffer with the Aho-Corasick (AC) algorithm, and the latter scans the 

same buffer with the Wu-Manber algorithm (incorrectly called the Boyer-Moore 

[BM] algorithm in ClamAV).   

  Data Structures 
 The types of target files allowed in ClamAV are specified in  matcher.h . The 

code of the specification is as follows: 

static const struct cli_mtarget cli_mtargets[CLI_MTARGETS] 
= { 
   { 0, “GENERIC”, 0, 0 }, 
   { CL_TYPE_MSEXE, “PE”, 1, 0 }, 
   { CL_TYPE_MSOLE2, “OLE2”, 2, 1 }, 
   { CL_TYPE_HTML, “HTML”, 3, 1 }, 
   { CL_TYPE_MAIL, “MAIL”, 4, 1 }, 

   FIGURE 8.25 The block diagram for signature matching. 

cli_scanfile

cli_magic_scandesc

cli_scandesc

cli_scanrar

cli_unzip

cli_unzip

…
…

cli_ac_scanbuff

cli_bm_scanbuff

Continued

lin76248_ch08_590-653.indd   635lin76248_ch08_590-653.indd   635 24/12/10   4:26 PM24/12/10   4:26 PM



636 Computer Networks: An Open Source Approach

   { CL_TYPE_GRAPHICS, “GRAPHICS”, 5, 1 }, 
   { CL_TYPE_ELF, “ELF”, 6, 1 }, 
   { CL_TYPE_TEXT_ASCII,”ASCII”, 7, 1 }, 
   { CL_TYPE_PE_DISASM, “DISASM”, 8, 1 } 
 };  

 As we have mentioned, ClamAV stores signatures in separate data structures 

also according to target files by using both the Aho-Corasick and Wu-Manber 

algorithms. The signatures of both algorithms are stored in the  cli_matcher
structure (see  matcher.h ). If the target file of a signature is unspecified 

(e.g., a basic signature), the signature will be added into the data structure as 

the “generic” type. To access these data structures, the  root  field (an array of 

pointers to the  cli_matcher  structure) in the  cl_engine  structure (see 

 others.h ) serves as the array indexed by the file type and points to each 

separate data structure. Therefore, ClamAV scans a file for only the signatures of 

the “generic” type and those associated with the specific file type. For example, 

when scanning a file of the PE format (the Microsoft executable), ClamAV will 

not load the signatures associated with other types (such as HTML). This ap-

proach can reduce false positives and speed up the scanning process because of 

fewer signatures to be scanned.  

  Algorithm Implementations 
 The driving engine of ClamAV is the  libclamav  library, which contains 

the codes to handle archives, compressed files, and executable packers 

(programs to pack the executables to obfuscate code analysis and scanning), 

as well as the signature-matching engines. When ClamAV is launched, the 

 cl_load()  function in  readdb.c  loads signatures from the database and 

stores the signatures in separate data structures according to the target file 

types and the matching algorithms (Aho-Corasick and the Wu-Manber). The 

matchers of both algorithms are in  matcher-ac.c  and  matcher-bm.c , 

respectively. The former is responsible for extended signatures of multiple 

parts, as the automation in the Aho-Corasick algorithm can better represent 

those signatures. The latter is responsible for basic and MD5 signatures, plus 

extended signatures of a single part (i.e., without special characters such 

as wildcards), as the Wu-Manber algorithm can handle fixed (usually long) 

strings easily. 

 The  scanners.c  file contains the major functions to drive virus scanning. 

As we mentioned under “Block Diagram,” these functions are called starting 

from  cl_scanfile() . After several function calls, the  cli_magic_
scandesc()  function determines the type of the archive or compressed file (or 

a raw file) by calling the  cli_filetype2()  function. For each file type, the 

 cli_magic_scandesc()  calls a specific function, say  cli_scanrar() , 

for decoding and scanning the file. No matter what type the file is, after decoding 

or decompressing until a raw file is derived, the  cli_scandesc()  function 

lin76248_ch08_590-653.indd   636lin76248_ch08_590-653.indd   636 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 637

will eventually be called to start virus scanning. It calls the signature matchers 

(in  matcher-ac.c  and  matcher-bm.c ), which then scan the file for the 

signatures of the corresponding target type.  

  Exercises 
    1. Find out how  cli_filetype2() called by  cli_magic_scandesc()

identifies the file types.  

2. Find out the number of signatures associated with each file type (or the ge-

neric type) in both scanning algorithms in your current version of ClamAV. 

(Hint: Use sigtool to decompress the ClamAV virus databases files [*.cvd] 

and examine the resulted extended signature format files [*.ndb].)    

  8.4.4 Typical Defenses 
 Having described the attack methods, we introduce several defense methods in this 

section. The defenses include data encryption, authentication, access control, audit-

ing, monitoring, and scanning.  Table 8.3  lists popular packages categorized into 

four types, i.e., prevention, control, detection, and record. Prevention means keeping 

away from the attacker, e.g., data encryption. Control adopts authentication and ac-

cess control to prevent unauthorized users from accessing unauthorized password/

IDs. Detection means detecting any attacks, such as monitoring and scanning. Re-

cord means recording messages to track attackers, such as auditing. These techniques 

shall be described in the following subsections. 

TABLE 8.3 Protection Packages

Types of Defense Software URL

Data encryption
PGP http://www.pgpi.org/

SSH http://www.openssh.com/

Access control

Firewall-1 http://www.checkpoint.com

Ipchains http://people.netfilter.org/~rusty/ipchains/

TCP 

Wrappers

ftp://ftp.porcupine.org/pub/security/index.html

Portmap http://neil.brown.name/portmap

Xinetd http://www.xinetd.org/

Monitoring
Tripwire http://www.tripwire.com

RealSecure http://www.iss.net

Scanning Pc-cillin http://www.trend.com.tw

lin76248_ch08_590-653.indd   637lin76248_ch08_590-653.indd   637 24/12/10   4:26 PM24/12/10   4:26 PM

http://www.pgpi.org/
http://www.openssh.com/
http://www.checkpoint.com
http://people.netfilter.org/~rusty/ipchains/
http://neil.brown.name/portmap
http://www.xinetd.org/
http://www.tripwire.com
http://www.iss.net
http://www.trend.com.tw


638 Computer Networks: An Open Source Approach

  Auditing 

 Auditing records security-related events in log files, such as logging numbers of failure 

logins or some important activities. The log files are useful for tracking and analyzing 

who or which system was attacked, so the administrator can protect the system to avoid 

the same attack again. Existing operating systems have auditing functions, such as the 

system file wtmp of UNIX. The wtmp file records all login and logout states of all users. 

In Microsoft Windows systems, Event Viewer performs the same function of auditing.  

  Monitoring 

 This mechanism monitors the system for any abnormal activities, such as continu-

ous logging failures. When it detects an attack, the system will (1) call the system 

operator by sending an e-mail, pager, or alarm, (2) stop system or related services to 

reduce possible damages, and (3) try to track the attacker. The system may use attack 

signatures as a clue to identify the attack type. 

 There are two types of monitoring: network-based and host-based. The former 

monitors for any abnormal Internet activities in network hosts. It intercepts packets 

from the network interface card, then analyzes any unusual influence on hosts, and 

reacts appropriately. Network-based monitoring can detect denial-of-service attacks, 

such as TCP SYN flooding. Once it finds that the source of the SYN packet is illegal, 

the monitoring will send an RST packet to the host under attack and stop it from 

indefinite waiting for impossible feedback. Host-based monitors can monitor for any 

abnormal behaviors on a host, such as user logging and activities of system operators 

and file systems. If abnormal activities are detected, the monitor will respond prop-

erly. An example is Tripwire, which regularly examines significant files and com-

pares these important files with those in the database for any illegal modification.  

  Intrusion Detection and Prevention 

 Intrusion detection systems (IDS) detect intrusions based on known signatures or 

anomalous traffic. The former approach scans the packets for known intrusion signa-

tures, but may have  false negatives  for unknown intrusions. The latter method looks 

for anomaly with the traffic, usually in a statistical approach, so that even unknown 

intrusions could be detected. But it may generate false positives if the normal Internet 

activities behave abnormally. It is a trade-off between the two approaches. Whatever 

the approach is, the IDS will generate an alert and may log the packet that triggers 

the alert when an intrusion is detected. 

 The limitation of IDSs is that they generate an alert only upon detecting an intru-

sion; they are unable to  prevent  the intrusion. An IDS just passively taps a wire and 

thus is unable to stop intrusions from entering the internal network. An approach to 

resolving this problem is sending a TCP RST packet to either the source or the desti-

nation of the connection so that a connection containing malicious traffic can be ter-

minated. This approach, however, is not reliable. First, this approach is effective only 

for TCP connections. Second, the sequence number of the RST packet should match 

the expected sequence number of the receiver (i.e., the acknowledgment number that 

the receiver gives the sender). If the latency of the RST packet transmission is long 

due to heavy network traffic, there is a race condition where the sender may have sent 

lin76248_ch08_590-653.indd   638lin76248_ch08_590-653.indd   638 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 639

more traffic to the receiver, making the sequence number of the RST incorrect. Thus 

the RST packet may be simply rejected. The IDS can work  inline,  by occupying the 

wire on which packets are transmitted, or it may work with a firewall, e.g., netfilter 

on Linux. Therefore, the IDS can actively  block  the traffic if an intrusion is found. 

This type of system is called an intrusion  prevention  system (IPS). 

 Although an IPS can block intrusions, it has some disadvantages. First, if the 

alert is a false positive, then innocent traffic will be blocked. An IDS does not have 

that problem. It just generates an alert of false positives, and the administrator can 

simply ignore the alert message. Second, if the IPS is inline but is not fast enough to 

catch up with the speed of network transmission, then the IPS becomes a bottleneck. 

This is not a problem to an IDS; the IDS just drops some packets and may have false 

negatives, but the traffic transmission will not be slowed down by the IDS.     

 Principle in Action: Bottleneck in IDS 

 It was reported around the year 2000 that pattern matching is a bottleneck in 

network intrusion detection systems, particularly  Snort.  Since then, a number of 

research efforts, many focused on hardware acceleration, have led to accelerated 

string matching of Snort up to multi-gigabits per second. Therefore, the perfor-

mance problems seem to have been well solved. 

 Things are not as simple as they look, however. First, many researchers 

assume signatures can be scanned in a large byte stream. However, packets 

must be  reassembled  before becoming a byte stream, and an attacker may  split  
packets into small IP fragments or TCP segments, making packet reassembly an 

effort. Second, to avoid false positives due to short signatures, the signatures are 

usually associated with certain contexts, meaning that they are significant only if 

the  contextual  conditions are also met. Here is an example of Snort rules. 

  web-client.rules:alert tcp $EXTERNAL_NET $HTTP_PORTS -> 
$HOME_NET any (msg:“WEB-CLIENT Portable Executable binary 
file transfer”; flow:to_client,established; content:“MZ|90 
00|”; byte_jump:4,56,relative,little; content:“PE|00 
00|”; within:4; distance:-64; flowbits:set,exe.download; 
flowbits:noalert; metadata:service http; classtype:misc-
activity; sid:15306; rev:1;)  

 The options such as  byte_jump ,  distance  and  within  stand for a 

given position (actually, certain protocol fields) at which the following signature 

(in  content ) is effective. Generally,  protocol parsing  becomes even more im-

portant in signature matching, since an increasing number of signatures depend 

on context derived from protocol parsing. 

 Third, an attacker may  obfuscate  the packet content by various types of 

character encoding, making  normalization  needed before signature matching. 

Fourth, some detection techniques, such as detecting port scanning, may  corre-
late  information from multiple connections, so signature matching may involve 

byte streams from multiple connections. 

Continued

lin76248_ch08_590-653.indd   639lin76248_ch08_590-653.indd   639 24/12/10   4:26 PM24/12/10   4:26 PM



640 Computer Networks: An Open Source Approach

 Principle in Action: Wireless Intrusions 

 Unlike ordinary intrusion detection systems that monitor network traffic for 

signatures of intrusions, a wireless intrusion detection system monitors the radio 

spectrum for wireless intrusions, which involve the presence of  unauthorized  

access points. The detection is important, since if a careless employee uses such 

a rogue access point, the entire internal network may be exposed to external 

access. A wireless prevention system can automatically prevent this threat from 

occurring. Another function of a wireless intrusion detection system is detecting 

wireless attacks, including  unauthorized association,   man in the middle attack,  
 MAC address spoofing,  and  denial-of service-attack.  

 A wireless intrusion/prevention system consists of three major components: 

(1) sensors, (2) server, and (3) console. The sensor can capture frames on the 

wireless channel throughout its coverage area. The server then analyzes these 

frames for intrusion detection, and the console is for the administrator to config-

ure the system and for reporting possible intrusions. The administrator can look 

into the report just like that in an ordinary intrusion detection system. 

 Given these complexities, it is hardly expected that the performance of the 

entire  intrusion detection system will be as fast as the throughput of signature 

matching alone, which is claimed to be up to multi-gigabits per second due to 

Amdahl’s law. The actual performance of the system and its robustness when 

facing adversaries such as  evasion  should be watched and studied carefully to 

reach the target performance. 

 Open Source Implementation 8.7: Snort 

  Overview 
 Snort is a popular open source detection tool that monitors the network and de-

tects possible intrusions. It can capture the packets on the network interface with 

the  libpcap  library and also read packet trace in PCAP format for off-line 

analysis. After acquiring the packets to be analyzed, Snort examines the packets 

to see whether they match any of the  detection rules,  which consider certain val-

ues in the packet headers and certain  signatures  in the packet content that may 

indicate the occurrence of an intrusion. If a match is found, Snort will generate 

an  alert  to notify the administrator of a possible intrusion occurrence. Following 

is an example of a detection rule. 

  alert tcp any any -> 10.1.1.0/24 80 (content: “/cgi-bin/
phf”; msg: “PHF probe!”;)   

lin76248_ch08_590-653.indd   640lin76248_ch08_590-653.indd   640 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 641

  Block Diagram 
  Figure 8.26  presents the main block diagram in Snort.  SnortMain()  is the 

main function that reads command-line arguments with  ParseCmdLine() . It 

then calls  pcap_dispatch() , which is a function in  libpcap  as Snort cap-

tures packets through the  libpcap  library. The  pcap_dispatch()  function 

registers a callback function,  PcapProcessPacket() , which is called when 

each captured packet is ready for processing. The  PcapProcessPacket()  

will call  Preprocess() , which will call each preprocessor (see the section 

on “Algorithm Implementations”) hooked in a list in sequence. After preprocess-

ing, the  Detect()  function is called to parse the protocol header and match 

the rules associated with the unique port of the packet (see “Rule Detecting,” 

below). When an intrusion is found, an alert is generated to an output plug-in, 

which may record the alert in a file, dump it to the control, and so on.   

  Data Structures 
 Besides the  PV  structure that contains the global information, the most im-

portant data structure in Snort is the rule tree that stores the Snort rules. There 

are three main structures for the rule tree:  ListHead ,  RuleTreeNode , and 

 OptTreeNode . The  ListHead  structure is defined as follows: 

  typedef struct _ListHead 
 { 
   RuleTreeNode *IpList; 
   RuleTreeNode *TcpList; 
   RuleTreeNode *UdpList; 
   RuleTreeNode *IcmpList; 
   struct _OutputFuncNode *LogList; 
   struct _OutputFuncNode *AlertList; 
   struct _RuleListNode *ruleListNode; 
 } ListHead;  

   FIGURE 8.26 Block diagram of Snort. 

SnortMain

ParseCmdLine

pcap_dispatch

PcapProcessPacket

ProcessPacket

Preprocess

Detect

fpEvalPacket

fpEvalHeaderTcp

fpEvalHeaderUdp

fpEvalHeaderIcmp

fpEvalHeaderIp

Continued

lin76248_ch08_590-653.indd   641lin76248_ch08_590-653.indd   641 24/12/10   4:26 PM24/12/10   4:26 PM



642 Computer Networks: An Open Source Approach

 In the data structure, the rules associated with a given protocol (IP, TCP, UDP, 

or ICMP) are stored in separate rule trees. The main fields in  RuleTreeNode
are source IP set, destination IP set, source port, and destination port. Since the 

RuleTreeNode  structure has many fields, we do not show them here. Among 

the fields, the  destination port  usually serves as the  unique  port to group the rules 

in the  OptTreeNode . For example, the rules assocciated with SMTP are grouped 

together, and port 25 implies rules in the group. Therefore, Snort can decide which 

group of rules to match by looking up the unique port. The  RuleTreeNode  has 

a field that points to a list of  OptTreeNode  nodes. Each node stores the rule 

options (including the content signature) in each rule. Snort can therefore traverse 

through the list of  OptTreeNode  nodes, and match the rules one by one. 

 Since matching the rules one by one is slow, Snort groups the content 

signatures in the same list into a set and matches them together, known as 

 set-wise matching.  If a signature is found, the remaining rule options in the 

associated  OptTreeNode  node will be checked next. If all the rule options 

in that node are matched, the rule is matched and the corresponding alert is 

generated. Due to set-wise matching, Snort does not traverse the list of nodes 

one by one, and the matching efficiency is improved.  

  Algorithm Implementations 
  Preprocessing 
 The packets may be IP fragments or TCP segments (particularly small ones). 

They may preclude the correct detection of signatures in the packets. For exam-

ple, a packet containing a signature “bad” may be fragmented into several pieces 

containing “b,” “a,” and “d” separately. If Snort examines packets one by one, it 

will not find the signature. Therefore, the IP fragments or TCP segments should 

be  reassembled  first to restore the original semantics before further examination. 

 Furthermore, HTTP requests may be  encoded  in several ways and may 

complicate the analysis. The requests should be  normalized  before the analysis. 

Note that the fragments/segments in the previous example or different encodings 

may be created intentionally by an attacker to escape the detection of Snort. This 

technique is called  evasion  and should be handled in a modern NIDS. Moreover, 

the diversity of IP addresses and port numbers can also be audited to determine 

whether  portscanning  occurs. Simply put, the packets should be  preprocessed  in 

several stages before the detection. 

 Snort implements preprocessing with a number of  preprocessor plug-ins  for 

extensibility. These plug-ins can hook their functions to a list, and Snort will tra-

verse the list to call them one by one before detection in the  Preprocess  function 

(in  detect.c ). The following code presents how the preprocessors are invoked. 

  int Preprocess(Packet * p) 
 { 
  … 
       PreprocessFuncNode *idx = PreprocessList; 

lin76248_ch08_590-653.indd   642lin76248_ch08_590-653.indd   642 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 643

       /* 
       ** Turn on all preprocessors 
       */ 
       boSetAllBits(p->preprocessor_bits); 
       for (; (idx != NULL) && !(p->packet_flags & 
PKT_PASS_RULE); idx = idx->next) 
       { 
         if (((p->proto_bits & idx->proto_mask) || 
(idx->proto_mask == PROTO_BIT__ALL)) && 
            IsPreprocBitSet(p, idx->preproc_bit)) 
       { 
            idx->func(p, idx->context); 
       } 
     } 
… 
 }   

  Packet Decoding 
 After preprocessing, the packet decoder decodes packet headers in each layer of 

the protocol stack. The following is a sample code in the  fpEvalPacket()
function (in  fpdetect.c ). 
 int fpEvalPacket(Packet *p) 
 { 
   … 
   int ip_proto = GET_IPH_PROTO(p); 
   switch(ip_proto) 
   { 
     case IPPROTO_TCP: 
       DEBUG_WRAP(DebugMessage(DEBUG_DETECT, 
                “Detecting on TcpList\n”);); 

       if(p->tcph == NULL) 
       { 
         ip_proto = -1; 
          break; 
       } 
       return fpEvalHeaderTcp(p); 

      case IPPROTO_UDP: 
        DEBUG_WRAP(DebugMessage(DEBUG_DETECT, 
               “Detecting on UdpList\n”);); 

        if(p->udph == NULL) 
        { 
          ip_proto = -1; 
          break; 
        } 

Continued

lin76248_ch08_590-653.indd   643lin76248_ch08_590-653.indd   643 24/12/10   4:26 PM24/12/10   4:26 PM



644 Computer Networks: An Open Source Approach

  Anti-Spam 

 Like intrusion detection, recognizing and filtering spam also involves scanning the 

mail messages (reassembled from the packet content) for signatures of spam. Unlike 

intrusion detection, the match with the signature in a spam-filtering rule only implies 

that the mail is more likely to be spam; it is also possible for normal mail to have one 

of the characteristics described in a rule. Judging a mail message solely by a rule may 

lead to a high false-positive rate. The determination is usually based on an adequate 

        return fpEvalHeaderUdp(p); 
    ….. 
   } 
 }  

 From the sample code, you can see the packet header is parsed for the upper-

layer protocol (TCP, UDP or others) and then the corresponding function will 

follow for further decoding.  

  Rule Detecting 
 The detection engine checks for a number of  options  in the detection rules. These 

are also implemented in plug-ins for extensibility (under the  detection-
plugins  directory). Among the options,  content  and  pcre  are the most 

critical as they specify the malicious signatures in  fixed strings  and  regular 
expressions  for pattern matching (performed in  sp_pattern_match.c  and 

sp_pcre.c , respectively). However, specifying only the signatures is insufficient 

since they may be significant only within certain contexts (e.g., in a certain field 

or position of the application content). Without restricting the signatures within 

the contexts, you may receive many  false positives.  Some of the options can help 

to precisely specify the contexts. For example, the  distance  option specifies 

how far into the packet Snort should search for a signature. The  byte_test
and  byte_jump  options can parse the application fields and  skip  certain fields 

if a signature should not appear in those fields. Besides the options that specify 

the contexts, some options can specify the message that appears in an alert or the 

identifier of the rule. Interested readers are referred to the Snort manual.  

  Logging and Alerting 
 Logging and Alerting includes several recording and alerting modes. They are 

implemented in plug-ins for extensibility. Since they are less relevant to network 

security, we do not go into detail here.   

  Exercises 
 1. List five preprocessors in Snort and study the execution flow of each one of 

them.  

 2. Find out what multiple-string matching algorithm is used for signature 

matching in Snort and where the algorithm is implemented.    

lin76248_ch08_590-653.indd   644lin76248_ch08_590-653.indd   644 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 645

amount of evidence accumulated from rule matching. We take a look at how spam 

is filtered by examining the open source implementation of a popular spam-filtering 

package, SpamAssassin.        

 Open Source Implementation 8.8: 
SpamAssassin 

  Overview 
 SpamAssassin is an open source package that can identify and filter spam, i.e., 

unsolicited e-mails. It is implemented in Perl and can work with a mail server to 

filter spam messages before the users receive them. The filtering mechanisms in-

clude methods such as analysis on mail header and text, Bayesian filtering, and 

DNS blocklists. These analysis steps are implemented as plug-ins for flexibility.  

  Block Diagram 
  Mail::SpamAssassin  (implemented in  SpamAssassin.pm ) is a Perl 

object that uses a set of rules tested on mail headers and bodies to identify spam. 

 Figure 8.27  presents the main execution flow to analyze mail and determine whether 

it is spam or not. The  check_message_text  method calls  parse  and  check  

in turn for spam analysis. The former will parse the raw mail content (e.g., decoded 

from the MIME structure) into the  Mail::SpamAssassin::Message  

object, which will be checked for spam later.  
 The latter  check  method in  Mail::SpamAssassin::PerMsgStatus  

will run the SpamAssassin rules to check the mail message. The process invokes a 

number of plug-ins for various analysis approaches, such  HeaderEval.pm  and 

 BodyEval.pm  for parsing mail headers and bodies. There are also some inter-

esting plug-ins, such as  ImageInfo.pm  for counting number of images in the 

mail, finding image sizes, and so on. The check accumulates a score that repre-

sents the likelihood of spam. In other words, the higher the score is, the more likely 

the mail is spam. If spam is found and Bayesian learning is enabled, SpamAssas-

sin may call the  learn  method to learn from the spam report.  

   FIGURE 8.27 Main functions in   Mail::SpamAssassin   for spam analysis. 

Mail::SpamAssassin

check_message_text

Parse
(get message text)

Check
(check a mail if it is a spam)

Continued

lin76248_ch08_590-653.indd   645lin76248_ch08_590-653.indd   645 24/12/10   4:26 PM24/12/10   4:26 PM



646 Computer Networks: An Open Source Approach

  Data Structures 
 The  Mail::SpamAssassin  object has a few important attributes in 

SpamAssassin. They are  Conf  for the configuration information,  plugins  for 

plug-in handlers, and several path variables such as the rule paths. The plug-in 

handlers, as we have mentioned, are invoked during spam analysis. The mail 

message is encapsulated in the  Mail::SpamAssassin::Message  object 

after parsing the mail, and the score is stored in the  Mail::SpamAssassin:
:PerMsgStatus  object during the spam analysis.  

  Algorithm Implementations 
 SpamAssasin filters e-mails by a large set of  rules,  documented in the *.cf files 

under the  rules  directory. Note that SpamAssassin reads  *.cf  in a lexical order so 

that rules in later files can override earlier files. A rule characterizes a possible 

feature of a spam message by specifying a signature in Perl Compatible Regular 

Expression (PCRE). If the feature is found, the score that indicates spam is ac-

cumulated. For example, a sample rule in the rule file  20_head_tests.cf
for analyzing the mail headers is as follows: 

 header FROM_BLANK_NAME     From =~ /(?:\s|^)”” <\S+>/i 
 describe FROM_BLANK_NAME  From: contains empty name  

 The rule checks whether the characters in the sender’s name are white space 

or empty. If a blank name is found, SpamAssassin adds 1.0 (if the score is not 

explicitly specified) to the score, which helps determine whether the mail is 

spam. Each rule file contains rules like this for spam analysis. If the accumulated 

score finally reaches a threshold (5.0 by default) specified in the  user_prefs
file, the mail under analysis will be considered spam. SpamAssassin can also 

determine spam from Bayesian learning (see the  sa-learn.raw  file for the 

source code). We do not go into this part in detail here. SpamAssassin can also 

adjust the score according to a black or white list. For example, assume a sender 

has sent a mail message with the score of 20, which was considered spam. If 

it later sends another mail message with the score 2.0 based on the rules, the 

score will be automatically adjusted by adding a  delta  value of  (mean-
2.0)*factor , where  mean  = (20 + 2.0)/2 = 11. Therefore, the black or white 

list can be automatically adjusted in addition to manual configuration. 

 Functions to evaluate certain complex rules are implemented as plug-

ins, such as  HeaderEval.pm  and  BodyEval.pm , under the  lib/Mail/
SpamAssassin/Plugin  directory for extensibility. For example,  check_
illegal_chars  in the  20_head_tests.cf  file checks for 8-bit and 

other illegal characters that should be MIME encoded. The evaluation cannot 

be expressed simply in PCRE, so it is implemented as a function in the plug-in. 

 The  spamd.raw  program is the daemon for SpamAssassin. It loads the 

SpamAssassin filters, and then listens for incoming requests to process mail 

messages. It listens on port 783 by default, but the port number is configurable 

lin76248_ch08_590-653.indd   646lin76248_ch08_590-653.indd   646 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 647

 Performance Matters: Comparing Intrusion 
Detection, Antivirus, Anti-Spam, Content 
Filtering, and P2P Classifi cation 

 Many network security packages utilize string matching algorithms to match 

signatures.  Figure 8.28  draws the average execution time of string matching 

functions for each program to process one byte of packet data, i.e., applica-

tion header and payload. Notably, the total execution time of a program grows 

as the time consumed by string matching functions increases. IDS, i.e., Snort, 

which is the most efficient program in the comparison, spends less than 10 ns on 

on the command line. When receiving a connection, it spawns a child to handle 

in SpamAssassin a new mail message from the network and dump the processed 

message back to the socket before closing the connection. The following is the 

code for spawning a child from  spamd.raw . 

 sub spawn { 
 …… 
  $pid = fork(); 
  die “spamd: fork: $!” unless defined $pid; 
  if ($pid) { 
   ## PARENT 
   $children{$pid} = 1; 
   info(“spamd: server successfully spawned child 
process, pid $pid”); 
   … 
 else { 
   ## CHILD 
  …… 
   $spamtest->call_plugins(“spamd_child_init”); 
 …… 
 }  

spamd  relies on  SpamAssassin.pm , which is the main component 

of SpamAssassin. It handles the parsing and checking (through rule evaluation, 

learning, black/white listing, etc.) of mail messages, and uses the aforemen-

tioned mechanisms to evaluate whether the mail is spam. If the mail is spam, 

 SpamAssassin.pm  will call the  report_as_spam  function to return 

the report.  

  Exercises 
1. Why is SpamAssassin implemented in Perl rather than in C or C++?  

2. Discuss the pros and cons of using Bayesian filtering compared with rule-

based approaches.    

Continued

lin76248_ch08_590-653.indd   647lin76248_ch08_590-653.indd   647 24/12/10   4:26 PM24/12/10   4:26 PM



648 Computer Networks: An Open Source Approach

processing each byte, while an antivirus program, i.e., ClamAV, consumes 1000 

times, i.e., 10 μs, more than IDS. Other programs—including content filtering, 

i.e., DansGuardian, anti-spam, i.e., SpamAssassin, and P2P classification i.e., 

L7-filter—spend about 100 ns to process one byte.  
 The performance of these programs is highly related to  where  and  how  string 

matching works. Therefore,  Table 8.4  compares the five packages in terms of the 

percentage of time spent on string matching and where string matching is applied. 

The overall performance of Snort is efficient because it employs  byte-jump  string 

matching, i.e., only examining the content of  specific offset  in a packet, to acceler-

ate the matching task. This is because attacks are mostly embedded in specific 

application headers instead of payloads. DansGuardian authorizes an HTTP packet 

by using its blacklist database, which documents hundreds of denied URLs, file 

types, and keywords. The DansGuardian database is  simpler  and  smaller  than the 

one used in antivirus programs, which usually contain at least tens of thousands 

of signatures. Therefore, although the percentage of string-matching time in 

DansGuardian is higher than the one in ClamAV, each round of string-matching 

consumes much less time than ClamAV. Finally, SpamAssassin reduces the string-

matching cost by  skipping  the attachments in e-mails, and L7-filtering eases the 

string-matching overhead by checking only the  first few  packets of a connection.   

   FIGURE 8.28 Execution time and string matching time of various applications. 

1

10

100

1000

10000

100000

Pr
oc

es
si

ng
 ti

m
e 

pe
r 

by
te

 (
ns

)

In
tru

sio
n D

ete
cti

on

Con
ten

t F
ilt

eri
ng

Anti
vir

us

Anti
-S

pa
m

P2P
 C

las
sif

ica
tio

n

CPU time

String matching

TABLE 8.4 String Matching Exercised by Applications

Snort DansGuardian ClamAV SpamAssassin L7-filter

Percentage 

of string 

matching

62% 86% 57% 31% 70%

Inspection 

depth

Byte 

jump

Http request/ 

response

All 

attachment 

content

Mail header/ 

body

First 10 

packets

lin76248_ch08_590-653.indd   648lin76248_ch08_590-653.indd   648 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 649

 We classified the issues of network security into  data 
security,   access security,  and  system security.  Data 

security involves  protecting  and  authenticating  data 

transmitted over the Internet by virtue of  cryptog-
raphy.  The key for encryption and decryption could 

be  symmetric  or  asymmetric.  The former is faster in 

computation, but reliable distribution of the key could 

be a problem. The latter does not have to distribute 

the symmetric key, but the computation time is long 

for a large volume of data. Security protocols such as 

Secure Socket Layer (SSL) realize those cryptography 

mechanisms in practical network protocols. Besides 

data protection,  digital signature  and  message authen-
tication  can ensure the originality of data. 

 Access security controls the access between the 

internal and external networks, so that the traffic be-

tween the two networks must obey the policies speci-

fied by the network administrators. Network devices 

such as firewalls can enforce the access policies. 

Those devices can filter network traffic based on 

information in IP headers, TCP/UDP port numbers, 

or application headers and payloads. 

 System security aims to protect the system from 

external attacks. An attacker (perhaps an automatic 

program such as a worm) may try to find the  vulner-
abilities  of a system, and then  exploit  the vulner-

abilities to control or disable the system. A defense 

system should find vulnerabilities before an attacker 

and patch them, find out possible attacks, and stop 

the attacks from entering the system. That is why 

we have vulnerability scanners, intrusion detection 

systems, virus scanners, and spam filters. 

 The struggles between attackers and defenders 

are endless. As our daily life has come to rely heav-

ily on the Internet, network security has become an 

important topic. Nowadays, protecting the data with 

cryptography alone is insufficient. An attacker will 

try to exploit potential vulnerabilities and access the 

systems in a  stealthy  approach, so a defender has to 

(1) eliminate the vulnerabilities as much as possible 

and (2) effectively detect the attacks. The former is 

nontrivial because software is getting much larger and 

more complicated, so finding possible vulnerabilities 

is also getting difficult. The users should frequently 

apply new patches to eliminate vulnerabilities. The 

latter is also a challenge as an attacker will find every 

possible way to evade the detection. Worse yet, an 

attacker may leverage cryptography to  protect  the 

attacks, e.g., encrypting a malicious program or en-

crypting malicious content transmitted over the Inter-

net, making effective detection a bigger challenge than 

ever. Even though we can design a clever and compli-

cated approach for intrusion detection, we should also 

care about speeding up the intrusion detection simul-

taneously as the volume of Internet traffic increases 

rapidly. Therefore, speeding up intrusion detection or 

virus scanning with hardware acceleration or multi-

core processors is also a trend.   

   8.5 SUMMARY  

  COMMON PITFALLS  

  When to Use Which: DES, 3DES, and AES 
 Given several symmetric encryption algorithms, such as DES, 

3DES, and AES, it may be hard to choose when to use which. 

As discussed in this chapter, the DES key is only 56 bits, and 

it is possible to crack the key with brute force. That is why 

3DES came into existence, but 3DES is three times more 

expensive in computation. Both algorithms are designed with 

hardware implementation in mind, so they are sluggish in 

software implementation for their bit operations, such as sub-

stitution and permutation. As AES came out in around 2001, it 

is getting popular, and can be found in well-known software, 

such as SSH clients or Skype. AES intends to eventually re-

place 3DES in  software  for its advantages in implementation.  

  Stateless and Stateful Firewalls 
 Firewalls can be stateless or stateful. A stateless firewall 

inspects the packets individually, and is  unaware  of the 

existence of connections. This stateless nature may be 

insufficient in some applications. For example, when an 

FTP client connects to a server in the active mode, it tells 

lin76248_ch08_590-653.indd   649lin76248_ch08_590-653.indd   649 24/12/10   4:26 PM24/12/10   4:26 PM



650 Computer Networks: An Open Source Approach

the server its listening port for the server to connect back. 

If the client-side firewall is unaware of the FTP com-

mand informing the listening port, the server will fail to 

connect back due to the  blocking  of the firewall. Another 

situation is that an attacker may make the traffic look like 

the response to a request by selecting a  source  port in the 

set of well-known ports. Since a firewall usually allows a 

client from the internal network to connect to an external 

network, the firewall normally does not block the traffic 

in response. If a firewall does not record that there has 

been a request in a connection, it has no way to  distinguish  

whether the response is a fake or not. Then the attacker has 

a chance to penetrate the firewall by faking a response. In 

these cases, a stateful firewall can solve this problem by 

keeping the information about a connection, despite the 

more complicated design.  

  Malware: Virus, Worm, Trojan, 
Backdoor, Bot and More 
 Malware is the abbreviation for “malicious softwar,” which 

is designed to do something harmful to a computer system. 

Malware comes in a variety of forms: viruses, worms, Tro-

jans, backdoors, bots, and so on. These terms are dubbed 

according to their propagation strategies or malicious be-

haviors. However, they are also known as “viruses” by the 

public. So many terms look confusing and misleading, and 

they may be easily misused. 

 Note that a computer virus was originally defined as: 

“a program that can infect other programs by modifying 

them to  include  a possibly evolved copy of itself.” This 

definition is no longer sufficient to describe the diversity 

of malware. Although it is not incorrect to use the term 

“virus” to refer to all the types of malware, (e.g., the open 

source virus scanner actually scans viruses, Trojans, back-

doors, and so forth), a professional in network security 

knows the difference between terms.  

  Caution: Malware Analysis on a 
Sandbox 
 Signature matching is a common technique for malware 

detection. However, many malware programs can eas-

ily evade the detection by  polymorphic  code, which is 

scrambled code with identical semantics, or by  packing,  
which compresses or encrypts the code, making signature 

matching or static analysis of the code difficult. 

 Another common approach is running a suspicious 

program on a sandbox, which is basically a  virtual ma-
chine.  Since the execution environment is virtual, any harm 

performed on the environment can be easily recovered 

without hurting a real system, and the running condition 

is easily controllable. The dynamic analysis can watch the 

invoked  system calls,  the changes of  files  and  registry,  and 

the  network activities  of the program in execution. 

 Although dynamic analysis seems workable, there 

are still some tricks by the malware writers to make the 

analysis unreliable. First, malware may attempt to  detect  
the existence of a virtual machine. If a virtual machine 

exists, the malware will pretend to behave well and exit 

normally. To the best of our knowledge, existing virtual 

machines are  all  detectable in some way, even with the 

latest virtualization technology such as  Intel VT  (Virtu-

alization Technology). Second, the malicious behaviors 

of malware may be triggered by some values or condi-

tions. For example, malware might be activated only 

on a special  date  or with the existence of a given  file.  
Therefore, a single run is hardly conclusive about mali-

cious behaviors. Although some research works attempt 

to analyze possible branches during execution to find out 

the  hidden  behaviors and trigger values, their approaches 

might not work in general cases due to the variety of 

triggering conditions. Therefore, the output of malware 

analysis should be carefully interpreted, or there will be 

false negatives.    

  FURTHER READINGS  

  General Issues 
 The following are textbooks and magazines for a general 

introduction to computer and network security. For stu-

dents who would like to pursue this area, these references 

provide materials for quickly grasping basic concepts. 

   • W. Stallings,  Cryptography and Network Security,  4 th  

edition, Prentice Hall, 2005.  

  • C. Kaufman, R. Perlman, and M. Speciner,  Network 
Security: Private Communication in a Public World,  
Prentice Hall, 2002.  

  • W. Stallings,  Network Security Essentials: Applica-
tions and Standards,  3 rd  edition, Prentice Hall, 2006.  

   • IEEE Security & Privacy Magazine.     

lin76248_ch08_590-653.indd   650lin76248_ch08_590-653.indd   650 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 651

  Cryptography and Security Protocols 
 The following selected book and documents are related to 

cryptography and security protocols. Cryptography is itself 

a broad domain of research, and it is impossible to cover it 

in just in a few sections. The first is a good introduction to 

this domain. We also provide some references for security 

protocols below. 

   • J. Katz and Y. Lindell,  Introduction to Modern Cryp-
tography: Principles and Protocols,  Chapman & Hall, 

2007.  

  • R. Rivest, “The MD5 Message-Digest Algorithm,” Apr. 

1992, http://sunsite.auc.dk/RFC/rfc/rfc1321.html  

  • MIT distribution site for PGP (Pretty Good Privacy), 

http://web.mit.edu/network/pgp.html  

  • The OpenSSH Project,  http://www.openssh.com   

  • S. R. Fluhrer, I. Mantin, and A. Shamir, “Weakness in 

the Key Scheduling Algorithm of RC4,”  Lecture Notes 
in Computer Science (LNCS),  Vol. 2259, pp. 1–24, 

Aug. 2001.    

  Network Security Equipment and 
Monitoring 
 Common network security equipment includes firewalls, 

VPNs, intrusion detection systems, antivirus systems, con-

tent filters, and others. The first three books cover fire-

walls, VPN facilities, and a well-known intrusion detection 

system, Snort. The fourth book introduces a number of 

tools and techniques for network security monitoring. The 

last two are well-cited papers about intrusion detection 

other than Snort and detecting portscanning. 

   • E. D. Zwicky, S. Cooper, and D. B. Chapman,  Building 
Internet Firewalls,  2nd edition, O’Reilly Media, 2000.  

  • R. Yuan, T. Strayer, and W. T. Strayer, Virtual Pri-
vate Networks: Technologies and Solutions, Addison-

Wesley, 2001.  

  • B. Caswell, J. Beale, and A. R. Backer,  Snort IDS and 
IPS Toolkit,  Syngress, 2007.  

  • R. Bejtlich,  The Tao of Network Security Monitoring: 
Beyond Intrusion Detection,  Addison-Wesley, 2004.  

  • V. Paxson, “Bro: A System for Detecting Network 

Intruders in Real-Time,” USENIX Security Symp., Jan. 

1998.  

  • J. Jung, V. Paxson, A. Berger, and H. Balakrishnan, 

“Fast Portscan Detection Using Sequential Hypothesis 

Testing,” IEEE Symp. On Security and Privacy, May 

2004.    

  Hacking Techniques 
 The following books introduce techniques to hack soft-

ware, system, and network vulnerabilities. The readers can 

know what hackers do from the materials in these books. 

The last four are well-cited papers about attack techniques 

and events on the Internet. 

   • J. Scambray, S. McClure, and G. Kurtz,  Hacking Ex-
posed: Network Security Secrets & Solutions,  6 th  edi-

tion, McGraw-Hill, 2009.  

  • J. Erickson,  Hacking: The Art of Exploitation,  2 nd  edi-

tion, No Starch Press, 2008.  

  • S. Harris, A. Harper, C. Eagle, and J. Ness,  Gray Hat 
Hacking: The Ethical Hacker’s Handbook,  2 nd  edition, 

McGraw-Hill, 2007.  

  • G. Hoglund and G. McGraw,  Exploiting Software: How 
to Break Code,  Addison-Wesley, 2004.  

  • C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, 

A. Sundaram, and D. Zamboni, “Analysis of a Denial 

of Service Attack on TCP,” IEEE Symp. Security & 

Privacy, May 1997.  

  • S. Staniford, V. Paxson, and N. Weaver, “How to 0wn 

the Internet in Your Spare Time,” USENIX Security 

Symposium, Aug. 2002.  

  • M. Handley and V. Paxson, “Network Intrusion Detection: 

Evasion, Traffic Normalization and End-to-End Protocol 

Semantics,” USENIX Security Symposium, Aug. 2001.  

  • M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis, 

“A Multifaceted Approach to Understanding the Botnet 

Phenomenon,” ACM Internet Measurement Confer-

ence (IMC), Oct. 2006.    

  Malware Detection and Analysis 
 The first book introduces building a honeypot for capturing 

attacks and malware. The latter two offer a solid view of 

virus research and practices in implementation and detec-

tion of rootkits. The last three items are well-cited papers 

for malware analysis. 

   • N. Provos and T. Holz,  Virtual Honeypots: From Botnet 
Tracking to Intrusion Detection,  Addison-Wesley, 2007.  

  • P. Szor,  The Art of Computer Virus Research and 
Defense,  Addison-Wesley, 2005.  

  • B. Blunden,  The Rootkit Arsenal: Escape and Evasion in 
the Dark Corners of the System,  Jones & Barlett, 2009.  

  • C. Willems, T. Holz, and F. Freiling, “Toward Auto-

mated Dynamic Malware Analysis Using CWSand-

box,” IEEE Security & Privacy, Vol. 5, Issue 2, 

pp. 32–39, Mar. 2007.  

lin76248_ch08_590-653.indd   651lin76248_ch08_590-653.indd   651 24/12/10   4:26 PM24/12/10   4:26 PM

http://www.openssh.com
http://web.mit.edu/network/pgp.html
http://sunsite.auc.dk/RFC/rfc/rfc1321.html


652 Computer Networks: An Open Source Approach

  • G. Gu, P. Porras, V. Yegneswaran, M. Fong, and W. Lee, 

“BotHunter: Detecting Malware Infection Through 

IDS-driven Dialog Correlation,” USENIX Security 

Symposium, June 2007.  

  • N. Provos, D. McNamee, P. Mavrommatis, K. Wang, 

and N. Modadugu, “The Ghost in the Browser: Analy-

sis of Web-based Malware,” USENIX Workshop on 

Hot Topics in Botnets (HotBots), Apr. 2007.      

  FREQUENTLY ASKED QUESTIONS 

     1. Private key algorithm vs. public key algorithm? (Com-

pare their computation complexity, security, and usage.) 

   Answer: 

   Computation complexity: public key algorithm > pri-

vate key algorithm 

   Security: public key algorithm > private key algorithm 

   Usage: public key algorithm for small data, private 

key algorithm for high-volume data  

   2. How can we combine the private key algorithm and 

the public key algorithm? 

   Answer: 

   Use a public key algorithm, say RSA, to transfer the 

key used in the private key algorithm, say 3DES. 

Once done, use the private key algorithm for data 

encryption and decryption.  

   3. Where do we use transport-mode IPSec and tunnel-

mode IPSec, respectively? What parts of the packets 

do they encrypt? 

   Answer: 

   Transport mode: between remote clients and offi ces; 

TCP or UDP segments only 

   Tunnel mode: between branch offi ces; entire IP packets  

   4. In tunnel-mode IPSec, if authentication is done before 

encryption, what sequence of headers would we have 

in the packets? (The headers include AH (Authentica-

tion Header), ESP (Encapsulation Security Payload), 

IP, TCP or UDP.) 

   Answer: 

   IP, ESP, IP, AH, TCP, or UDP.  

   5. Packet-fi lter vs. application-proxy fi rewalls? (Com-

pare their purpose and where they are implemented in 

Linux systems.) 

   Answer: 

   Packet-fi lter fi rewall: access control based on 5-tuple 

fi elds; in kernel (iptables) 

   Application-proxy fi rewall: access control based on 

application requests and responses; in a proxy dae-

mon (FWTK or squid)  

   6. Virus vs. worm? (Compare their characteristics and 

model of replication.) 

   Answer: 

   Virus: a program attached to a fi le; through e-mail at-

tachment or Web page 

   Worm: a standalone program; through security hole 

attacks  

   7. DoS (denial of service) vs. buffer overfl ow attack? 

(Compare their purpose and operations.) 

   Answer: 

   DoS: to exhaust or block the service resources; send 

a large number of requests to exhaust the server or 

send only one malicious request to run the server into 

a blocking or deadlock mode 

   Buffer overfl ow attack: to impose a backdoor pro-

gram on the victim; overfl ow the victim’s stacked 

program counter and its program code by passing an 

oversized parameter  

   8. In what situation will an IDS (intrusion detection 

system) such as Snort have a false positive or false 

negative? 

   Answer: 

   False positive: The signatures are too short and the 

normal text happens to have the signatures. 

   False negative: The signatures are not generic enough 

to match the intrusion in the text.     

    1. The  crypt  function is for password encryption based 

on the DES algorithm with variations. Please write 

a program to fi nd out the password encrypted into 

“xyNev0eazF87U” using the  crypt  function (see the 

man page for its usage). You may use the brute-force 

method or any other  smarter  approaches (preferred) 

to guess. The password is not a random string, so you 

have a chance to crack it.  

  EXERCISES 

   Hands-On Exercises 

lin76248_ch08_590-653.indd   652lin76248_ch08_590-653.indd   652 24/12/10   4:26 PM24/12/10   4:26 PM



 Chapter 8 Network Security 653

   2. Set up  iptables  to block the outgoing connection to a 

certain IP address, and try to see whether the blocking 

works.  

   3. In a public key system using RSA, Bob owns the 

private keys d=5, n=35 and gets the ciphertext c=10 

to him. What is the plaintext M?  

   4. Use  Nessus  (  http://www.nessus.org/nessus  ) to fi nd the 

services running on the hosts in your subnet, and indi-

cate what they are. Are there any services not running 

on well-known ports, e.g., a Web service not on port 80?  

   5. Run Snort to listen to the traffi c on the interface 

you specify. The more traffi c the better. What alerts 

are raised by Snort? Do you think they are false 

positives? You may capture the traffi c in a fi le and 

let Snort read the fi le off-line. Therefore, you have a 

chance to manually analyze the packets or connec-

tions that cause an alert later.  

   6. Trace the source code in  portscan.c  and  spp_
portscan.c  in the preprocessors directory of the Snort 

source code. Describe briefl y how Snort detects 

portscannning in the traffi c traces.  

   7. Find out how many rules are in your current Snort 

rule set.  

   8. Trace the source code in  matcher-ac.c  and  matcher-
bm.c,  and describe how ClamAV scans for virus 

signatures.  

   9. Use the UPX packer (http://upx.sourceforge.net) to 

pack a Windows binary executable in PE format. 

After that, use a PE viewer, say Anywhere PE viewer 

(http://upx.sourceforge.net/), to point out what has 

been changed.    

  Written Exercises 
    1. What is the primary encryption function in each itera-

tion of the DES system?  

   2. Figure out the breaking time of key size 32, 56, 128, 

and 168 bits, if single decryption time is 1  μs  and 

10 –6   μs,  respectively.  

   3. In a public key system using RSA with the public 

keys e=5, n=35, Trudy intercepts the ciphertext C=10. 

What is the plaintext M?  

   4. Is it effi cient to implement the DES (or 3DES) 

algorithm in software? Why is the implementation a 

target for hardware acceleration?  

   5. What are the requirements of digital signature?  

   6. What is the difference between network- and 

application-layer fi rewall?  

   7. What is the procedure of a DDoS attack? What was 

the attack procedure of the Nimda worm in October 

2001?  

   8. How do we achieve authentication and privacy 

simultaneously by using authentication header (AH) 

and encapsulation security payload (ESP) in IPSec?  

   9. How does an attack own a large number of hosts to 

launch a distributed denial-of-service (DDoS) attack? 

Please discuss possible approaches.  

   10. A NIDS has the ability to “see” packets on the net-

work, so it also has a chance to scan for viruses inside 

the packet payload. But this is not the case in practice. 

What are the diffi culties in trying to do that?  

   11. What are possible reasons for  false positives  from 

NIDS alerts?  

   12. Please enumerate an example of an attack that cannot 

be detected by a Snort rule, even though you try to 

write a new rule. Why can it not be detected by a rule?  

   13. What are possible techniques to evade the analysis of 

NIDS? Please enumerate a few of them.  

   14. ClamAV claims a very large signature set (larger 

than 500,000). Are there really so many viruses in 

the wild, i.e., on the Internet? What are possible rea-

sons that so many signatures are needed?       

lin76248_ch08_590-653.indd   653lin76248_ch08_590-653.indd   653 24/12/10   4:26 PM24/12/10   4:26 PM

http://www.nessus.org/nessus
http://upx.sourceforge.net
http://upx.sourceforge.net/


 Who’s Who  

 Many organizations and people have made signifi cant contributions to the evolution 

of data communications. However, it is impossible to cover all of them here. Since 

the main theme of this text is the Internet architecture and its open source implemen-

tations, we focus on two groups, the Internet Engineering Task Force (IETF) and 

several open source communities; the former defi nes the Internet architecture while 

the latter implements it in an open source manner. Other standards bodies and the 

network research community have also played important roles in the evolution. So 

have the faded technologies that helped to shape the Internet today but did not sur-

vive the evolution. Though the materials presented in this appendix are nontechnical, 

they provide a review of the path to what we have today. Understanding this evolu-

tion and the driving forces behind it will enable you to appreciate these efforts and 

will also encourage you to participate in the ongoing evolution. 

 Unlike many other standards organizations, IETF does not have a clear member-

ship, and it runs in a  bottom-up,  instead of  top-down,  manner. Anyone is welcome to 

participate, and those who are active lead the works. You do not have to pay to play. 

Besides, you  implement as you go,  compared to “ specify fi rst and implement later ”
in many organizations. “We reject kings, presidents, and voting. We believe in rough 

consensus and running code,” said David Clark, a key contributor to the Internet 

architecture. The process to defi ne a standard Request for Comments (RFC) docu-

ment looks quite loose, but renders at least one (preferably two) solid and publicly 

available implementations once the standard is agreed upon. We could say that the 

standardization process of the Internet architecture has the open source spirit, as a 

way to confi rm that the proposed solution works fi ne. 

 Although the open source movement started in 1984, 15 years later after the 

fi rst Internet node was established in 1969, it works hand-in-hand with the Internet 

as they leverage each other. The Internet provides the guiding standards to ensure 

the interoperability of various open source implementations, and it serves as the 

platform to coordinate the efforts distributed worldwide. The open source movement 

facilitates the Internet’s “implement-as-you-go” standardization process, and it helps 

to attract worldwide contributors and users. It would be diffi cult to distribute these 

running codes for worldwide users to adopt or to coordinate the distributed efforts to 

get the codes fi xed and running if they were not open source. 

 In addition to IETF, several institutes and standards bodies helped to design 

protocols or implement the designed protocols. The Information Science Institute (ISI) 

at the University of Southern California (USC) designed and implemented several key 

A p p e n dd i xAA

654

lin76248_app_654-722.indd   654lin76248_app_654-722.indd   654 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix A Who’s Who 655

protocols. The International Computer Science Institute (ICSI) in Berkeley developed 

some important algorithms and tools. The Computer Emergency Response Team 

(CERT) at Carnegie Mellon University coordinated security threat management. The 

European Telecommunications Standards Institute (ETSI) produced mobile communi-

cations standards. Most popular link-layer protocol standards, including Ethernet and 

WLAN, were produced by the Institute of Electrical and Electronics Engineers (IEEE). 

Meanwhile, many researchers have made key contributions to the architectures, proto-

cols, or algorithms used in the Internet. All these contributions should be recognized. 

 While we review who’s who, we should look not only at the survivors but also 

at the faded technologies. They may be “dinosaurs” who prevailed for some time 

before they became obsolete, or they may have produced “bubbles” that attracted 

huge investments but were eventually burst. The reasons for their failure might have 

been the technology or the market. A superior technology that requires tremendous 

overhead to interoperate with or replace the existing technologies might end up 

being a part of history. An inferior but simpler solution may outlast many more 

sophisticated competitors. A consensus is that “IP everywhere, or anything over 

IP and IP over anything.” Similarly, “Ethernet everywhere” (into offi ces as well as 

homes) has become another consensus. IP and Ethernet did not appear to be superior 

in all aspects, but they have prevailed and will survive well into the future. 

 In Section A.1, we fi rst review IETF history and how it produces RFCs. The statistics 

of over 6000 RFCs are presented. Then we introduce in Section A.2 several open source 

communities that produce running codes of kernels, over 10,000 packages, and even 

ASIC hardware designs. They open up the system from the top (i.e., applications), the 

middle (i.e., kernel and drivers), down to the bottom hardware (i.e., ASIC designs). These 

open source resources are all accessible at your fi ngertips. Network research community 

and other standards bodies are reviewed in Section A.3. Finally, in Section A.4, we 

examine the dated technologies of the past, and try to explain why they did not endure. 

   A.1 IETF: DEFINING RFCs
  

 We intend to answer many questions here: How did the standardization body of the 

Internet evolve? Who played the major role? How does the IETF operate to defi ne 

an RFC? Why are there so many RFCs? How are these RFCs distributed in defi ning 

the various layers in the protocol stack? The answers should open the door for under-

standing and participating in IETF activities. 

  A.1.1 IETF History 
 In the late 1970s, recognizing that the growth of the Internet was accompanied by a 

growth in the size of the interested research community and therefore an increased need 

for coordination mechanisms, Vint Cerf, the manager of the Internet program at DARPA, 

formed several coordination bodies. In 1983, one of these bodies turned into the Internet 

Activities Board (IAB), which governs many task forces. The Internet Engineering task 

force (IETF) at the time was just one of many IAB task forces. Later, the more practi-

cal and engineering side of the Internet grew signifi cantly. This growth resulted in an 

lin76248_app_654-722.indd   655lin76248_app_654-722.indd   655 24/12/10   4:10 PM24/12/10   4:10 PM



656 Computer Networks: An Open Source Approach

explosion in attendance at IETF meetings in 1985, and Phil Gross, chair of IETF, was 

compelled to create substructures to the IETF in the form of working groups (WGs). 

 The growth continued. The IETF combined WGs into areas, and designated 

area directors for each area, and an Internet Engineering Steering Group (IESG) was 

then formed from the area directors. The IAB recognized the increasing importance 

of the IETF, and restructured the standards process to explicitly recognize the IESG 

as the major standards review body. The IAB was also restructured so that the rest of 

the task forces (other than the IETF) were combined into an Internet Research Task 

Force (IRTF). In 1992, the IAB was reorganized and renamed the Internet Architec-

ture Board, operating under the auspices of the Internet Society. A more “peer”-like 

relationship was defi ned between the new IAB and IESG, with the IETF and IESG 

taking a greater responsibility for the standards approval. 

 Members of IETF WGs cooperate mainly through mailing lists and meetings 

held three times a year. Internet users are free to join IETF, and can do so simply by 

subscribing to mailing lists of specifi c WGs, through which they can communicate 

with other members in the WGs. The regular meetings aim to allow active WGs to 

present and discuss their working results. IETF had held 76 meetings as of March 

2010. Each meeting lasts for fi ve to seven days, and the meeting location is chosen 

by the host organization.   

 Historical Evolution: Who’s Who in IETF 

 In 40 years, over 6000 RFCs have been produced. The most famous contributor 

is Jonathan Postel, who was the RFC editor from 1969 until his death in 1998. 

He was involved in over 200 RFCs, most of which are the fundamental protocols 

of the Internet, like IP and TCP. Behind Jonathan Postel, Keith McCloghrie is 

the person with the second highest number of RFCs. Keith has 94 RFCs, most 

of which are about SNMP and MIB.  Table A.1  lists the top 10 contributors and 

their key contributions based on the number of their published RFCs. 

TABLE A.1 Top Contributors of RFCs by Number

Name # of RFCs Key Contributions

Jonathan B. Postel 202 IP, TCP, UDP, ICMP, FTP

Keith McCloghrie 94 SNMP, MIB, COPS

Marshall T. Rose 67 POP3, SNMP

Yakov Rekhter 62 BGP4, MPLS

Henning Schulzrinne 62 SIP, RTP

Bob Braden 59 FTP, RSVP

Jonathan Rosenberg 52 SIP, STUN

Bernard Aboba 48 RADIUS, EAP

lin76248_app_654-722.indd   656lin76248_app_654-722.indd   656 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix A Who’s Who 657

  A.1.2 The RFC Process 
 IETF groups WGs into eight areas, each containing one or two area directors. Most 

RFCs are published after internal working of a specifi c WG.  Figure A.1  shows the 

RFC process. Various stages need to be gone through in publishing an RFC, and 

each stage is reviewed by the IESG. To publish an RFC, an  Internet Draft  (ID) is 

fi rst published, and will be put in an ID directory of the IETF for review. Sometime 

after the publication of the ID (at least two weeks), the author of the ID can send 

an e-mail to an RFC editor, to request that the ID be made into an Informational 

or Experimental RFC, and the RFC editor will then ask IESG to review the ID. 

Before it becomes an RFC, the authors of the ID can modify its contents. If the ID 

is not modifi ed or turned into an RFC in six months, it will be removed from the 

ID directory of the IETF, and the authors will be informed. Meanwhile, if the ID is 

reviewed and ready to become an RFC, its authors will have 48 hours to check the 

document for mistakes such as incorrect spelling or erroneous references. Once it 

becomes an RFC, the content can no longer be modifi ed. 

 As shown in Figure A.1, every RFC has a  status , including Unknown, Standard 

(STD), Historic, Best Current Practice (BCP), and general (Informational and 

Experimental). The Unknown status was assigned to most RFCs published in the early 

years of IETF, and has not appeared since October 1989. The STD status denotes an 

Internet standard, the BCP status indicates the best way to achieve something, and the 

general status shows that the RFC is not yet ready to, or may not be intended to, be 

standardized. An RFC must progress through three stages to become an STD: Proposed-

STD, Draft-STD, and STD. These stages are termed  maturity levels,  meaning that an 

RFC in the STD status should go through all these stages. Steps to different stages 

have different limitations. For example, if an RFC is stable, has resolved known design 

Internet Draft

Informational,
Experimental

BCP Proposed-Standard

(2 weeks)

(6 months)

Individual

(2 weeks)

Draft-Standard

Standard

Historic

Reviewed and approved by IESG

(4 months)

Reviewed and recommended by IESG, and approved by the RFC Editor

 FIGURE A.1 The RFC Process.     

lin76248_app_654-722.indd   657lin76248_app_654-722.indd   657 24/12/10   4:10 PM24/12/10   4:10 PM



658 Computer Networks: An Open Source Approach

issues, is believed to be well understood, has received signifi cant community reviews, 

and appears to enjoy suffi cient community interest to be considered valuable, it can be 

granted the Proposed-STD status. To gain the Draft-STD status, a Proposed-STD RFC 

must have at least  two  independent and interoperable  implementations  and stay in the 

processing queue for at least six months. To progress from Draft-STD to STD status, 

the RFC must have signifi cant implementation and successful  operation experience,  
and must also have spent at least four months in the processing queue. A specifi cation 

that has been suppressed by a more recent specifi cation or that is considered obsolete 

for any reason is assigned the Historic status. 

 The BCP process resembles the Proposed-STD process. The RFC is submitted 

to IESG for review; once it is approved by IESG, the process ends. The Informational 

and Experimental processes differ from STD’s and BCP’s. Documents intended to be 

published under these nonstandard statuses can be either submitted to IESG by IETF 

WGs or directly submitted to an RFC editor by individuals. For the fi rst case, IESG still 

takes responsibility for reviewing and approving the document as in the STD process. 

For the second case, however, the RFC editor has the fi nal decision, and the IESG only 

reviews and provides feedback. The RFC editor will fi rst publish such a document as an 

Internet Draft, wait two weeks for comments from the community, judge its suitability 

to be an Informational or Experimental RFC in his or her expert opinion, and then accept 

or reject it. IESG reviews the document and suggests whether or not to standardize it. If 

the document is recommended for standardization and the authors agree, it will enter the 

STD process. Otherwise, it will be published as an Informational or Experimental RFC. 

 Figure A.1  illustrates the RFC process for the STD, BCP, and general status.  

 RFC serial numbers are assigned according to the order of approval. Some serial 

numbers have special meanings. For example, RFC serial numbers ending with 

99 represent the RFCs that make a short introduction to the following 99 RFCs, while 

serial numbers ending with 00 represent the IAB Offi cial Protocol Standards, which 

provide short status reports of current RFC standards. Interested readers are further 

referred to RFC 2026: The Internet Standards Process.  

  A.1.3 The RFC Statistics 
 As of November 2010, RFC serial numbers had been assigned up to 6082. Among 

them, 205 serial numbers are unused, so there are only 5877 RFCs. To understand how 

RFCs are distributed, we compiled the statistics for these RFCs.  Figure A.2  presents 

the statistics and indicates that the top three RFC statuses are Informational, Proposed 

Standard, and Unknown, respectively. Not surprisingly, RFC 1796 has stated: “Not 

all RFCs are Standards.” Publishing as an Informational RFC is easier than passing 

through the STD process. Becoming a Standard needs to be widely proven, so many 

RFCs stay in the Proposed Standard level. Finally, the Unknown status is ranked third, 

because IETF did not develop the maturity levels and review process until RFC 1310.  

  Table A.2  counts the RFCs related to well-known protocols in four layers. 

The statistics include Point-to-Point Protocol (RFC 1661) for the data link layer, 

Internet Protocol (RFC 791) for the network layer, Transmission Control Protocol 

(RFC 793) for the transport layer, and Telnet Protocol Specifi cation (RFC 854) for 

the application layer. In fact, only about 30% of over 6000 RFCs are commonly used 

lin76248_app_654-722.indd   658lin76248_app_654-722.indd   658 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix A Who’s Who 659

in the Internet, which raises the question: Why are there so many RFCs? There are 

several reasons. First, once an RFC is generated, nobody can modify it. Thus many 

RFCs are  obsolete  or  updated  by new RFCs. Second, a single protocol might be 

defi ned by  several  RFCs. A single protocol with abundant functionalities might not be 

completed in its fi rst version, and thus new  features  or  options  are added individually 

as demands emerge. Finally, numerous RFCs defi ne emerging technologies which 

might not be deployed because of various diffi culties or newer alternatives. 

 Take the TELNET protocol as an example. About 108 RFCs describe this 

protocol. Among these 108 RFCs, 60 defi ne  options  for TELNET, only eight RFCs 

describe the main protocol, and the remaining documents are protocol-related 

discussions, comments, encryption methods, or experiences. These options were 

defi ned as the new demands for the TELNET protocol emerged, and they made the 

protocol more functionally complete. Among the eight RFCs, RFC 854 is the most 

 FIGURE A.2 Statistics for RFC Status.     

Historic
3%

Unknown
18%

Informational
34%Experimental

5%

BCP 3%

Standard
2%

Draft Standard
2%

Proposed
Standard

33%

Informational

Standard

Draft Standard

Proposed Standard

BCP

Experimental

Historic

Unknown

TABLE A.2 Well-Known Protocols Defi ned by 1561 RFCs

Layer Protocol Count Layer Protocol Count

Data 1ink
ATM 46

Transport
TCP 111

PPP 87 UDP 21

Network

ARP/RARP 24

Application

DNS 105

BOOTP/DHCP 69 FTP/TFTP 51

ICMP/ICMPv6 16 HTTP/HTML 37

IP/IPv6 259 MIME 99

Multicast 95 SMTP 41

RIP/BGP/OSPF 154 SNMP/MIB 238

TELNET 108

lin76248_app_654-722.indd   659lin76248_app_654-722.indd   659 24/12/10   4:10 PM24/12/10   4:10 PM



660 Computer Networks: An Open Source Approach

up-to-date protocol defi nition of TELNET, while the other seven have become obso-

lete or have been updated.     

   A.2 OPEN SOURCE COMMUNITIES
 

  As previously mentioned, implementation is necessary for each standard RFC 

and should be open to the public to prove its usability. Such a guideline promotes 

the development of the open source. In fact, many open source communities devote 

themselves to implementing these new Internet standards. Before introducing these 

communities, we intend to answer the following questions: How and why did 

the whole game of open source begin? What are the rules of the game in releas-

ing, using, modifying, and distributing an open source package? What running 

codes have been produced so far, in applications, kernels, and ASIC designs? This 

overview shall lead readers to enter the open source game. 

  A.2.1 Beginning and Rules of the Game 
  Free Software Foundation 

 In 1984, Richard Stallman (RMS,  www.stallman.org ) founded the Free Software 

Foundation ( www.fsf.org ), which is a tax-exempt charity that raises funds for work on 

the GNU Project ( www.gnu.org ). GNU, a  recursive  acronym for “GNU’s Not Unix” 

and a homophone for “new,” aims to develop Unix-compatible software and advocates 

software freedom. The  copyleft  and  GPL  were proposed to guarantee this freedom. 

Copylefts, in essence, are copyrights with GPL regulations. RMS himself is not only a 

“preacher,” but also a major open source software contributor. He is the principal au-

thor of GNU C Compiler (GCC), GNU symbolic debugger (GDB), GNU Emacs, and 

so forth. All these packages are essential tools in GNU/Linux, and there are about 55 

GNU packages in the Fedora 8.0 distribution, which includes a total of 1491 packages.  

  License Models 

 How to handle the intellectual property of an open source package is an interesting and 

sometimes controversial issue. It is important to select an appropriate license model to 

release an open source package to the public. Generally speaking, there are three natures 

of a license model to be aware of: (1) Is it  free  software? (2) Is it  copyleft?  (3) Is it 

 GPL-compatible?  Free software means the program can be freely modifi ed and redistrib-

uted. Copyleft usually means giving up intellectual property and private licensing. GPL-

compatible packages are legal to  link  GPL software. Nevertheless, there are too many 

license models out there. We only describe three major ones: GPL, LGPL, and BSD. 

 General Public License (GPL) is a free software license and a copyleft license. It 

is self perpetuating and infectious in that it  strictly  ensures that derivative works will be 

distributed under the same license model, i.e., GPL. The Linux kernel itself is GPL. In 

addition to derivative works, programs  statically linked  with Linux should be GPL, too. 

However, programs  dynamically linked  to Linux do not have to be GPL. Lesser GPL 

(LGPL), once known as library GPL, permits  linking  with non-free (proprietary) modules. 

lin76248_app_654-722.indd   660lin76248_app_654-722.indd   660 24/12/10   4:10 PM24/12/10   4:10 PM

www.stallman.org
www.fsf.org
www.gnu.org


 Appendix A Who’s Who 661

For example, since there are plenty of other C libraries, the GNU C library, if under GPL, 

would have driven proprietary software developers away to use other alternatives. Thus 

there are cases in which LGPL can help free software to attract more users and program-

mers. The GNU C library is thus LGPL. The Berkeley Software Distribution (BSD), on 

the other extreme, states that the code is free as distributed and allows derivative works 

to be covered under  different  terms, as long as necessary  credit  is given. Apache, BSD-

related OS, and the free version of Sendmail are all licensed under BSD. In short, GPL 

means it is a public property which you cannot own privately, while BSD implies a gift 

that anyone can take away. All other licensing models are between these two extremes.   

  A.2.2 Open Source Resources 
  Linux 

 People seldom emphasize Linux as  GNU/Linux . Indeed, the Linux kernel is the 

magician and GNU packages perform all the tricks. In 1991, Linus Torvalds, a 

graduate student at the Helsinki University in Finland, wrote a real Unix-compatible 

operating system and posted it on the newsgroup comp.os.minix. He handed on 

the kernel maintenance to Allan Cox after 1994, while still monitoring kernel 

versions and what’s in and out, and letting others deal with “user space” issues 

(libraries, compilers, and all kinds of utilities and applications that go into any Linux 

distributions). GNU/Linux has proven to be a successful combination. Eric Raymond 

( www.tuxedo.org/~esr ), another “preacher,” described this change in software 

development as the “open source movement” in 1998.   

  Taxonomy of Packages 

 The number of open source packages has reached over 10,000. This huge library can 

be divided into three major categories: (1) the operating environments with console 

or GUI interfaces, (2) daemons that provide various services, and (3) programming 

toolkits and libraries for programmers. We dug into this huge library to summarize 

the statistics shown in  Figure A.3 . For example, there are 97 daemons for HTTP; 

Apache is just one of them and happens to be the most popular one.  

  Linux Distributions 

 If the kernel is the foundation of a building and every open source  package  is a 

brick on top of it, a Linux distribution from a vendor is then the appearance of a 

building with the foundations, all kinds of bricks, and the furnishings. These vendors 

test, integrate, and put the open source software together. Next we introduce a few 

well-known Linux distributions. 

 Slackware ( www.slackware.com ) is a distribution that has a long history, is 

widespread, and is mostly noncommercial. It is stable and easy to use. Debian 

( www.debian.org ) is formed and maintained by nearly 1000 volunteers. Many ad-

vanced users have found fl exibility and satisfaction in the Debian distributions. Red 

Hat Linux ( www.redhat.com ), distributed by the S&P 500 company Red Hat, Inc., be-

gan as a Linus distribution packaged with Red Hat Packaging Manager  (RPM),  which 

provided easier installing, uninstalling, and upgrading than the primitive “.tar.gz.” 

lin76248_app_654-722.indd   661lin76248_app_654-722.indd   661 24/12/10   4:10 PM24/12/10   4:10 PM

www.tuxedo.org/~esr
www.slackware.com
www.debian.org
www.redhat.com


662 Computer Networks: An Open Source Approach

RPM makes  software dependency  transparent, not troublesome. Red Hat, Inc., took 

Red Hat Linux as their commercial product, Red Hat Enterprise Linux (RHEL), until 

2004, and thereafter stopped maintaining Red Hat Linux, probably due to copyright 

and patent problems. At present, RHEL has evolved from a community-supported 

distribution named Fedora, sponsored by Red Hat. CentOS (Community ENTerprise 

Operating System,  www.centos.org ), is another community-supported distribution. 

 FIGURE A.3 Taxonomy of open source packages.     

[247] Administration
[019] AfterStep Applets
[019] Anti-Spam
[119] Applications
[048] Backup
[008] Browser Addons
[023] CAE
[034] CD Writing Software
[196] Communication
[030] Compression
[009] Core
[130] Database
[063] Desktop
[027] Development
[006] Dialup Networking
[055] Documentation
[108] Drivers
[088] Editors
[062] Education
[165] eMail
[008] Embedded
[088] Emulators
[068] Encryption

[032] Multimedia
[480] Networking
[048] News
[053] OS
[048] Office Applications
[042] Packaging
[053] Printing
[189] Scientific Applications
[007] Screensavers
[031] Shells
[265] Sound
[136] System
[041] TV and Video
[011] Terminals
[190] Text Utilities
[665] Utilities
[004] VRML
[033] Video
[038] Viewers
[684] Web Applications
[038] Web Browsers
[121] Window Maker Applets
[039] Window Managers

[028] Enlightenment Applets
[023] FTP Clients
[044] File Managers
[052] File Systems
[051] Financial
[179] Firewall and Security
[026] Fonts and Utilities
[593] Games
[277] Graphics
[008] Home Automation
[103] IRC
[053] Java
[074] Log Analyzers
[208] MP3
[010] Mail Clients
[051] Mini Distributions
[021] Mirroring
[351] Misc
[028] Modeling
[007] Modem Gettys
[184] Monitoring
[003] Motif

Console/GNOME/KDE/X11

[007] Anti-Virus
[005] Batch Processing
[030] BBS
[010] Chat
[032] Database
[026] DNS
[015] Filesharing
[009] Finger
[022] FTP
[006] Hardware
[097] HTTP
[013] Ident
[013] IMAP

[050] IRC
[015] Mailinglist
Managers
[231] Misc
[027] MUD
[009] Network
Directory Service
[013] NNTP
[023] POP3
[071] Proxy
[031] SMTP
[005] SNMP
[002] Time

[010] Bug Tracking
[068] Compilers
[014] CORBA
[073] Database
[038] Debugging
[084] Environments
[028] Game SDK
[048] Interfaces
[173] Java Packages
[028] Kernel
[001] Kernel Patches
[121] Languages
[485] Libraries

[100] Perl Modules
[008] PHP Classes
[001] Pike Modules
[057] Python Modules
[031] Revision Control
[019] Tcl Extensions
[017] Test Suites
[558] Tools
[178]  Web
[055] Widget Sets

Daemons Development

lin76248_app_654-722.indd   662lin76248_app_654-722.indd   662 24/12/10   4:10 PM24/12/10   4:10 PM

www.centos.org


 Appendix A Who’s Who 663

It provides a free enterprise-class computing platform that maintains 100% binary 

compatibility with RHEL. Like the relation between RHEL and Fedora, SuSE Linux 

( www.novell.com/linux/ ) and openSUSE ( www.opensuse.org ) are the enterprise 

product and community-supported distribution sponsored by Novell, respectively. 

SuSE is known for good documentation and abundant package resources. Mandriva 

Linux ( http://www.mandriva.com/ ), formerly Mandrake Linux, began with simply 

combining the Red Hat distribution with KDE (K Desktop Environment) and many 

other unique, feature-rich tools. This combination turned out to be so popular that 

a company called Mandriva was then founded. Ubuntu ( http://www.ubuntu.com ), 

named from the Bantu words for “humanity toward others,” is a distribution based 

on Debian and uses GNOME (the GNU Network Object Model Environment) as 

its graphical desktop environment. It is famous for its ease of installation and user-

friendly interface. Since 2006, Ubuntu is reported to be the most popular distribution.   

  A.2.3 Web Sites for Open Source 
  Freshmeat.net and SourceForge.net 

 The Web sites  Freshmeat.net  was set up to provide a platform for Linux users to 

fi nd and download the software packages released under open source licenses. For 

each package, besides the brief description, homepage URL, release focus, recent 

changes, and dependent libraries, three interesting indexes are given in Freshmeat.

net, which are  rating,   vitality,  and  popularity . A user vote mechanism provides the 

rating, while the other two indexes are calculated based on the age of project, number 

of announcements, date of last announcement, number of subscriptions, URL hits, 

and record hits. Besides the packages, Freshmeat.net includes many original articles 

to introduce the software and programming. 

 Freshmeat.net is supported and maintained by Geeknet, Inc. According to the 

statistics given on the Web sites, Freshmeat.net introduces more than 40,000 proj-

ects. The statistics also report the top 10 projects, sorted by popularity and vitality. 

For example, two famous projects in the top 10 lists are GCC and MySQL, where 

GCC is the well-known GNU compiler mentioned previously and MySQL is one of 

the most popular open source databases on the Internet. 

 Unlike Freshmeat.net, which provides the information for users to look up, com-

pare, and download packages,  SourceForge.net  provides a free platform for package 

developers to manage projects, issues, communications, and codes. It hosts over 

230,000 projects! The most active project in SourceForge.net is Notepad++, while 

the most downloaded one is eMule. The former is a text editor used in Windows, 

while the latter is a P2P fi le sharing program.  

  OpenCores.org 

 Not only software packages can be open source; so can hardware designs. The Open-

Cores.org community collects people who are interested in developing hardware and like 

to share their designs with others, just like open source software. The only difference 

here is that the codes are in  hardware  description languages like Verilog and VHDL. 

The community and its Web portal were founded by Damjan Lampret in 1999. As 

lin76248_app_654-722.indd   663lin76248_app_654-722.indd   663 24/12/10   4:10 PM24/12/10   4:10 PM

www.novell.com/linux/
www.opensuse.org
http://www.ubuntu.com
http://www.mandriva.com/


664 Computer Networks: An Open Source Approach

of December 2009, there were 701 projects hosted on its Web site and 500,000 Web 

hits/month. These projects are classifi ed into 15 categories, such as arithmetic core, 

communication core, cypto core, and DSP core. 

 As with Freshmeat.net, OpenCores.org also maintains several interesting 

indexes for each project, such as popularity, downloads, activity, and rating. For 

example, the top six by popularity are OpenRISC 1000, Ethernet MAC 10/100Mbps, 

ZPU, I2C core, VGA/LCD controller, and Plasma.  

  A.2.4 Events and People 
  Table A.3  lists major events in the open source movement. Lots of contributors spend 

their time developing open source software. Here we mention only some well-known 

people, while credit should also go to people who receive less public attention. 

TABLE A.3 Open Source Timeline

1969 Internet started as ARPAnet. Unix.

1979 Berkeley Software Distribution (BSD).

1983 Sendmail by Eric Allman.

1984 Richard Stallman started the GNU project.

1986 Berkeley Internet Name Domain (BIND).

1987 Perl by Elaine Ashton.

1991 Linus Thorvald wrote Linux.

1994 Allan Cox carried on the Linux kernel maintenance. 

PHP by Rasmus Lerdorf.

2/1995 Apache HTTP Server Project with 8 team members.

3/1998 Navigator went Open Source.

8/1998 “Sure, we’re worried.”— Microsoft president Steve Ballmer.

3/1999 Macintosh released Darwin (kernel of MacOSX) under APS license.

7/2000 No. of Apache Web servers exceeded 11 million (62.8% of the whole market).

10/2000 Sun Microsystems made the StarOffi ce code available.

10/2003 UK government announced a deal with IBM on open-source software.

10/2004 IBM offered 500 patents for open source developers.

1/2005 Sun Microsystems opened the Solaris operation system.

5/2007 Microsoft claimed Linux infringed its patents.

11/2007 Google announced an open mobile device platform named Android.

9/2008 Microsoft CEO confessed that 40% of Web servers run Windows but 

60% run Linux.

7/2009 Google introduced its open-source OS, Google Chrome OS.

lin76248_app_654-722.indd   664lin76248_app_654-722.indd   664 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix A Who’s Who 665

        A.3 RESEARCH AND OTHER STANDARDS COMMUNITIES
 

  Besides IETF and open source communities, there are several important research 

institutes and standard bodies that have also contributed much to the evolution of the 

Internet. We introduce them here.  

 ISI: Information Sciences Institute at University of Southern California 

 ISI is a research and development center for advanced computer and communication 

technologies, founded in 1972. ISI now has eight divisions and hosts more than 

300 researchers and engineers. Its computer network division is one of the birthplaces 

of the ARPANET, the Internet’s predecessor. The division is also involved in the 

development of many daily-used Internet protocols and packages, such as TCP/IP, 

DNS, SMTP, and Kerberos.  

  ICSI: International Computer Science Institute in Berkeley 

 ICSI is an independent nonprofi t institute for research in computer science, which 

was established in 1988 and includes four major research groups: Internet research, 

theoretical computer science, artifi cial intelligence, and natural speech processing. 

The scientists in the Internet research group have been involved in many well-known 

and widely-deployed network algorithms and tools, such as RED, TCP SACK, 

TFRC, and network simulator 2. The group also presented a series of measurements 

and observations on the current status of Internet traffi c and security, which are 

highly useful to the design and testing of new network protocols and algorithms.  

  CERT: Computer Emergency Response Team at Carnegie Mellon University 

 The CERT Coordination Center was founded in the Software Engineering Institute when 

the Morris worm caused 10% of Internet systems to halt in 1988. The major works in the 

center include software assurance, secure systems, organizational security, coordinated 

response, and education/training. CERT is also the  birthplace  of the World Wide Web.  

  ETSI: European Telecommunications Standards Institute 

 ETSI was created in 1988 and is a standardization organization of the telecommuni-

cations industry in Europe. Its produced standards include fi xed, mobile, radio, and 

Internet technologies. The most signifi cant successful standard pushed by ETSI is 

GSM (Global System for Mobile Communications).  

  IEEE: Institute of Electrical and Electronics Engineers 

 IEEE is the largest professional association in electrical engineering, computer 

science, and electronics with more than 365,000 members in over 150 countries 

(as of 2008). The association publishes about 130 journals or magazines, hosts over 

400 conferences per year, and produces many textbooks. It is also one of the most 

important developers of international standards in communications. Many PHY and 

MAC protocols are standardized in the series of IEEE 802 standards, including 802.3 

(Ethernet), 802.11 (Wireless LAN), and 802.16 (WiMAX). The contents of these 

standards are introduced in Chapter 3.  

lin76248_app_654-722.indd   665lin76248_app_654-722.indd   665 24/12/10   4:10 PM24/12/10   4:10 PM



666 Computer Networks: An Open Source Approach

  ISO: International Organization for Standardization 

 ISO, as the largest developer and publisher of international standards, is involved in 

almost all domains—technology, business, government, and society. Many famous 

telecommunication systems are standardized by ISO. For example, the telephone 

network is based on its Public Switched Telephone Networks (PSTN) standard. ISO 

also made many standards in data networks, although not all of these standards are 

used in today’s Internet, e.g., the OSI 7-layer network architecture.  

  Individual Contributions 

 Finally, we honor some individuals whose efforts established the fundamental 

architecture of the Internet. J.C.R. Licklider and Lawrence Roberts led the ARPA 

project in the 1960s to create the ARPANET. Paul Baran, Donald Davies, and 

Leonard Kleinrock are often acclaimed as the “fathers” of the Internet for build-

ing the initial packet-switched ARPANET back in 1969. Bob Kahn and Vint Cerf 

developed TCP and IP in the early 1970s. Robert M. Metcalfe and David R. Boggs 

co-invented the fi rst Ethernet technology in 1973. Jon Postel subsequently wrote 

many RFCs for TCP/IP, DNS, SMTP, FTP, etc. David D. Clark acted as a chief 

protocol architect in the development of the Internet architecture in the 1980s. Van 

Jacobson contributed to TCP congestion control in the late 1980s. Sally Floyd de-

veloped RED and CBQ and improved TCP in the 1990s. Tim Berners-Lee invented 

the World Wide Web in 1989, which led to an explosive growth of the Internet in 

the 1990s.     

   A.4 HISTORY
 

  This subsection describes the short-lived or failed technologies in the Internet and the 

reasons for their failure.  Figure A.4  shows a timeline for these technologies. The hollow 

bar means the technology was studied for many years but did not get deployed or ac-

cepted by the market, while the solid bar means it has been deployed, but was replaced 

by a later technology or failed to replace the existing one. Their brief histories follow. 

 FIGURE A.4 Timeline with some short-lived and failed technologies.     

X.25, 80s Frame Relay, 90s, (Replaced by IP over DSL)

1980 1985 1990 1995 2000 2005
Year

OSI, 79 ~ 85 (Failed to replace TCP/IP)

ISDN, B-ISDN, 80s

FDDI and DQDB, 90s (Failed to replace Ethernet)Token Ring/Bus, 80s

ATM, 90s (Failed to replace TCP/IP and Ethernet)

lin76248_app_654-722.indd   666lin76248_app_654-722.indd   666 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix A Who’s Who 667

   Architecture Standards: OSI 

 The seven-layer Open System Interconnection (OSI) architecture was proposed in 

1980 by Zimmerman and later adopted by the International Organization for Stan-

dardization (ISO) in 1994. It aimed to replace the emerging four-layer TCP/IP stack 

defi ned in 1981. It had two extra layers—presentation and session layers—which 

were thought to be more  complete  and structured than TCP/IP. But why did OSI 

fail? There are two main reasons. First, TCP/IP was already prevailing on the UNIX 

operating system that most computers run. That is, it had a strong  vehicle  to penetrate 

the world. Second is that the claimed structural completeness was  not  critical as long 

as all sorts of applications could run on TCP/IP smoothly. The result proved that on 

the Internet there is no absolute authority. Even a technology approved and supported 

by an international standards body could fail. OSI is just one of the  many  examples.  

  Integrated Services: ISDN, B-ISDN with ATM 

 Carrying voice and data on the same network had been a long-term effort in the 

telecom industry. As far back as the mid-1980s, the industry had only POTS for 

voice services and launched its connection-oriented X.25 for limited data services 

mostly for fi nancial applications and enterprise networking. X.25 was a successful 

service, and was later gradually replaced by Frame Relay in the 1990s and then IP 

over Digital Subscriber Line (DSL) in the 2000s as the data services evolved toward 

the Internet. But the data services remained separate from the voice services until 

Integrated Services Digital Network (ISDN) emerged in the late 1980s as the  fi rst  
try to combine these two public services. ISDN  integrated  the user interfaces to 

access data and voice services, but still had two  separate  backbone networks, one 

circuit-switched to carry voices and another packet-switched but connection-oriented 

to carry data. ISDN was a moderate, but brief, success in the late 1980s to the 

mid-1990s with service providers in many countries. 

 To eliminate ISDN limitations on the  fi xed  user interfaces,  narrow  bandwidth, 

and  separate  backbones, broadband-ISDN (B-ISDN) was proposed to ITU in the 

early 1990s to provide  fl exible  interfaces,  broadband  services, and a  unifi ed  back-

bone which relied on cell-switching Asynchronous Transfer Mode (ATM) technolo-

gies where a cell was a fi xed-size, 53-byte packet to facilitate  hardware  switching. 

Similar to the fate of OSI, ATM was a complete, sophisticated technology, but it 

needed to coexist with TCP/IP which already dominated public data networks. This 

coexistence was  painful  because of the confl icting natures of connection-oriented, 

cell-switching ATM and connectionless, packet-switching IP, either through Inter-

networking (ATM-IP-ATM or IP-ATM-IP) or hybrid stacking (IP-over-ATM). The 

effort was abandoned in the late 1990s after  billions  in investments and  “tons”  of 

research. B-ISDN was never deployed commercially. TCP/IP won the second major 

war and continued to extend its services from data to voice and video.  

  WAN Services: X.25 and Frame Relay 

 If TCP/IP was the data service solution proposed by the datacom camp, X.25 was 

the  fi rst  data service solution presented by the telecom camp. X.25 had three layers 

of protocols and was connection oriented, but it was slow due to the high protocol 

lin76248_app_654-722.indd   667lin76248_app_654-722.indd   667 24/12/10   4:10 PM24/12/10   4:10 PM



668 Computer Networks: An Open Source Approach

processing overhead. Thus it was redesigned to compress its protocol stack into the two-

layer Frame Relay, which remained connection oriented. The transition to Frame Relay 

was evolutionary and seldom noticed. Today there are still fi nancial systems using either 

X.25 or Frame Relay, as most enterprise customers have switched to IP over DSL. 

 One interesting observation is that almost all data services rolled out from the telecom 

camp were  connection oriented  and eventually failed or were replaced. The same might 

happen in wireless data services, including GSM/GPRS and 3G with circuit-switched 

voice services and packet-switched but connection-oriented data services. On the 

other hand, WiMAX pushed by the datacom camp and some telecom players does  not  
differentiate data and voice  explicitly,  and positions itself as a pure layer-2 technology to 

carry IP and above. If history repeats itself, the end result should be clear.  

  LAN Technologies: Token Ring, Token Bus, FDDI, DQDB, and ATM 

 Similar to IP, Ethernet has been a long-term winner since the early 1980s. It won mainly 

because it remained simple and it evolved through many generations. Its fi rst competitors 

in the 1980s were Token Ring and Token Bus, which had  bounded  transmission latency 

for a station attached to the ring or bus due to the nature of round-robin token passing. But 

this advantage did not win them a market share because of the higher hardware complex-

ity in the interface cards and the concentrators. The theoretical unbounded latency did 

not hurt Ethernet, since in reality the latency was acceptable. The second competitors in 

the early 1990s were Fiber Distributed Dual Interface (FDDI) and Dual Queue Dual Bus 

(DQDB), which operated at 100 Mbps, compared to 10 Mbps Ethernet at that time, and 

provided QoS, i.e., bounded latency. FDDI enhanced the token passing protocol similar 

to Token Ring, while DQDB ran a sophisticated mechanism of “requesting in upstream 

minislots for downstream data slots.” In response, Ethernet evolved to 10/100 Mbps ver-

sions and protected its market dominance by its hardware simplicity again. 

 The third competitor in the mid-1990s, ATM, was an effort branched from a grand 

effort of B-ISDN. In the 1990s, ATM aimed to span not only last-mile interfaces but 

also WAN, (the backbone) and LAN. ATM LAN provided an impressive capacity of a 

gigabit per second and comprehensive integration from LAN to WAN. It failed because 

its B-ISDN umbrella was abandoned and Ethernet evolved into its 10/100/1000 Mbps 

versions. Chapter 3 has complete coverage on the evolution of Ethernet.     

   IETF 
 Almost all IETF-related documents are online accessible. 
No specifi c books are on IETF or RFCs alone. Thus read-
ers are referred to the offi cial site of IETF at  www.ietf.org .  

  Open Source Development 
 The fi rst entry is the fi rst open source  project . The next two are 
the famous article on open source and the book derived from 
it. The fourth one is an overview of open source development. 

   • R. Stallman, The GNU project,  http://www.gnu.org   

  • E. S. Raymond, “The Cathedral and the Bazaar,” 

May 1997,  http://www.tuxedo.org/~esr/writings/

cathedral-bazaar/cathedral-bazaar   

  • E. S. Raymond, The Cathedral and the Bazaar: Mus-
ings on Linux and Open Source by an Accidental 
Revolutionary, O’Reilly & Associates, Jan. 2001.  

  • M. W. Wu and Y. D. Lin, “Open Source Software 

Development: An Overview,” IEEE Computer, 
June 2001.              

   FURTHER READINGS 

lin76248_app_654-722.indd   668lin76248_app_654-722.indd   668 24/12/10   4:10 PM24/12/10   4:10 PM

http://www.gnu.org
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/cathedral-bazaar
www.ietf.org


 A p p e nn d i xx B 

Linux Kernel Overview 

  One question arises when teaching protocol designs interleaved with their Linux 

open source implementations. Students might not be familiar with the Linux environ-

ment for  users,   administrators,  and  developers;  nor do they have enough experience 

in  tracing  complicated source codes. Regarding the Linux environment for users and 

administrators, there are plenty of easy-to-read references available. For developers, 

there are several good references, but they are too thick for students taking a 

computer networks course to read quickly. Learning to trace complicated source 

codes is another barrier to overcome. Thus, we provide exposure to source code in 

this appendix, while the Linux tools for development and utility are introduced in 

Appendix C and Appendix D, respectively. 

 This appendix gives a simple guide for tracing the Linux kernel. The same prac-

tices could be applied to trace Linux application programs. We fi rst review the  Linux 
source tree  with emphasis on  networking,  which is the focus of this text, followed by 

an introduction to a couple of useful tools for tracing the Linux source code. Section 

B.1 reviews the kernel source tree, under the directory with the default name /usr/src/

linux, by classifying twenty directories into seven categories, describing the coverage 

of these categories, and listing their important example modules. 

 Section B.2 summarizes the open source implementations covered in Chapters 3, 4, 

and 5 in a table. This directs readers to focus on source codes of networking and narrow 

down which program  functions  to trace. Note that the open source implementations in 

Chapter 6 are user-space programs which are not in the Linux kernel. The summary 

table does not include the open source implementations of advanced QoS and security 

features discussed in Chapters 7 and 8, though some of them are within the Linux kernel. 

 To trace complicated source codes, effi cient tools are essential. Section B.3 

introduces several popular tracing tools and physically walks through a sample 

open source implementation, IP reassembly covered in Chapter 4, with the tool   LXR   

 (Linux Cross Reference) . Readers could apply the same practice to all other open 

source implementations covered in this text. 

          Distributions and Versions 

 Linux was written by Linus Torvalds in 1991, while he was a graduate student at 

Helsinki University in Finland. The development was done on Minix for PC with 

an 80386 processor. However, the kernel cannot work by itself without system soft-

ware such as shell, compilers, libraries, text editors, and so forth. Therefore, Linux 

 669

lin76248_app_654-722.indd   669lin76248_app_654-722.indd   669 24/12/10   4:10 PM24/12/10   4:10 PM



670 Computer Networks: An Open Source Approach

version 0.99 was published using the GNU General Public License in December 

1992. Torvalds later handed on the kernel maintenance to Allan Cox after 1994. 

 There are many Linux distributions, such as Red Hat, SuSE, Debian, Fedora, CentOS, 

and Ubuntu. However, it does not matter which distribution you install; they share the 

 same  Linux kernel. They differ in their add-ons. You may choose a distribution that has a 

graphical installer, easy server confi guration tools, high security, and good online support. 

 There are also many versions of the Linux kernel. Each version is denoted 

by x.y.z where x is the major version number, y is the minor version number, and z 

is the release number. After version 2.6.8, a fourth number may be added to indicate 

a trivial version number. As a convention, the Linux kernel uses odd minor version 

numbers to denote  development releases  and even minor version numbers to denote 

 stable releases . As of June 2009, the most up-to-date version is v2.6.30.      

   B.1 KERNEL SOURCE TREE
 

  The Linux source code of version 2.6.30 consists of the following 20 fi rst-level direc-

tories:   Documentation  ,   arch  ,   block  ,   crypto  ,   drivers  ,   firmware  ,    fs  , 
  include  ,   init  ,   ipc  ,   kernel  ,   lib  ,   mm  ,   net  ,   samples  ,   scripts  ,   security  , 
  sound  ,   usr  ,   virt  . Each directory contains fi les for a specifi c propose. For example, 

the fi les under   Document/   are written to illustrate the design concept or implementa-

tion details of the Linux kernel. Due to the highly evolving nature of Linux, the name 

and location of a directory might be changed, e.g., fi rmware image fi les were extracted 

from   drivers/   to the   firmware/   directory since version 2.6.27. Or new directories 

are created for new frameworks, e.g., the sound architecture and its fi rst-level directory, 

  sound/  , were proposed in version 2.5.5, or driven by new features, e.g., the support of 

virtualization platforms results in the   virt/   directory in 2.6.25. 

 From a high-level view, we can still classify those directories into seven catego-

ries as summarized in  Table B.1 : creation, architecture-specifi c, kernel core, fi le sys-

tem, networking, drivers, and helper. The remainder of this section introduces each 

of the categories in order to provide on overview of the Linux kernel. 

   � Creation 

  The files in this category help in the making of the kernel and kernel-related 

systems. Two directories belong to this category: the   scripts/   and the 

  usr/   directories. The   scripts/   directory contains command-line scripts, 

and C source codes to build the kernel. For example, when you type ‘  make 
menuconfig  ’ under the top-level directory of the kernel source, it actu-

ally executes the procedures defined in the   scripts/kconfig/Make-
file  . Then the source codes under the   usr/   directory can be used to build a 

cpio-archieved  1   initial ramdisk,   initrd  , which can be mounted by the kernel 

in the booting stage before loading the actual file system.  2      

  1 Before Linux 2.6, the   initrd   was generated from the image of a file system, i.e., dumping the layout 

of a file system byte by byte. To do that, you needed the administrative privilege, which might be 

inconvenient to a developer. Linux 2.6 adds a new   initrd   format that directly utilizes the 
Continued

lin76248_app_654-722.indd   670lin76248_app_654-722.indd   670 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix B Linux Kernel Overview 671

  � Architecture-specific 

  Platform-dependent codes are placed under the   arch/   directory. To reduce port-

ing efforts, the design of the Linux kernel separates the low-level, architecture-

specific functions, such as memory copy (  memcpy  ), from the generic routines. 

In the early versions, the architecture-specific header files, i.e.,   *.h   files, were 

located under the   include/asm-<arch>   subdirectory. Since the release of 

version 2.6.23, those files were progressively moved to the   arch/   directory. 

For example, codes specific to the x86 PC architecture are under the   arch/x86   

subdirectory. Now all architecture-specific header files have been put under the 

  arch/   directory. 

   Linux also plans to support kernel-based, hardware-assisted  virtualization . 

The related code is located under the   virt/   directory. At present, only one 

module that utilizes the Intel VT-x extensions is available.  

  � Kernel core 

  This category contains the code that provides the core functions of the 

kernel. It includes the kernel start-up procedures and management routines. 

Specifically, the   init/main.c   calls many initialization functions, brings 

TABLE B.1 Summary of Linux Kernel Source

Category Directories Description

Creation usr/, scripts/ Help in the making of the kernel

Architecture-

specific

arch/, virt/ Architecture-specific source and 

header files

Kernel core init/, kernel/, 
include/, lib/, 
block/, ipc/, 
mm/, security/, 
crypto/

Core functions and frameworks used 

in kernel

File system fs/ File system-related source codes

Networking net/ Networking-related source codes

Drivers drivers/, 
sound/, 
firmware/

Device drivers

Helper Documentation/, 
samples/

Document and sample codes that 

help you get involved in the kernel 

development

  2 The kernel needs the   initrd   to bring out the actual file system if the actual file system is 

unrecognized by the kernel, e.g., it is stored on an encrypted disk. 

user-space archiver,   cpio  , to create the   initrd  , so that all users can play the kernel compilation 

without bothering the administrators. 

lin76248_app_654-722.indd   671lin76248_app_654-722.indd   671 24/12/10   4:10 PM24/12/10   4:10 PM



672 Computer Networks: An Open Source Approach

up the ramdisk, executes user-space system-initialization programs, and then 

starts scheduling. The implementations of the initialization, scheduling, and 

synchronization and process management functions are actually under the 

  kernel/   directory, while the memory management routines are under 

the   mm/   directory and the inter-process communication (IPC) functions, e.g., 

shared memory management, are under the   ipc/   directory. 

   This category also covers kernel-space shared functions, e.g., the string 

comparison function (  strcmp  ), implemented under the   lib/   directory. The 

cryptographic application programming interface (API) is isolated to a first-

level directory,   crypto/  . Their header files (  *.h  ) as well as other common 

header files, such as the TCP header, shared by all kernel modules are located in 

the   include/   directory. 

   Finally, the generic frameworks defined by Linux also belong to this cat-

egory. These include the block-device interface, which is under the   block/   

directory, and the security framework and its implementation, e.g., the Security 

Enhanced Linux ( SELinux ), placed under the   security/   directory. Although 

the sound architecture, called Advanced Linux Sound Architecture ( ALSA ), is 

also a  common  architecture in Linux, we like to place such files in the drivers 

category. This is because most of the files under the   sound/   directory are actu-

ally device drivers.  

  � File system 

  Linux supports dozens of file systems implemented under the   fs/   directory. 

The core of all file systems is called the virtual file system (VFS), which is an 

abstract layer providing the file system interface to user space. Briefly, a new 

file system complying with the VFS will call   register_filesystem()   

and   unregister_filesystem()   to register and disassociate itself from 

the kernel, respectively. 

   Among those file systems, the most common one at present might be the 

third extended file system ( ext3 ). The source code of  ext3  and its successor,  ext4,  
is located in the   fs/ext3   and   fs/ext4   subdirectories, respectively. Simi-

larly, source code for the famous Network File System ( NFS ) is under the   fs/
nfs   subdirectory.  

  � Networking 

  The networking architecture and the protocol-stack implementation under the 

  net/   directory might be the most active part in the kernel development. For 

example, since the release of version 2.6.29, Linux has supported WiMAX, and 

its source code is under the   net/wimax/   subdirectory. Section B.2 elaborates 

on the   net/   directory.  

  � Drivers 

  This category includes the kernel source code of device drivers within three 

first-level directories:   drivers/  ,   sound/  , and   firmware/  . All kinds of 

drivers except the sound card drivers are put under the   drivers/   directory. 

Due to the presence of a uniform sound architecture mentioned above, i.e., 

ALSA, the sound card drivers were moved to the first-level directory,   sound/  . 

The   firmware/   directory contains firmware image files extracted from device 

lin76248_app_654-722.indd   672lin76248_app_654-722.indd   672 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix B Linux Kernel Overview 673

drivers. The licenses of those firmware images are documented in   firmware/
WHENCE  .    3       

  � Helper 

  Plenty of documents are left in the kernel source code under the   Documenta-
tion/   directory to help a kernel newbie become a guru. The   HOWTO   file might be 

the first document you should read. It teaches you how to become a Linux kernel 

developer. The   kernel-docs.txt   file lists hundreds of online documents 

illustrating developments from the kernel to drivers. If you are planning to partici-

pate in the kernel development, the   CodingStyle  ,   SubmittingDrivers  , 

  SubmittingPatches  , and the files under the   development-process/   

subdirectory are worth a read. Under this directory, you can also find a particular 

driver or subsystem design documents; e.g., file system-related documents are 

under the   filesystems/   subdirectory. Finally, to know the big picture of the 

  Documentation/   directory   00-INDEX   would be your first choice. 

   With the release of version 2.6.24, came the first-level directory   samples/.   

Just as its name implies, sample codes are put under this directory. For example, 

you can learn how to add your customized options for the “make menuconfig” 

interface by referring to the   Kconfig   file. Currently, few examples are in this 

directory, but we believe the number should increase in later releases.   

  Finally, we summarize in  Figure B.1  the twenty first-level directories of the ker-

nel source tree, its corresponding seven categories, and the examples given above. 

  3 Firmware is machine code or binary configurations that aim at optimizing the functionality of 

hardware. It can be saved as image files, i.e., the firmware image files, and either compiled with the 

drivers or loaded during runtime. Moreover, it is provided by the vendor, and therefore requires license 

from the vendor. 

 FIGURE B.1 Kernel source tree.     

initrd
buildDocumentation/

samples/

Helper

Kernel core
net/

Networkingscript/

usr/

Creation

TCP/IP
WiMAX
…

HOWTO,…

Kconfig,…

init/

kernel/

lib/

crypto/

mm/

include/

block/security/

fs/

ipc/

Kernel
Source

function
declarations

drivers/ sound/

firmware/

Drivers

Filesystem

arch/ virt/

Architecture-specific

ext3, nfs,… x86,… Intel VT-x

ALSA
…

PCI
SCSI
…

SELinux,…

aes, sha1,…

strcmp,…

shm_init,…

lin76248_app_654-722.indd   673lin76248_app_654-722.indd   673 24/12/10   4:10 PM24/12/10   4:10 PM



674 Computer Networks: An Open Source Approach

Layer Topics Directory Files Functions Descriptions

Data Link Receiving frames net/core/ dev.c net_rx_action()-> 

netif_receive_skb()

Upon NET_RX_SOFTIRQ 

interrupt, kernel calls 

net_rx_action() which in turn 

calls netif_receive_skb() to 

process the frame

Data Link Sending frames net/core/ dev.c net_tx_action()->

dev_queue_xmit()

Upon NET_TX_SOFTIRQ 

interrupt, kernel calls 

net_tx_action() which in turn 

calls dev_queue_xmit() to 

send the frame

Data Link Netcard drivers drivers/
net/

3c501.c, etc. el_interrupt(), el_open(), 

el_close(), etc.

network interface drivers, 

include interrupt handlers

Data Link PPP outgoing fl ow drivers/
net/

ppp_generic.c ppp_start_xmit(),

ppp_send_frame(),

start_xmit()

PPP daemon calls 

ppp_write while kernel calls 

ppp_start_xmit()

       B.2 SOURCE CODE FOR NETWORKING
 

  Among these directories, three directories,   include/  ,   net/  , and   drivers/  , 

are the most relevant to the protocols we present in this text. The   include/   

directory contains declaration fi les (  *.h  ). Declarations that are related to kernel and 

network are defi ned under the   include/linux   directory and the   include/net   

directory, respectively. For example, the IP header,   struct iphdr  , is declared 

in   include/linux/ip.h,   and IP-related fl ags, constants, and functions are 

declared in   include/net/ip.h  . 

 On the other hand, the   net/   directory has most of the codes that are related 

to networking. Specifi cally, common core functions are defi ned in the   .c   fi les 

under   net/core  , such as   dev.c   and   skbuff.c  . Implementation of the socket 

interface is done in   net/socket.c  ; codes for TCP/IPv4 protocols are under   net/
ipv4  , such as   ip_input.c  ,   ip_output.c   ,    tcp_cong.c   ,    tcp_ipv4.c   ,  
and   tcp_output.c  ; codes for the IPv6 protocol are under   net/ipv6  , such as 

  ip6_input.c  ,   ip6_output.c   ,  and   ip6_tunnel.c  . 

 Finally, drivers, the interfaces between hardware devices and the operating system, 

are implemented in the   drivers/   directory. There are many subdirectories under 

this directory. The drivers for Ethernet network interface cards can be found in the 

  drivers/net   directory, e.g.,   3c501.c  ,   3c501.h   as 3Com 3c501 Ethernet 

driver. Codes for the PPP protocol discussed in Chapter 3 are also under this directory, 

such as   ppp_generic.c  . 

  Table B.2  summarizes directories, fi les, and functions of the open source imple-

mentations traced in Chapters 3, 4, and 5. When tracing them, you can fi rst fi nd the 

fi le for the specifi c source code and then trace major functions listed in this table to 

understand the main fl ow of program execution. Section B.3 introduces tools for ef-

fi cient source code tracing. 

TABLE B.2 Summary of Directories and Files Related to Networking

lin76248_app_654-722.indd   674lin76248_app_654-722.indd   674 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix B Linux Kernel Overview 675

Layer Topics Directory Files Functions Descriptions

Data Link PPP outgoing fl ow drivers/
net/

ppp_generic.c ppp_start_xmit(),

ppp_input(), 

ppp_receive_frame(),

netif_rx()

ppp_sync_receive() takes 

out the tty->disc_data, frame 

received through netif_rx() or 

skb_queue_tail()

Data Link Bridging net/
bridge/

br_fdb.c __br_fdb_get(),

fdb_insert()

Self-Learning Bridging, MAC 

table lookup

Data Link Bridging net/
bridge/

br_stp_bpdu.c br_stp_rcv(),

br_received_confi g_bpdu()

br_record_confi g_

information(),

br_confi guration_update()

Spanning Tree protocol

Network Packet forwarding net/ipv4/ route.c ip_queue_xmit(),

__ip_route_output_key(),

ip_route_output_slow()

fi b_lookup()

ip_rcv_fi nish(), 

ip_route_input(),

ip_route_input_slow()

Forward packets based on 

routing cache; if cache miss, 

forward based on routing table

Network IPv4 checksum include/
asm _ i386/

checksum.h ip_fast_csum() Speed up checksum 

computation with codes in 

machine-dependent assembly 

language

Network IPv4 fragment-

ation

net/ipv4/ ip_output.c

ip_input.c

ip_fragment.c

ip_fragment(),

ip_local_deliver(),

ip_defrag(),

ip_fi nd(),

ipqhashfn(),

inet_frag_fi nd(),

ipq_frag_create()

IP packet fragmentation and 

reassembly procedure; hash is 

used to identify fragments of 

a packet

Network NAT net/ipv4/
netfilter/

nf_conntrack_

core.c nf_nat_

standalone.c 

nf_nat_ftp.c 

nf_nat_proto_

icmp.c ip_

nat_helper.c

nf_conntrack_in(), 

resolve_normal_ct(), 

nf_conntrack_fi nd_get(),

 nf_nat_in(), nf_nat_out(), 

nf_nat_local_fn(), 

nf_nat_fn(), nf_nat_ftp(), 

nf_nat_mangle_tcp_

packet(), mangle_contents(), 

adjust_tcp_sequence() 

icmp_manip_pkt()

Perform source NAT after 

packet fi ltering and before 

sending to the output interface; 

perform destination NAT 

before packet fi ltering for 

packets from network interface 

card or upper layer protocols. 

NAT ALG (helper function) 

for FTP and ICMP

Network IPv6 net/ipv6/ ip6_fi b.c fi b6_lookup(),

fi b6_lookup_1(),

ipv6_prefi x_equal()

Look up the IPv6 routing table 

(FIB), which is stored in a 

binary radix tree

Network ARP net/ipv4/ arp.c arp_send(),

arp_rcv(),

arp_process()

Implementation of the ARP 

protocol, including send, 

receive, and process ARP 

packets

Network DHCP net/ipv4/ ipconfi g.c ic_bootp_send_if(),

ic_dhcp_init_options(),

ic_bootp_recv(),

ic_do_bootp_ext()

Implementation of the DHCP/ 

BOOTP/RARP protocol; 

we trace the send and receive 

procedure of a DHCP 

message

lin76248_app_654-722.indd   675lin76248_app_654-722.indd   675 24/12/10   4:10 PM24/12/10   4:10 PM



676 Computer Networks: An Open Source Approach

Layer Topics Directory Files Functions Descriptions

Network ICMP net/ipv4/ icmp.c icmp_send(), 

icmp_unreach(),

icmp_redirect(), icmp_

echo(),

icmp_timestamp,

icmp_address(),

icmp_address_reply(),

icmp_discard(),

icmp_rcv()

Implementation of ICMPv4; 

different types of ICMP 

messages are processed by 

corresponding functions

Network ICMPv6 net/ipv6/ icmp.c

ndisc.c

icmpv6_send(),

icmpv6_rcv(),

icmpv6_echo_reply(),

icmpv6_notify(),

ndisc_rcv(),

ndisc_router_discovery()

Implementation of ICMPv6, 

including fi ve new types 

of ICMPv6 messages, i.e., 

router solicitation, router 

advertisement, neighbor 

solicitation, neighbor 

advertisement, and route 

redirect messages

Transport UDP and TCP 

checksum

net/ipv4/ tcp_ipv4.c tcp_v4_send_check(),

csum_partial(),

csum_tcpudp_magic()

Computation of the checksum 

of a TCP/UDP segment, 

including pseudo header

Transport TCP sliding 

window fl ow 

control

net/ipv4/ tcp_output.c tcp_snd_test(),

tcp_packets_in_fl ight(),

tcp_nagle_check()

Check following three 

conditions before sending out a 

TCP segment: (1) outstanding 

segments is less than cwnd; (2) 

number of sent segments plus 

the one to be sent is less than 

rwnd; (3) perform Nagle’s test

Transport TCP slow start 

and congestion 

avoidance

net/ipv4/ tcp_cong.c tcp_slow_start(),

tcp_reno_cong_avoid(),

tcp_cong_avoid_ai()

TCP slow start and congestion 

avoidance

Transport TCP retransmit 

timer

net/ipv4/ tcp_input.c tcp_ack_update_rtt(),

tcp_rtt_estimator(),

tcp_set_rto()

Measure RTT, calculate the 

smoothed RTT, and update 

the Retransmission TimeOut 

(RTO)

Transport TCP persistence 

timer and 

keepalive timer

net/ipv4/ tcp_timer.c tcp_probe_timer(),

tcp_send_probe0(),

tcp_keepalive(),

tcp_keepopen_proc()

Codes for managing the 

persistent timer (probe timer) 

and keepalive timer

Transport TCP FACK 

implementation

net/ipv4/ tcp_output.c tcp_adjust_fackets_out(), 

tcp_adjust_pcount(),

tcp_xmit_retransmit_

queue()

Compute packets in fl ight 

using FACK information

Transport Socket Read/

Write Inside out

net/ socket.c sys_socketcall(),

sys_socket(),

sock_create(),

inet_create(),

sock_read(),

sock_write()

Explain how the user 

space’s socket interfaces are 

implemented in the kernel 

space

Transport Socket Filter net/ socket.c SYSCALL_DEFINE5

(setsockopt,…)

sock_setsockopt()

Implementation of the 

Berkeley Packet Filter (BPF)

lin76248_app_654-722.indd   676lin76248_app_654-722.indd   676 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix B Linux Kernel Overview 677

      B.3 TOOLS FOR SOURCE CODE TRACING
 

  There are several ways to browse the Linux source code in order to search the 

declaration of a variable/function or usage (reference) of a variable/function. The 

easiest way is to browse the source code on a Web site. For example,   LXR   (http://

lxr.linux.no/), the Linux Cross-Reference, provides Web-based Linux source code 

indexing, cross referencing, and navigation. The search function of   LXR   allows you 

to search for where a variable or function is declared and referenced. It also provides 

full text search. 

 Another common tool for hackers is   cscope  .   Cscope   is an interactive, 

screen-oriented tool that allows users to locate specifi ed elements of code in C, 

lex,    or    yacc    source fi les. It uses a symbol cross-reference to locate functions, 

function calls, macros, variables, and preprocessor symbols in the source fi les. As 

an example,   cscope   can be used in two steps to trace the Linux source code. First, 

under the directory of the source code, you can get the list of fi le names under this 

directory and subdirectories in a fi le called   cscope.files   by “  find. -name 
‘*.[chly]’ -print | sort > cscope.files  ”. You can then build the 

symbol cross-reference database,   cscope.out   by default, by “  cscope -b -q 
-k  ”. Now you can search a variable or function using the command   cscope –d  . A 

more detailed description of   cscope   is in Subsection C.3.1. 

 Finally, there are several source code documentation generator tools that are quite 

handy to use. For example, Doxygen ( http://www.stack.nl/~dimitri/doxygen/ ), a free-

ware program released under the GNU General Public License, can cross-reference 

documentation and code to generate documents in various formats, including HTML, 

Latex, RTF (MS-Word), PostScript, hyperlinked PDF, compressed HTML, and Unix 

man pages. It can also extract the code structure from undocumented source fi les. The 

code structure can be visualized by many means, including dependency graphs, inheri-

tance diagrams, and collaboration diagrams. 

 Example: Trace of Reassembly of IPv4 
Fragments 

 Let us use Figure 4.19 in Chapter 4 as the example of using the   LXR   web site to 

trace the source code. Figure 4.19 shows the call graph of the reassembly pro-

cedure for fragmented IP packets. For ease of explanation, we redraw the figure 

here as  Figure B.2 .  

 Now, let us start by locating the   ip_local_deliver()   function. 

To do that, we use the search toolbar of the   LXR   Web site and type in 

  ip_local_deliver   to search the function, as shown in  Figure B.3 .  

   LXR   returns a Web page indicating two kinds of information: where 

the function is implemented and where the function is declared. In our 

example, illustrated in  Figure B.4 , codes for   ip_local_deliver()   start 

from  line 257  in the   net/ipv4/ip_input.c   file, and the declaration for 

Continued

lin76248_app_654-722.indd   677lin76248_app_654-722.indd   677 24/12/10   4:10 PM24/12/10   4:10 PM

http://www.stack.nl/~dimitri/doxygen/
http://lxr.linux.no/
http://lxr.linux.no/


678 Computer Networks: An Open Source Approach

ip_local_deliver(  ) is at  line 98  of   include/net/ip.h  . To trace the 

source code of   ip_local_deliver()  , we can click on the hyperlink of 

net/ipv4/ip_input.c  .  

 In addition to locating the code and declaration of the function, we can also 

check the usage of this function, i.e., where the function is referenced (called), by 

clicking on the   [usage…]   link. For example, when clicking on the usage link of 

the declaration,   LXR   returns reference information as listed in  Figure B.5 . From this 

page, we can see that   ip_local_deliver()   is referenced six times by func-

tions defined in two files:   net/ipv4/ipmr.c   and   net/ipv4/route.c  . 

  If we click on   net/ipv4/ip_input.c  ,   LXR   will return the codes 

for   ip_local_deliver()   implemented in   net/ipv4/ip_input.c  , 

as shown in  Figure B.6 . By referring to the call graph of Figure 4.19, it can be 

clearly understood that if the offset has value and the more bit or offset
is set,   ip_defrag()   will be called. So let us continue tracing the code for 

ip_defrag()   by clicking the hyperlink (  ip_defrag  ). 

    LXR   will show the search results for   ip_defrag  , as we can see in  Figure B.7 . 

This page tells us it is implemented in   /net/ipv4/ip_fragment.c  . Let us 

continue tracing by clicking on the link. 

 FIGURE B.2 Call graph of reassembly procedure.     

net_bh() ip_rcv() ip_route_input()

ip_local_deliver_finish()

In ip_local_deliver(): 

More or offset is set?
Yes

ip_defrag()

In ip_defrag():

ip_find() ip_frag_reasm()All fragments in?ip_frag_queue()

In ip_find(): 

ip_frag_create()

Found in hash table?
ipqhashfn()
inet_frag_find()

No 

Yes
Return queue

No 

ip_local_deliver()

 FIGURE B.3 LXR search bar.     

lin76248_app_654-722.indd   678lin76248_app_654-722.indd   678 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix B Linux Kernel Overview 679

 FIGURE B.4 Search results from   LXR  .     

 FIGURE B.5 Usage of   ip _ local _ deliver()  .     

Continued

FIGURE B.6 Source of   ip _ local _ deliver(  ).     

lin76248_app_654-722.indd   679lin76248_app_654-722.indd   679 24/12/10   4:10 PM24/12/10   4:10 PM



680 Computer Networks: An Open Source Approach

 FIGURE B.8 Source of   ip _ defrag()  .     

 FIGURE B.9 Search result of   ip _ find()  .     

 FIGURE B.7 Search results of   ip _ defrag()  .     

lin76248_app_654-722.indd   680lin76248_app_654-722.indd   680 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix B Linux Kernel Overview 681

  Figure B.8  shows the codes for i  p_defrag()  . Referring to the call graph 

again, after some housekeeping work,   ip_defrag()   first calls   ip_find()
to look up or create the queue header for fragments of this packet. It then calls 

  ip_frag_queue()   to process the fragment. If all fragments are received, 

ip_frag_queue()   will call   ip_frag_reasm()   to reassemble the packet. 

   By clicking the hyperlink of   ip_find  , we will be able to locate the 

function and get access to its source codes, as shown in  Figure B.9  and 

 Figure B.10 , respectively. Again, referring to the call graph,   ip_find   first calls 

  ipqhashfn()   to get a hash value and uses it to find the queue header by calling 

  inet_frag_find()  . 

   In   inet_frag_find()  , if no queue header is found, it will create one 

by calling   inet_frag_create()  . The source code for   inet_frag_find()   is shown in 

 Figure B.11 .  

 FIGURE B.10 Source of   ip _ find()  .     

 FIGURE B.11 Source of   ip _ frag _ find()  .     

lin76248_app_654-722.indd   681lin76248_app_654-722.indd   681 24/12/10   4:10 PM24/12/10   4:10 PM



682 Computer Networks: An Open Source Approach

 The following two books published by O’Reilly are the 

guide books and also the reference books of many kernel 

developers. The fi rst one covers the fundamentals of the 

Linux kernel, such as memory management, process man-

agement, scheduling routines, and fi le systems. The second 

book details the development of Linux device drivers. 

   • M. Cesati and D. P. Bovet, Understanding the Linux 
Kernel, 3rd edition, O’Reilly Media, 2005.  

  • J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux 
Device Drivers, 3rd edition, O’Reilly Media, 2005.    

  Online Links 
 Here we list three Web sites highly related to this appendix. 

These classic sites are likely to exist and prosper for years 

to come. 

    1. Linux kernel archives, http://kernel.org/  

   2. Linux foundation,  http://www.linuxfoundation.org/   

   3. Linux cross reference (LXR),  http://lxr.linux.no/         

     FURTHER READINGS 

   Related Books 

lin76248_app_654-722.indd   682lin76248_app_654-722.indd   682 24/12/10   4:10 PM24/12/10   4:10 PM

http://kernel.org/
http://www.linuxfoundation.org/
http://lxr.linux.no/


 A p p e nn d i x x C 
Development Tools 

  In Section B.3, we introduce several tools for source code tracing and walk through 

an example with   LXR   (Linux Cross Reference). Tracing, however, is just a step 

toward  understanding  a program. Other steps are required to complete the develop-

ment process. This appendix presents a comprehensive set of development tools for 

Linux developers. A Linux developer might write a program on a Linux  host  but run 

it on a non-Linux  target  machine, or vice versa. It is also possible that both host and 

target are Linux-based. Here we focus on the Linux host, i.e., development environ-

ment, regardless of the platform of the target machine. We introduce essential and 

popular tools used in various stages of the development process, from programming, 

debugging, and maintaining to profi ling and embedding. 

 Section C.1 guides readers to begin the development journey with programming 

tools. A good fi rst step would be writing the fi rst piece of code using a powerful text 

editor, such as  Visual Improved  (  vim  ) or  GNOME editor  (  gedit  ). Then compile it 

to binary executables with  GNU C compiler  (  gcc  ), and furthermore automate some 

repetitive compiling steps with the   make   utility. 

 The old 80/20 rule still applies to programming where 80% of your codes 

come from 20% of your efforts, leaving 80% of your efforts to debug 20% of 

your program. Therefore you would need some debugging tools discussed in 

Section C.2, including the source-level debugger,  GNU Debugger  (  gdb  ), one with 

a graphical user interface, such as  Data Display Debugger  (  ddd  ), and the remote 

kernel debugger,  Kernel GNU Debugger  (  kgdb  ). As the dependency between 

software components is more sophisticated and the sources of contribution become 

more scattered, Section C.3 illustrates how a developer manages dozens of source 

fi les with   cscope  , and co-developers should agree on a version control system, 

such as  Global Information Tracker  ( Git ), to avoid development chaos and to ease 

collaboration. 

 To fi nd the bottleneck of a program, Section C.4 describes how developers could 

utilize the profi ling tools,  GNU Profi ler  (  gprof  ) and  Kernel Profi ler  (  kernprof  ). 

Section C.5 introduces how to accelerate the porting effort on embedded systems 

using the space-optimized utilities,   busybox  , the lightweight toolchain,   uClibc  , 

and the embedded image builder of the root fi le system,   buildroot  . 

 For each tool, we introduce its purposes and functions, followed by its how-to 

with examples. At the end, some tips are provided to help familiarize you with the 

tool. This appendix is not meant to be a complete user guide, but should serve as 

a start. 

 683

lin76248_app_654-722.indd   683lin76248_app_654-722.indd   683 24/12/10   4:10 PM24/12/10   4:10 PM



684 Computer Networks: An Open Source Approach

   C.1 PROGRAMMING
 

  This section covers the essential tools for programming, from   vim   and   gedit   

for program editing to   gcc   and   make   for program compilation. The essence of 

programming languages is not discussed here.  

 C.1.1 Text Editor –   vim   and   gedit   
 Irrespective of your choice of programming language, you would need an editor, 

which is a program used to create and modify text fi les. It plays an essential role in 

a programmer’s working hours, since a clumsy text editor will waste time while an 

effi cient one will offl oad chores and leave more time for thinking.  

  What Are   vim   and   gedit?   

 Among the many text editors available, such as   pico  ,   joe  , and   emacs  ,  Visual 
Improved  (  vim  ), an improved version of   vi  , is currently one of the most popular text 

editors. Its balance between ease of use and power makes it more user-friendly than 

  emacs   yet more feature-rich than   pico  .   Vim   has an extensible syntax dictionary 

which highlights the syntax with different colors for documents it recognizes, includ-

ing c codes and html fi les. Advanced users use   vim   to compile their codes, to write 

macros, to browse a fi le, and even to write a game, such as TicTacToe. 

 As a command-line editor,   vim   is widely used by administrators. However, as a 

desktop utility, it can become a bit complicated for end users. The built-in GUI editor, 

 GNOME editor  (  gedit  ), is commonly used in the desktop environment in Linux. 

  Gedit   allows users to edit multiple fi les with a tab bar, highlighting the syntax as   vim   

does, spellchecking the text, and printing a fi le.  

  How to   vim   and   gedit   

 Before getting started with   vim  , one should be aware that   vim   operates in two 

phases (or modes) instead of one phase like   pico   or other ordinary text editors. Try 

this: Start vim (type   vim   to edit a new fi le or   vim filename   to open an existing 

fi le) and edit for a minute. If you do not type any special character, you fi nd nothing 

on the screen. When you try to move around by pressing the arrow keys you fi nd the 

cursor does not move. Things get even worse as you cannot fi nd your way out. These 

initial barriers frustrate quite a few newbies. However, the world will begin to shine 

as you get to know when to insert text and when to issue a command. 

 In the  Normal mode  (command mode), characters are treated as commands, 

meaning they trigger special actions, e.g., pressing   h  ,   j  ,   k  , and   l   would move the 

cursor to the left, up, down, and right, respectively. However, characters are simply 

inserted as text in the  Insert mode . Most commands can be concatenated in a more 

sophisticated operation, 

  [#1] commands [#2] target  , 

where anything enclosed within brackets is optional;   #1   is an optional number, e.g., 

3, specifying   commands   are to be done 3 times;   commands   are any valid vim 

operations, e.g.,   y   for yank (copy) the text;   #2   is another optional number, similar 

to   #1  , specifying the number (or range) of targets being affected by the   commands  ; 

lin76248_app_654-722.indd   684lin76248_app_654-722.indd   684 24/12/10   4:10 PM24/12/10   4:10 PM



 Appendix C Development Tools 685

and   target   is the text to which you want to apply the   commands  , e.g.,   G   for end 

of fi le. Although most of the commands are played on the main screen, some colon 

commands (commands that start with a colon) are keyed at the very bottom of the 

screen. When dealing with these colon commands, you need to type a colon, which 

moves the cursor to the last line of the screen, then issue your command string and 

terminate it by pressing the <Enter> key. For example,   :wq   would save your 

current fi le and quit. The overall operating modes of the vim text editor are illustrated 

in  Figure C.1 . Important editing comands are listed in  Table C.1 .   

 The use of   gedit   is much simpler than   vim  . A fi le being edited is shown in the 

edit area, where you can use your mouse to position and highlight text. The tab bar 

lists all fi les being edited. An asterisk is marked if a fi le is modifi ed but not saved. 

The tool bar provides the easy way to create, open, save, and print a fi le. A screenshot 

of   gedit   is in  Figure C.2 .  

  Tip 

     � Vim   operates in two modes: Insert mode and Command mode. If you become 

confused about the Insert mode commands, you can always press the   ESC   key 

to get back to the Command mode.    

  C.1.2 Compiler –   gcc   
 With a text editor at hand, one could begin to write a program. Then you would 

need a compiler to convert source code written in a high-level language to binary 

object code. Since it is common to incorporate existing routines already compiled, a 

second-stage process using a utility called linker is often used to link the compiled 

 FIGURE C.1 Operating modes of the   vim   text editor.     

Start vi

Command mode

Motion commands

Yanking/deleting
commands/Forw.

Back.

Search

Insert (before cursor/line)? Enter :
Ii

Colon commands

save

quit

forcedly

End vi

Other commands Append (after cursor/line)

Open new line (after/before)

Replace (one char/many chars)

Quick quit

w o O

r R

Insert mode

ESC

q

!

Enter Z Z

a A

lin76248_app_654-722.indd   685lin76248_app_654-722.indd   685 24/12/10   4:10 PM24/12/10   4:10 PM



686 Computer Networks: An Open Source Approach

TABLE C.1 Important Commands for Cursor Movement and Text Editing

Command Mode Effects

Motion

h, j, k, l left, down, up, right

w, W forward next word, blank delimited word

e, E forward end of word, of blank delimited word

b, B backward beginning of word, of blank delimited word

(,) sentence back, forward

{, } paragraph back, forward

0, $ beginning, end of line

1G, G beginning, end of file

nG or :n line n

fc, Fc forward, back to char c

H, M, L top, middle, bottom of screen

Yanking

yy Copy current line

:y Copy current line

Y Copy until end of line

Deleting

dd Delete current line

:d Delete current line

D Delete until end of line

 FIGURE C.2 Screenshot: the main window of   gedit  .     

Tab Bar

Modified file

Edit area

Tool Bar

Scroll Bar

Status line

lin76248_app_654-722.indd   686lin76248_app_654-722.indd   686 24/12/10   4:10 PM24/12/10   4:10 PM



code with existing routines to create the fi nal executable application. This multiple-

stage process of the   gcc   compiler is shown in  Figure C.3 .  

  What Is   gcc?   

 The  GNU C compiler  (  gcc  ), which by default expects ANSI C,  1   is a well-known 

C compiler on most Unix systems. It was primarily written by Richard Stallman, 

who founded a charity, Free Software Foundation (FSF), to raise funds for works 

on the GNU Project. With the efforts of other   gcc   advocates,   gcc   has integrated 

several compilers (C/C++, Fortran, Java) and is now called the  GCC Compiler 
Collection .    

  How to   gcc   

 Suppose you are writing a program and have decided to split it into two source 

fi les. The main fi le is called   main.c   and the other one is   sub.c  . To compile the 

program, you may simply type 

   gcc main.c sub.c   

which creates an executable program named   a.out   by default. If you prefer, you 

may specify the name of the executable, e.g.,   prog  , by 

   gcc -o prog main.c sub.c   

 As you can see, it is very simple. However, this method could be very ineffi cient, 

especially if you are making changes to only one source fi le at a time, when you 

recompile it frequently. Instead, you should compile the program as follows: 

   gcc -c main.c   
   gcc -c sub.c   

   gcc -o prog main.o sub.o   

 The fi rst two lines create object fi les,   main.o   and   sub.o  , and the third line links 

the objects together into an executable. If you are then to make a change to   sub.c   

only, you can recompile your program by just typing the last two lines. 

 This all might seem a little silly for the example above, but if you have ten 

source fi les instead of two, the latter method would save you a lot of time. Actu-

ally, the entire compilation process could be automated as you can see in the next 

subsection.  

 FIGURE C.3 The work flow  2   of   gcc  .      

.s
.o
.aPreprocessor

(cpp, the C
preprocessor)

Compiler
(gcc, the GNU

C compiler)

Assembler
(gas, the portable
GNU assembler)

Linker
(ld, the GNU linker)

.c

.C

.cc
a.out

  2 The output of the preprocessor usually directly feeds into the compiler. 

  1 ANSI C is more strongly-typed than the original C, and is likely to help you catch some bugs earlier 

during coding. 

 Appendix C Development Tools 687

lin76248_app_654-722.indd   687lin76248_app_654-722.indd   687 24/12/10   4:10 PM24/12/10   4:10 PM



688 Computer Networks: An Open Source Approach

  Tips 

 There are two common errors when using   gcc  . One error indicates the syntax errors 

in the source, and the other is the unresolved symbols when linking object fi les.   Gcc   

shows a syntax error as follows: 

     � sourcefile: In function ‘function_name’: error messages    
    � sourcefile:#num: error: error messages     

 It says that there might be some errors near the line   #num   in the fi le   sourcefile  . 

Notably, the error is not always close to line   #num  . For example, when the error is 

caused by missing brackets or unwanted brackets, the reported   #num   would be far 

away from the actual error spot. 

 The format of an unresolved linking symbol is as follows: 

     �  objectfile: In function ‘function_caller’:    
    � sourcefile: undefined reference to ‘function_callee’     

 It tells the developers that the function   function_callee   cannot be resolved 

when linking. That unresolved function is used by the function   function_
caller   in the fi le   sourcefile  . To solve the problem, you can check whether a 

necessary object fi le or library that contains   function_callee   is unlinked.  

  C.1.3 Auto-Compile –   make   
 While a successful, error-free compilation is certainly a great joy, a repetitive 

compilation process during the development of programs would be a chore for 

programmers. An executable program may be built from tens or hundreds of 

  .c   fi les, requiring all the   .c   fi les to be compiled with   gcc   to   .o   fi les, and then 

linked together, possibly with additional library routines. This process is tedious and 

likely to introduce mistakes. It is why   make   matters. 

  What Is   make   

   Make   is a program that provides a relatively high-level way to specify necessary source 

fi les to build a derived object and steps to automate the building process.   Make   reduces 

the likelihood of error and simplifi es a programmer’s life. Notably,   make   provides im-

plicit rules or shortcuts for many common actions such as turning   .c   fi les into   .o   fi les.  

  How to   make   

   Make   processes a fi le, called a   Makefile  . The basic syntax in a   Makefile   is 

    target: dependencies    

 <command list> 

which tells   make   to produce the   target   from   dependencies   by executing a list of 

commands. The dependencies need to be resolved before generating the current target, 

which brings the chance of building some big applications by dividing and conquering.  

  Example 

 In the example in  Figure C.4 , the content of a   Makefile   is listed fi rst by the com-

mand   cat  . This   Makefile   says that   prog   depends on two fi les   main.o   and 

  sub.o  , and that they in turn depend on their corresponding source fi les (  main.c   

lin76248_app_654-722.indd   688lin76248_app_654-722.indd   688 24/12/10   4:10 PM24/12/10   4:10 PM



and   sub.c  ), in addition to the common header fi le,   incl.h  . By executing the com-

mand,   gcc  , the dependencies,   main.o   and   sub.o  , are compiled and linked into 

the target,   prog  , automatically.  

  Tip 

   � In writing the   Makefile  , a   TAB   character has to be placed at the beginning of 

each command statement  .3            

   C.2 DEBUGGING
 

  When writing a program, unless it is way too trivial, one must have struggled hard 

enough to locate and remove bugs from a program. This digging-for-bugs process 

is known as debugging, and the tool being used is a debugger. Generally speaking, 

the purpose of a debugger is to let you investigate what is going on inside a program 

while it is running or what a program was doing at the moment it crashed. Here 

we introduce three debuggers: a general one,   gdb  , a graphical version,   ddd  , and a 

remote kernel debugger,   kgdb  . 

  C.2.1 Debugger -   gdb   
 The traditional debugger used in Linux/FreeBSD is   gdb  , the  GNU Project debug-
ger . It is designed to work with a variety of languages, but is primarily targeted at C 

and C++ developers. While   gdb   is a command line interface, it has a few graphical 

  3 It is a historical artifact, but no one wants to change it. 

 FIGURE C.4 An example of   make  .     

Content of
the Makefile

$ cat Makefile
#Any line beginning with a ‘#’ sign is a comment and will be
# ignored by the “make” command. To generate the executable
# programs, simply type “make”.

prog: main.o sub.o
gcc -o prog main.o sub.o

main.o: incl.h main.c
gcc -c main.c

sub.o: incl.h sub.c

Execution

After making

Before making

gcc -c sub.c
$ ls
incl.h main.c Makefile prog sub.c
$ make
gcc -c main.c
gcc -c sub.c
gcc -o prog main.o sub.o
$ ls
incl.h main.c main.o Makefile prog sub.c sub.o

 Appendix C Development Tools 689

lin76248_app_654-722.indd   689lin76248_app_654-722.indd   689 24/12/10   4:10 PM24/12/10   4:10 PM



690 Computer Networks: An Open Source Approach

interfaces to it, such as   ddd  . In addition,   gdb   can also be run over serial links for 

remote debugging, such as   kgdb  . 

  What Is   gdb?   

   gdb   can do mainly four kinds of things, plus other things in support of these, to help 

you catch bugs in the act:  

   1. Start your program, specifying anything that might affect its behavior.  

   2. Make your program stop on specifi ed conditions.  

   3. Examine what has happened, when your program has stopped.  

   4. Change things in your program, so you can experiment with the effects of 

correcting one bug.    

  How to   gdb   

 You can read the offi cial   gdb   manual to learn all about   gdb  . However, a handful of 

commands are enough to get started using the debugger. Before loading the execut-

able into   gdb  , the target program, say   prog  , should be compiled with the   –g   fl ag, 

e.g.,   gcc –g –o prog prog.c  . 

 Then, start   gdb   with the command   gdb prog  . You should see a   gdb   prompt 

following it. Then, browse the source code by issuing the command   list  , which 

by default shows the fi rst 10 lines of the source code for the current function, and 

subsequent calls to   list   display the next 10 lines, and so on.  

 When trying to locate a bug, you could   run   the program once upon entering 

  gdb   and ensure the bug is reproduced. Then you can   backtrace   to see a stack 

trace, which usually reveals the troublemaker. Now you can use   list   again to iden-

tify the location of the problem, use   next   to step the execution, and carefully make 

use of setting a breakpoint with the command   break   and printing the variables with 

the command   print  . You should be able to locate the bug and fi nally   quit     gdb  . 

By the way, gdb has a set of information pages and also has built-in help accessible 

via the   help   command.  

  Example 

 The example in  Figure C.5  demonstrates a common programming fault caused by 

memory allocation. When the program is fi rst run in   gdb  , it causes a segment fault. 

We examine the current stack frames and fi nd out that it might be a fault in the func-

tion   Hello  . A breakpoint is hence set there, and the program is run again. When 

reaching the breakpoint,   gdb   suspends. We browse the source code, and   step   the 

execution. After we examine the variable,   str  , we fi nd the bug: The pointer does not 

have a valid memory address.   

  C.2.2 GUI Debugger -   ddd   
  What Is   ddd?   

 Since   gdb   and many others are all command-line debuggers, which are not very 

friendly to use, the  Data Display Debugger  (  DDD  ) provides a convenient front-end to all 

lin76248_app_654-722.indd   690lin76248_app_654-722.indd   690 24/12/10   4:10 PM24/12/10   4:10 PM



 FIGURE C.5 An example of debugging with   gdb  .     

Examine current
stack frames

Set a breakpoint

Segment fault

$
GNU gdb (GDB) Fedora (7.0.1-35.fc12)
Copyright (C) 2009 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type “show copying”
and “show warranty” for details.
This GDB was configured as “i686-redhat-linux-gnu”.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/book/C.2.1/prog...done.
(gdb) run
Starting program: /home/book/C.2.1/prog

gdb prog

Program received signal SIGSEGV, Segmentation fault.
0x0029b546 in memcpy () from /lib/libc.so.6
Missing separate debuginfos, use: debuginfo-install glibc-2.11.1-1.i686
(gdb) backtrace
#0 0x0029b546 in memcpy () from /lib/libc.so.6
#1 0x00000000 in ?? ()
(gdb) break Hello
Breakpoint 1 at 0x804841e: file sub.c, line 8.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Step program

Examine a variable

Browse current
source code

Starting program: /home/book/C.2.1/prog

Breakpoint 1, Hello () at sub.c:8
8                char*str = NULL;
(gdb) list
3
4       #include “incl.h”
5
6       void Hello()
7       {
8                char*str = NULL;
9                strcpy(str, “hello world\n”);
10              printf(str);
11     }
(gdb) next
9                strcpy(str, “hello world\n”);
(gdb) print str
$1 = 0x0
(gdb) quit
A debugging session is active.

Inferior 2 [process 24886] will be killed.

Quit anyway? (y or n) y

of these debuggers. Besides existing   gdb   capabilities,   DDD   has become popular because 

of its interactive graphical data display, where data structures are displayed as graphs.  

 Appendix C Development Tools 691

lin76248_app_654-722.indd   691lin76248_app_654-722.indd   691 24/12/10   4:10 PM24/12/10   4:10 PM

http://www.gnu.org/software/gdb/bugs/


692 Computer Networks: An Open Source Approach

  How to   ddd   

 To use   DDD   you also have to compile your code with debug information included. In 

Unix that means you should include the   -g   option in the   gcc   compile command. If 

you have never run   DDD   before, you may have to tell   DDD   to use the   gdb   debugger by 

typing “  ddd --gdb  ” at the command-line prompt. You only have to do this once. 

Subsequently, to run   DDD   you type “  ddd prog  ” where   prog   is the name of your 

program, and a window like the one in  Figure C.6  pops up. 

 The center of all things in  Figure C.6  is the source code. The current execution 

position is indicated by a green arrow; breakpoints are shown as stop signs. You 

can navigate around the code using the   Lookup   button on the tool bar or the   Open 
Source   button from the File menu. Double-clicking on a function name leads you 

to its defi nition. Using the   Undo   and   Redo   buttons of the Command Tools, you can 

navigate to previous and later positions—similar to your Web browser.  

 You can set and edit breakpoints by right-clicking the mouse in the white space 

left to a statement in the source window; to step through your program or to continue 

execution, use the fl oating Command Tools on the right. Command-line afi cionados 

still can fi nd a debugger console at the bottom. If you need anything else, try the Help 

menu for detailed instructions. 

 Moving the mouse pointer on an active variable shows its value in a little pop-up 

screen. Snapshots of more complex values can be “printed” in the debug console. To 

view a variable permanently, use the   Display   button. This creates a permanent data 

 FIGURE C.6 Screenshot: the main window of   ddd  .     

Command tools

Tool bar

Data window

Breakpoint

Scroll bar

Debug console

Status line

Source window

lin76248_app_654-722.indd   692lin76248_app_654-722.indd   692 24/12/10   4:10 PM24/12/10   4:10 PM



window which shows the variable name and its value. These displays are updated 

every time the program changes its state. 

 To access a variable value, you must bring the program to a state where the 

variable is actually alive; that is, within the scope of the current execution position. 

Typically, you set a breakpoint within the function of interest, run the program, and 

display the function’s variables. 

 To actually visualize data structures (that is, data as well as relationships),   DDD   lets 

you create new displays out of existing displays by simply double-clicking on the pointer 

variable. For instance, if you have displayed a pointer variable list, you can dereference 

it and view the value it points to. Each new display is automatically laid out in a fashion 

to support simple visualization of lists and trees. For instance, if an element already has 

a predecessor, its successor will be laid out in line with these two. You can always move 

elements around manually by simply dragging and dropping the displays. Also, DDD 

lets you scroll around, lay out the structure, change values manually, or see them change 

while the program runs. An Undo/Redo capability even lets you redisplay previous and 

later states of the program, so that you can see how your data structure evolves.   

  C.2.3 Kernel Debugger –   kgdb   
  What Is   kgdb?   

   kGDB   is a source-level debugger for the Linux kernel, which provides a mechanism 

to debug the Linux kernel using the debugger,   gdb  , introduced earlier.   kGDB   is a 

patch to the kernel, and you need to recompile the kernel once it is patched. It allows 

a user running   gdb   on a development host to connect to a target (over a serial RS-

232 line) running the   kGDB  -patched kernel. Kernel developers can then “break” into 

the kernel of the target, set breakpoints, examine data, and other relevant debugging 

functions one would expect. In fact, it is pretty much similar to what one would do 

with   gdb   on a user-space program. 

 Since   kGDB   is a kernel patch, it adds the following components to a kernel on 

the target machine: 

    1.   gdb   stub—The   gdb   stub is the heart of the debugger. It handles requests com-

ing from   gdb   on the development (or host) machine and controls the execution 

fl ows of all processors on the target machine.  

   2. Modifi cations to fault handlers—Kernel gives control to debugger when an un-

expected fault occurs. A kernel that does not contain   gdb   panics on unexpected 

faults. Modifi cations to fault handlers allow kernel developers to analyze unex-

pected faults.  

   3. Serial communication—This component uses a serial driver in the kernel and 

offers an interface to the   gdb   stub in the kernel. It is responsible for sending and 

receiving data on a serial line. This component is also responsible for handling 

control break requests sent from   gdb  .    

  How to   kgdb   

 Since Linux kernel 2.6.26,   kGDB   has been integrated with the mainstream of the 

kernel source tree. What you have to do is enable the   kGDB   option in the kernel 

 Appendix C Development Tools 693

lin76248_app_654-722.indd   693lin76248_app_654-722.indd   693 24/12/10   4:10 PM24/12/10   4:10 PM



694 Computer Networks: An Open Source Approach

confi guration, then compile and install the   kgdb  -patched kernel. To force the kernel 

to pause the boot process and wait for a connection from   gdb  , the parameter “  gdb  ” 

should be passed to the kernel. This can be done by typing “  gdb  ” after the name of 

the kernel on the   LILO   command line. The default serial device and baud rate are 

set to   ttyS1   at a baud rate of 38400. These parameters can be changed by using 

“  gdbttyS=  ” and “  gdbbaud=  ” on the command line. 

 After the kernel has booted up to the point where it is waiting for a connection 

from the   gdb   client, there are three things to be done on the development machine: 

Set the baud rate acceptable to the target machine, set the serial port used by it, and 

resume the execution of booting on the target. These can be done by the following 

three commands in   gdb  : 

     � set remotebaud <your baud rate>    
    � target remote <the local serial port name>    
    � continue     

 To trigger the debug mode on the target, you can either press   Ctrl-C   on the target 

machine or issue the   gdb   command,   interrupt  , from the development machine. 

Then you can use all   gdb   commands to trace or debug the target Linux.  

  Tip 

   � A successful setting in the target machine will prompt a message like “waiting 

for remote debug…” during the kernel booting.   kgdb   will wait for commands 

from the development machine to instruct its next step. Usually it will be the 

  gdb   command,   continue  . Without any input command, the target will 

freeze.        

   C.3 MAINTAINING
 

  When a software project is small, it is easy to remember most locations of data 

structure defi nitions and function implementations. However, when it grows, it 

becomes hard to memorize everything. You need a tool to help you in managing 

hundreds of variable and function declarations. By the same token, a good project 

comes from the teamwork of brilliant developers. Codevelopers have to use a version 

control system to synchronize the modifi cations from each other. This section 

introduces   cscope,   which handles the code-browsing task for a single developer, 

and   Git,   which controls the source code for codevelopers. 

  C.3.1. Source Code Browser –   cscope   
  What Is   cscope?   

   Cscope   is a source code browsing tool originally developed at Bell Labs. In 2000, 

it was open-sourced.   Cscope   enables you to search a variable, macro, or function 

declaration, called functions, and a callee of functions, as well as replace text and 

even call an external text editor to modify source code. It is so powerful that AT&T 

used it to manage projects involving 5 million lines of C/C++ codes.  

lin76248_app_654-722.indd   694lin76248_app_654-722.indd   694 24/12/10   4:10 PM24/12/10   4:10 PM



  How to   cscope   

 The fi rst step in using   cscope   is to build the cross-reference table from the source 

(  .c  ) and header (  .h  ) fi les.   Cscope   by default assumes the list of those fi les is writ-

ten in a fi le named   cscope.files  . Therefore, you can issue the following Unix 

command to prepare the   cscope.files  : 

     � find . -name ‘*.[chly]’ -print | sort > cscope.files   

 Now you can tell   cscope   to construct the cross-reference table with the following 

command:  

    � cscope –b –q [-k]   

 where the fl ag   -b   builds the cross-reference table, the fl ag   -q   enables the construc-

tion of invert index tables, and the fl ag   -k   is an optional fl ag used only when your 

project is part of the kernel source. After executing the command, three fi les are 

created: 

   cscope.out  : the cross-reference table 
   cscope.in.out   and   cscope.po.out  : the invert index tables.  

  It is time to launch   cscope  . Try the following command, which will execute 

  cscope   with a text-mode user interface: 

   � cscope -d   

 where the fl ag,   -d  , indicates using the existing cross-reference tables without updat-

ing them. In addition,   cscope   can be combined with   emacs   or   vim  , for example, 

integrated with   vim   by adding “  cs add cscope.out  ” into   .vimrc  .     

 Example 

  Figure C.7  shows a screenshot of   cscope  . There are two areas displayed on the 

  cscope   interface. One is the command area where the   cscope   functions are 

listed. The other is the result area where the query results are shown. You can switch 

between the two areas by pressing the   TAB   key. In addition, you can switch com-

mands on the command area or select a result on the result area by using the   UP   and 

  DOWN   keys on that area. Try to specify a function name in the command area, “  Find 
this C symbol  ,” and the result is shown in the result area. You can now switch to 

the result area, pick an entry, and press the   Enter   key calling the external text editor 

to modify it. Finally, pressing the   ?   key brings you the help manual, and pressing 

  Ctrl-D   quits   cscope  .   

  Tips 

   � The   cscope   command, “  Find this egrep pattern  ,” could help you 

find out what you want to search, when you forget the full name of a symbol.  

  � Use the   cscope   command, “  Change this text string  ,” when you 

need to change the name of a symbol widely separated in many files at one 

time.        

 Appendix C Development Tools 695

lin76248_app_654-722.indd   695lin76248_app_654-722.indd   695 24/12/10   4:10 PM24/12/10   4:10 PM



696 Computer Networks: An Open Source Approach

   C.3.2. Version Control –   Git   
      What Is   Git?   

   Git   ( Global Information Tracker )   4    is a source code control system originally devel-

oped by Linus Torvalds. Two well-known features of   Git   are high performance and 

distributed architecture. Because of its effi ciency, currently hundreds of open source 

projects, including the Linux kernel and Google Android OS, are controlled by   Git  . 

  Git   provides a distributed control architecture. Each developer can decide when and 

how to branch a project by using   Git  .   

  How to   Git   

 The fi rst thing is to create a repository. A repository is a directory containing a 

source-controlled project. You can have a repository by either initializing a directory 

that holds the working project or cloning from an existing   Git  -controlled project. 

This can be done by the following commands: 

     � git init project_directory   
 or,  
    � git clone git_controlled_url     

 FIGURE C.7 An example run of   cscope  .     

Result area

C symbol: Alloc_Var_C

File Function Line
0 incl.h
1 main.c
2 sub.c

<global>
main
Alloc_Var_C

18
7
13

extern struct c*Alloc_Var_C();
var = Alloc_Var_C();
struct c *Alloc_Var_C() {

Command area

Find this C symbol:
Find this global definition:
Find functions called by this function:
Find functions calling this function:
Find this text string:
Change this text string:
Find this egrep pattern:
Find this file:
Find files #including this file:
Find all function definitions:
Find all symbol assignments:

  4 Actually, the word Git is a British slang for “pig headed, think they are always correct, argumentative.” 

Torvalds quipped: “I’m an egotistical bastard, and I name all my projects after myself. First Linux, 

now Git.” 

lin76248_app_654-722.indd   696lin76248_app_654-722.indd   696 24/12/10   4:10 PM24/12/10   4:10 PM



 where the   git_controlled_url   is the location of a   Git   repository hosted by 

other developers. Some important formats of   git_controlled_url   are listed 

in  Table C.2 .    

 After creating a repository, you can create new fi les or modify existing fi les 

under the repository. Before committing changes, you may want to examine the dif-

ferences between the last version and the current working project. This can be done 

by the following command: 

     � git diff   

 To commit your changes, you can execute the following commands:  

    � git add.  ;   git commit –m “your log messages”   

 Typically, a project leaves several branches during development. Some branches 

implement experimental ideas, some satisfy different requirements for different 

TABLE C.2 Important git_controlled_url Available in Git

Format Description Example of Git Checkout

local_path The Git repository is on 

the local _ path.

Git clone /home/Bob/

project

https://host/path The Git repository is 

controlled by a Git-aware 

web server.5

Git clone https://1.2.3.4/ 

project.git

https://host/path Same as above, but with 

SSL encryption.

Git clone git://1.2.3.4/

project.git

ssh://user@host/remote_

path

The Git repository 

is stored on host/
remote _ path, and it 

can be accessed through 

a secure tunnel using the 

SSH protocol.6

Git clone ssh://

Bob@1.2.3.4/home/Bob/

project

git://host/remote_path The Git repository is 

stored on the remote host 

via the Git protocol.7

Git clone https://1.2.3.4/ 

project.git

  5 Read the   Git User’s Manual   on the   Git   homepage to learn how to integrate your Web server 

with   Git  . 
  6   SSH   (Secure Shell) is a network protocol that provides an authenticated and encrypted channel between 

two networking devices. It is built-in on the most common Linux distributions like Fedora. To enable it, 

you might need to reconfigure your firewall settings, allowing the incoming traffic access to port 22, and 

start up its daemon,   sshd  . 

  7 The easiest way to support the   Git   protocol is to run a Git daemon by the command: 

“Git daemon.” 

 Appendix C Development Tools 697

lin76248_app_654-722.indd   697lin76248_app_654-722.indd   697 24/12/10   4:10 PM24/12/10   4:10 PM

https://host/path
https://host/path
https://1.2.3.4/project.git
https://1.2.3.4/project.git
https://1.2.3.4/project.git
https://1.2.3.4/project.git


698 Computer Networks: An Open Source Approach

customers, and some are milestones. Creating a new branch in   Git   is done by the 

command:  

    � git branch new_branch_name   

 Listing existing branches can be done by the command: 

   � git branch    

  Note that the current active branch is marked with an asterisk and the default branch 

name is   master  . Switching between branches can be done by 

   � git checkout branch_name   

 Merging a branch with the current active branch is the following command:  

    � git merge branch_name   

 If your project was cloned from an existing open source project, it is time to con-

tribute your changes to the open source community.   Git   provides several ways for 

codevelopers to merge their repositories. The simplest way is to send back source-

code patches by e-mail. Each patch represents the differences between one version 

and its successive version.   Git   uses the following command to generate a series of 

patches starting from the cloning time to the latest version you committed.  

    � git format-patch origin   

 In fact, the patch fi les are formatted as e-mail fi les, so they can be sent directly to 

other developers by e-mail client. The receiver uses the command to import patches:  

    � git am *.patch      

  Example 

 Although   Git   can automatically merge the source codes of two branches, it is still 

not smart enough to merge a confl ict caused by different modifi cations over the same 

code segment. Unfortunately, this is a common case, especially in a hotly develop-

ing project. Luckily, the manual merge procedure is simple enough to be learned by 

everyone. 

 Consider this case: Two branches modify the same function with different 

means. One branch, say bonjour_version, specifi es the string “  Bonjour!\n  ” to the 

variable,   str  . The second branch, say goodday_version, modifi es the same variable, 

but associates it with the string “  Good day!\n  .” When one wants to merge the two 

branches, a confl ict arises. 

 To help resolve such confl icts,   Git   encloses the confl ict code segment with 

three lines: <<<<<<<, =======, and >>>>>>>. The code segment within the less-

than symbols and the equals is the source belonging to the current branch, and the 

code segment within the equals and the greater-than symbols is the source of the 

other branch. You can easily fi nd out the differences, resolve the confl ict by editing 

the source code, and then successfully commit the correct version. This example is 

illustrated in  Figure C.8 .   

lin76248_app_654-722.indd   698lin76248_app_654-722.indd   698 24/12/10   4:10 PM24/12/10   4:10 PM



  Tips 

     �  CVS   (  Concurrent Versions System  ) is another source code control sys-

tem, much like the once-popular   RCS   (  Revision Control System  ). Unlike 

  Git  ,   CVS   is centralized; that is, there is a central database storing the whole project. 

Every developer can check out his own copy of the tree into his home directory. 

Under   CVS  , multiple developers work on the same project at the same time.  

    � SVN   ( Subversion ) is a successor to   CVS  , so its syntax looks like that in the origi-

nal   CVS  . The major advantage of   SVN   compared to   CVS   is that it supports the 

transactions. Thus, when committing multiple files, by the principle of “all or 

nothing”   SVN   assures that either all files are successfully committed or none of 

them are changed.        

   C.4 PROFILING
 

  After coding and debugging, your program may now start doing its duty. How do 

you know whether the program runs effi ciently? Without profi ling, you probably 

need a stopwatch to evaluate it. Profi ling records the statistics of a running program. 

A developer can therefore measure the performance of his implementation by ana-

lyzing the profi ling report. In this section, two profi ling tools, one for the user-space 

applications and the other for the kernel, are introduced. 

 FIGURE C.8 An example of   Git   confl ict requiring manual merge.     

Failed to merge two branches
at the first time

$ git branch
  bonjour_version
*goodday_version
  master
$ git merge bonjour_version
Auto-merging sub.c
CONFLICT (content): Merge conflict in sub.c
Automatic merge failed; fix conflicts and then commit the result.
$ head -13 sub.c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include “incl.h”

void printHello()
{
<<<<<<< HEAD
         char *str = “Good day!\n”;
=======
         char *str = “Bonjour!\n”;
>>>>>>> bonjour_version
$ vi sub.c
$ git add . ; git commit-m “a merged version”
[goodday_version 626937e] a merged version

Current branch is
“goodday_version”

Here is the conflict

Resolve the conflict manually
Successfully merge

 Appendix C Development Tools 699

lin76248_app_654-722.indd   699lin76248_app_654-722.indd   699 24/12/10   4:10 PM24/12/10   4:10 PM



700 Computer Networks: An Open Source Approach

  C.4.1 Profi ler –   gprof   
  What Is   gprof?   

 GNU profi ler,   gprof  , allows you to profi le a running program. It reports the profi l-

ing results into two tables, the  fl at profi le  and the  call graph . The fl at profi le reports 

the invoked count and the time spent on each function. The call graph further de-

tails the time spent and the relation of a function to its descendants. Examining the 

  gprof   results enables you to fi nd bottlenecks and bad design in programs.  

  How to   gprof   

 To use   gprof  , your program must be recompiled with a special   gcc   fl ag,   -pg   so 

that   gcc   can instrument the monitoring and recording routines into the program. For 

example, to enable the profi ling feature of a program named   prog  , the command 

would be 

   gcc -pg -o prog main.c   

 Then your program is run as usual to collect the profi ling results. The results will be 

stored in the fi le   gmon.out  . After the program terminates, you can read the results 

by executing the command 

     � gprof -b program_name     

 where the fl ag   -b   tells   gprof   not to show the verbose explanations.  

  Example 

 The example shown in  Figure C.9  demonstrates the results reported by   gprof  . 

There are three functions,   funcA  ,   funcB,   and   funcC   used by the main routine. 

As reported in the fl at profi le,   funcA   takes the most time, about 3.38 seconds, and 

  funcB   is repeatedly called 101 times. Among the 101 calls, the call graph further 

shows that 100 of those calls are from   funcC  .   

  Tips  

  � To profile a daemon program, you have to turn off its daemon feature, because 

the profiling results are only available when a program is terminated. In most 

cases you can do it by finding the function call,   daemon  , and then commenting 

it out.  

  � Two other well-known profilers in Linux are   LTTng   (lttng.org) and   OProfile   

(oprofile.sourceforge.net).   LTTng   needs to instrument the source code of a target 

program with a profiling API provided by   LTTng   or callback functions written 

by testers.   OProfile   can profile a program without modifying its source 

code. Unlike the compiler-assistance technique used by   gprof  ,   OProfile   

benefits from a kernel driver. The driver that comes with   OProfile   collects 

the statistics periodically. The advantage of   OProfile   is that it can profile 

across multiple programs without any source code—it is called a system-wide 

profiler—whereas the disadvantages are its system overhead and its need for 

super-user privileges.        

lin76248_app_654-722.indd   700lin76248_app_654-722.indd   700 24/12/10   4:10 PM24/12/10   4:10 PM



 FIGURE C.9 Screenshot of   gprof  .     

$ gprof-b prog
Flat profile:

Each sample counts as 0.01 seconds.
%  

time
91.11
8.89
0.00

Cumulative
seconds

3.38
3.71
3.71

Self
seconds

3.38
0.33
0.00

Self
s/call
3.38
0.00
0.00

Total
s/call
3.38
0.00
0.33

name
funcA
funcB
funcC

Calls
1

101
1

Call graph

Granularity: each sample hit covers 4 byte(s) for 0.27% of 3.71 seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.00
3.38
0.00
0.00

3.71
0.00
0.33
0.00

1/1
1/1
1/101

[2] 91.1
3.38
3.38

0.00
0.00

1/1
1

        main [1]
funcA [2]

        main [1]
funcC [4]
        funcB [3]

        main [1]
funcC [4]
        funcB [3]

[3] 8.9

0.00
0.33
0.33

0.00
0.00
0.00

1/101
100/101
101

[4] 8.8
0.00
0.00
0.33

0.33
0.33
0.00

1/1
1
100/101

Flat profile

Callee function
main [1]

funcA [2]
funcC [4]
funcB [3]

Index by function name

[2] funcA [3] funcB [4] funcC

Call graph

Current function

Called functions

Index

   C.4.2 Kernel Profi ler –   kernprof   
   What Is   kernprof?   

   Kernprof   is a set of Linux kernel patches and tools, provided as open source by 

SGI (Silicon Graphics International). With   kernprof  , system analysts can see the 

time spent on each kernel function and fi nd bottlenecks in the kernel, similar to what 

  gprof   does for user-space applications.  

  How to   kernprof   

 To enable   kernprof  , your kernel source has to be patched. Therefore, you have 

to download the patch matching your kernel version on the Webpage of   kernprof   

 Appendix C Development Tools 701

lin76248_app_654-722.indd   701lin76248_app_654-722.indd   701 24/12/10   4:10 PM24/12/10   4:10 PM



702 Computer Networks: An Open Source Approach

fi rst. After patching the kernel, you can now recompile and install the   kernprof  -

patched kernel. Next, a character device, which provides the communication channel 

between its user-space control program (named   kernprof  ) and the patched kernel, 

has to be created manually. This can be done by the following command:

     � mknod /dev/profile c 190 0   

 where the value 0 represents the fi rst CPU of your system. Similarly, you can create 

a character device for each of the remaining CPUs.    

 There are several profi ling modes provided by   kernprof  . The PC (Program 

Counter) sampling mode periodically collects the information of executing functions, 

and its results are like the fl at profi le generated by   gprof  . The call graph mode con-

structs a call graph, which is useful for kernel tracing. The annotated call graph mode 

mixes the above two modes, so the results are matched to the default output in   gprof  . 

 Unlike   gprof  , which collects information during the life of a program, you have to 

explicitly start up and turn off   kernprof   yourself by issuing commands. For example, 

to start up   kernprof   in the annotated call graph mode, you can specify the command

     � kernprof –b -t acg   

 where the fl ag,   -t acg  , represents the annotated call graph mode. To stop 

  kernprof   and generate a   gprof  -readable result, i.e.,   gnome.out  , the following 

commands are used:  

    � kernprof -e    

    � kernprof -g   

 Finally, you can use   gprof   to read the results by issuing,  

    � gprof file_of_vmlinux       

  Tips 

   � A   kernprof  -enabled kernel would slow down your Linux. According to the 

FAQ of   kernprof  , it might decrease system performance by over 15%. So one 

may prepare two kernels, a   kernprof  -enabled one and the normal one, and 

switch among them using the boot loader.  

  � Besides   LTTng   and   OProfile   motioned previously,   Kernel Function 
Tracer   (  KFT  , elinux.org/Kernel_Function_Trace) is another alternative 

famous for Linux kernel profiling.   LTTng   and   KFT   need a kernel patch, as 

  kernprof   does, before profiling, while   OProfile   is presented as a ker-

nel driver and a user-space daemon. Therefore, it can be loaded and executed 

dynamically without tainting the kernel source.       

   C.5 EMBEDDING
 

  Porting your project to an embedded system could be much harder than developing it 

on the desktop. The fi rst and perhaps the most important design goal is trimming the 

code size because embedded systems have limited resources. Besides, you probably 

lin76248_app_654-722.indd   702lin76248_app_654-722.indd   702 24/12/10   4:10 PM24/12/10   4:10 PM



need a toolchain, i.e., the cross-compiler and libraries, to compile and link programs 

for specifi c target architectures, and   to   prepare the root fi le system. The fi le system 

contains the “  /  ” root directory and all required fi les and directories for booting, such 

as the   /bin  ,   /etc,   and   /dev   directories. There are open source projects to help 

you to build a tiny enough embedded Linux. This section discusses how to accelerate 

the porting effort using the space-optimized common programs (so-called utilities), 

the lightweight toolchain, and the embedded root fi le system. 

  C.5.1 Tiny Utilities –   busybox   
  What Is   busybox?   

 Dozens of essential utilities are required for a running Linux application. However, 

many of them have the common routines like string copy, rarely used functions like 

on-demand help, and unnecessary documents like operating manuals. It is good to 

reduce the program size by removing them.   Busybox   integrates many common and 

essential utilities into one single space-optimized program.   

 How to   busybox   

 Because   busybox   is highly confi gurable, compiling a customized version is very 

easy. First, you can use the command 

     � make menuconfig     

 to select the utilities you need and disable the unwanted ones. In particular, on the 

screen of   menuconfig  , you can use the   UP   and   DOWN   keys to move the cursor, the 

  Enter   key to select submenus, the   SPACE   key to select/de select an option, and 

choose the   Exit   option to save and quit a submenu or the confi guration.  Figure C.10  

is the screenshot of   menuconfig  . 

 Next, type 

     � make     

 to compile the   busybox  , which will produce the executable program, named 

  busybox  , under the current directory.   Busybox   behaves as different utilities by 

fi rst checking its program name while executing, so you have to construct a sym-

bolic link of each utility name to the   busybox  . For example, if the utility   find   is 

replaced by   busybox  , the symbolic link 

   find–>busybox   

 must exist. Thus, installing   busybox   involves copying the program to your embed-

ded system and preparing the symbolic links.   

  Tip 

   �  Although configuring and compiling   busybox   is easy, the hardest part is to 

select what is really essential in your embedded system. One shortcut is to 

observe the existing root file system of an embedded Linux system, e.g., the root 

file system built by   buildroot   in the next subsection.     

 Appendix C Development Tools 703

lin76248_app_654-722.indd   703lin76248_app_654-722.indd   703 24/12/10   4:10 PM24/12/10   4:10 PM



704 Computer Networks: An Open Source Approach

  C.5.2 Embedding Development –   uClibc   and   buildroot   
  What Is   uClibc   and What Is   buildroot?   

 The GNU C library,   glibc  , is the most common C library used for a Linux desktop 

or server system. It is designed to be compatible with all kinds of C standards and 

legacy systems, although the compatibility increases its size. It also offers many 

ways to optimize execution speed, though some of them require more memory space. 

  uClibc   is the library completely redesigned for embedded systems. Therefore, the 

size of a program linked with   uClibc   can be much smaller than with   glibc  . 

 A C library needs a corresponding toolchain, i.e., cross compiler and system 

software utilities, to help a program linking with it. The   uClibc   development team 

states that the easiest way to prepare all of them at one time is to use the   buildroot   

project.   Buildroot   is a set of   makefile  ’s that can automatically download 

required packages from the Internet to build a customized root fi le system. By default, 

it compiles and links the program with   uClibc  . Moreover, it utilizes the   busybox   

presented in Subsection C.5.1. As a result, the space requirement of the fi le system 

constructed by   buildroot   is small and suitable for embedded systems.  

  How to   buildroot   

   Buildroot   is as highly confi gurable as the   busybox   project. Their compiling 

procedures are the same. Thus, we issue the command   make menuconfig   to 

 FIGURE C.10 Confi guring the   busybox  .     

Available utilities
grouped by functions

lin76248_app_654-722.indd   704lin76248_app_654-722.indd   704 24/12/10   4:10 PM24/12/10   4:10 PM



confi gure settings, and type   make   to compile   buildroot  . The resulting image of 

the fi le system built by the   buildroot   project resides in the directory   binaries/
uclibc/  .  Figure C.11  is the screenshot of its   menuconfig  .   

  Tip 

   � Here is a method to verify the functionality of a built root file system,  8   if the 

target machine has the same architecture as the development platform. The first 

step is to locate the directory of the compiled root file system. Near the end of 

  buildroot   compilation, a variable,   rootdir  , is the one we look for. Assume 

the directory is named   directory_root  , i.e.,   rootdir=directory_
root  . Then, type      chroot directory_root sh   ,  which changes the root 

directory to the compiled one. Then you can execute any program just as it is 

already installed on the target machine. At any time, you can use the command 

  exit   to change back to your original root.        

 FIGURE C.11 Confi guring the   buildroot  .     

Configurable settings

  8 For example, you might want to check whether a shell script can correctly call your program,   /bin/
your_prog  . One way is to put everything on the target machine and then really launch the script to 

verify its execution flow. The other way provided in this tip is to launch it on the development platform. 

 Appendix C Development Tools 705

 The following books cover most of the topics mentioned in 

this appendix. Unfortunately, no book written for profi ling 

is good enough to suggest. 

    • R. Mecklenburg,  Managing Projects with GNU Make 
(Nutshell Handbooks) , 3rd edition, O’Reilly Media, 

2009.  

   FURTHER READINGS 

   Related Books 

lin76248_app_654-722.indd   705lin76248_app_654-722.indd   705 24/12/10   4:10 PM24/12/10   4:10 PM



706 Computer Networks: An Open Source Approach

   • R. M. Stallman, R. Pesch, and S. Shebs,  Debugging 
with GDB: The GNU Source-Level Debugger,  9 th  edi-

tion, Free Software Foundation, 2002.  
   • M. Bar and K. Fogel,  Open Source Development with 

CVS,  3 rd  edition, Paraglyph, 2003.  
   • C. Pilato, B. Collins-Sussman, and B. Fitzpatrick,  Ver-

sion Control with Subversion,  2 nd  edition, O’Reilly 

Media, 2008.  

   • C. Hallinan,  Embedded Linux Primer: A Practical 
Real-World Approach,  Prentice Hall, 2006.    

  Online Links 
 Here we summarize the Web sites of all development tools 

covered in this appendix. These classic sites are likely to 

exist for years to come. 

    1. VIM (Vi IMproved),  http://www.vim.org/   

   2. gedit, http://projects.gnome.org/gedit/  

   3. GCC, http://gcc.gnu.org/  

   4. GNU Make,  http://www.gnu.org/software/make/

make.html   

   5. GDB, http://sources.redhat.com/gdb/  

   6. DDD,  http://www.gnu.org/manual/ddd/   

   7. kGDB, http://kgdb.sourceforge.net/  

   8. cscope, http://cscope.sourceforge.net/  

   9. CVS,  http://www.cvshome.org/   

   10. GNU gprof,  http://www.cs.utah.edu/dept/old/texinfo/

as/gprof.html   

   11. Kernprof, http://oss.sgi.com/projects/kernprof/  

   12. BusyBox,  http://www.busybox.net/   

   13. uClibc,  http://www.uclibc.org/   
   14. Buildroot, http://buildroot.uclibc.org/        

lin76248_app_654-722.indd   706lin76248_app_654-722.indd   706 24/12/10   4:10 PM24/12/10   4:10 PM

http://www.vim.org/
http://projects.gnome.org/gedit/
http://gcc.gnu.org/
http://www.gnu.org/software/make/make.html
http://www.gnu.org/software/make/make.html
http://sources.redhat.com/gdb/
http://www.gnu.org/manual/ddd/
http://kgdb.sourceforge.net/
http://cscope.sourceforge.net/
http://www.cvshome.org/
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
http://oss.sgi.com/projects/kernprof/
http://www.busybox.net/
http://www.uclibc.org/
http://buildroot.uclibc.org/


A p p e nn d i xx D
Network Utilities 

  Both users and administrators of Linux systems often need tools to help them to 

understand  their systems. For example, one may need to check the IP address of 

a host or examine the traffi c statistics of a network interface. On the other hand, in 

addition to the development tools presented in Appendix C, developers may also 

need tools to  observe  the network to facilitate the debugging process. Before and 

after the development of a real system, one may need to simulate (or emulate) the 

system design and test the developed system. Collectively we call these tools network 

utilities. This appendix classifi es these utilities into six categories: name-addressing, 

perimeter-probing, traffi c-monitoring, benchmarking, simulating/emulating, and 

fi nally, hacking. 

 Section D.1 discusses how name-addressing helps in knowing who-is-who 

on the Internet using   host   to query through DNS, and acquiring local (e.g., 

LAN) who-is-who with the  Address Resolution Protocol  (  arp  ) and the  Interface 
Confi gurator  (  ifconfig  ). When a network does not work as expected, one 

should employ perimeter-probing discussed in Section D.2 to either   ping   for 

the availability of a remote host or   tracepath   for any network bottleneck. Once 

troubleshooting is done, packets should begin to fl ow. Section D.3 presents tools for 

traffi c monitoring. Packets can be dumped for examining of header and payload in 

great details with   tcpdump   or   Wireshark  . Some useful network statistics and 

information can be collected using   netstat  . 

 As performance is a critical issue, a connected network is only considered 

workable when its performance has been measured. Hence, Section D.4 introduces 

the benchmarking tool,  Test TCP  (  ttcp  ) for host-to-host throughput analysis. On the 

other hand, often it is too costly and risky to develop a system without evaluating the 

design fi rst. In this case, either simulation by  Network Simulator  (  ns  ) or emulation 

by   NIST Net  , discussed in Section D.5, should be used. Finally, in Section D.6, the 

hacking methodology using exploit-scanning with   Nessus   is briefl y described; this 

might be controversial, but it is placed here as a complement to Chapter 8. 

   D.1 NAME-ADDRESSING
 

  The fi rst step in communication usually is to resolve the name of the peer into the IP ad-

dress or the IP address of the peer into the MAC address. The former is the Internet’s who-

is-who which, as discussed in Chapter 6, can be done through Domain Name System 

 707

lin76248_app_654-722.indd   707lin76248_app_654-722.indd   707 24/12/10   4:10 PM24/12/10   4:10 PM



708 Computer Networks: An Open Source Approach

(DNS), while the latter is the local who-is-who which, as examined in Chapter 4, can 

be done through Address Resolution Protocol (ARP). This section discusses how name-

addressing tools help in knowing who-is-who on the Internet and on LANs. 

  D.1.1 Internet’s Who-Is-Who –   host   

  What Is   host?   

   Host   is a program that enables users to query the IP addresses corresponding to a 

domain name, or vice versa. It implements the DNS protocol to communicate with 

a local DNS server, which in turn queries other DNS servers that have the mapping.  

  How to   host   

 Using   host   is straightforward. To query the IP addresses of a domain name, just 

execute 

     � host domain_name     

 Similarly, looking up the domain name of an IP address can be done by 

     � host ip_address      

  Example 

 In the example shown in  Figure D.1 , we want to look up the IP addresses of  www.

google.com .   Host   tells us that  www.google.com  has an alias name,  www.l.google.

com , and the name is bound to six IP addresses.   

  Tip 

   � By default,   host   issues the queries to the system-configured local DNS server. 

You can also specify a domain name server, say   target_dns  , by

      � host query_name target_dns          

  D.1.2 LAN’s Who-Is-Who –   arp   
  What Is   arp?   

 The communication of upper-layer applications is over the IP layer, while the actual 

packet delivery inside a LAN is based on the MAC addresses.   Arp   is the program that 

 FIGURE D.1 An example of using   host  .     

$ host www.google.com
www.google.com is an alias for www.l.google.com.
www.l.google.com has address 74.125.153.103
www.l.google.com has address 74.125.153.104
www.l.google.com has address 74.125.153.105
www.l.google.com has address 74.125.153.106
www.l.google.com has address 74.125.153.147
www.l.google.com has address 74.125.153.99

lin76248_app_654-722.indd   708lin76248_app_654-722.indd   708 24/12/10   4:10 PM24/12/10   4:10 PM

www.google.com
www.google.com
www.google.com
www.google.com
www.google.com
www.google.com
www.google.com
www.google.com
www.google.com
www.google.com
www.google.com
www.google.com
www.google.com
www.google.com


 Appendix D Network Utilities 709

helps users to look up the MAC address of an IP address or vice versa. Administrators can 

also use   arp   to manage the system-wide ARP table, such as adding a static ARP entry. 

 The inside of the   arp   program is through the ARP. Basically,   arp   broadcasts an 

ARP request message on the LAN to query the MAC address of a specifi c IP address. 

The device with the IP address sends a unicast ARP response to the querying host. The 

results could be dynamically cached in the system-wide ARP table of the querying host 

to accelerate the response time for future queries.  

  How to   arp   

 Using   arp   is also straightforward. To query the MAC address of an IP address, you 

can specify the command 

     � arp -a IP_address     

 Adding an entry in the ARP table is done by 

     � arp -s IP_address MAC_address     

 And remove an entry with 

     � arp -d IP_address     

 Finally, you can browse the system-wide ARP table by just typing 

     � arp      

  Example 

  Figure D.2  demonstrates the browsing results of the system-wide ARP table. On 

the table, we can see that there are two entries, 88-router.cis.nctu.edu.tw and 

140.113.88.140, bound for the network interface,   eth0  . The fl ag   C   indicates that this 

is a cached entry (not a static entry) on the system.   

  Tip 

   �  When a host on your LAN changes its network adaptor, you might not be able to 

access it immediately due to the ARP cache table. To solve it, you can either wait 

for the cache timeout or use   arp -d   to remove the cached entry described above.     

  D.1.3 Who Am I –   ifconfig   
  What Is   ifconfig?   

   Ifconfig   (InterFace CONFIGurator) is a program that allows users to query the IP 

address, MAC address, and statistics of network interfaces. Administrators can also 

use it to set the IP address and enable/disable a network interface.  

 FIGURE D.2 An example of using   arp  .     

$ arp

C eth0
C eth0

IfaceFlags MaskHWtype HWaddressAddress
88-router.cs.nctu.edu.t ether

ether
00:19:06:e8:0e:4b
00:16:35:ae:f5:6c140.113.88.140

lin76248_app_654-722.indd   709lin76248_app_654-722.indd   709 24/12/10   4:10 PM24/12/10   4:10 PM



710 Computer Networks: An Open Source Approach

  How to   ifconfig   

 Using   ifconfig   is straightforward. To query the settings of network interfaces, 

you can specify the command  

        � ifconfig [interface_name]  , 

where the   interface_name    is an optional argument which can be used to specify 

a network interface. Without any argument,   ifconfig   will show the settings of 

current active interfaces. Administrators can use  

    �  ifconfig <interface_name> inet IP_address   

to set the IP address of a network interface, and use  

    �  ifconfig <interface_name> down/up   

to disable/enable an interface.    

  Example 

  Figure D.3  is an example of using   ifconfig  . The result shows that the system 

has one interface, named   eth0  . Its IP address is 192.168.1.1 and MAC address is 

00:1D:92:F1:8A:E9. The interface is currently active—note the UP fl ag—and has 

transmitted 296781 packets (or about 105 MB). The detailed meaning of the remain-

ing output can be found from the online manual.    

  Tip 

   �  On the Microsoft Windows platform, there is a similar command line program, 

  ipconfig  .       

   D.2 PERIMETER-PROBING
 

  When a network does not work as expected, one could employ perimeter-probing 

tools to check host availability or fi nd network bottlenecks. 

 FIGURE D.3 An example of using   ifconfig  .     

$ ifconfig
eth0 Link encap:Ethernet HWaddr 00:1D:92:F1:8A:E9

inet addr:192.168.1.1 Bcast:192.168.88.255  Mask:255.255.255.0
inet6 addr: fe80::21d:92ff:fef1:8ae9/64  Scope:Link
UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
RX packets: 1147154 errors:0 dropped:0 overruns:0 frame:0
TX packets:296781 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:312608565 (298.1 MiB) TX bytes: 110166934 (105.0 MiB)
Memory:fe940000-fe960000

lin76248_app_654-722.indd   710lin76248_app_654-722.indd   710 24/12/10   4:10 PM24/12/10   4:10 PM



  D.2.1 Ping for Living –   ping   
  What Is   ping?   

   Ping   can examine the availability of the path from the host to a target machine. It uses 

two messages defi ned in the Internet Control Message Protocol (ICMP). The fi rst mes-

sage is the ICMP echo request, which is sent by the host to the target. When receiving the 

request, the target responds with an ICMP echo reply message to the host. The host can 

therefore know the availability and calculate the time interval between request and reply.   

  How to   ping   

 Try the following command 

     � ping target_machine   

to check the host availability between your system and the target. Press   Ctrl-C   to 

terminate the examination and obtain a summarized report.    

  Example  

 The example shown in  Figure D.4  exhibits the   ping   results. By reading the results, 

we can know the packet loss rate and the response time, including minimum, aver-

age, and maximum response time, to the target 192.168.1.2.  

  Tip  

  � By default,   ping   sends a request every second. You can adjust it by specifying 

the flag,   -i  , e.g., 

    ping –i 10 192.168.1.2,   

  which issues an ICMP echo request every 10 seconds.    

  D.2.2 Find the Way –   tracepath   
  What Is   tracepath?   

 Using   ping  , you might fi nd that the packet loss rate to a target is abnormally high 

or the response time is slow. To fi nd the bottleneck in the path between your host and 

the target,   tracepath   is the tool to use. 

 FIGURE D.4 An example of using   ping  .     

Report for
each iteration

$ ping 192.168.1.2
PING 192.168.1.2 (192.168.1.2) 56(84) bytes of data.
64 bytes from 192.168.1.2: icmp_seq=1 ttl=128 time=2.01 ms
64 bytes from 192.168.1.2: icmp_seq=2 ttl=128 time=1.90 ms
64 bytes from 192.168.1.2: icmp_seq=3 ttl=128 time=1.96 ms
^C
--- 192.168.1.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2990ms

Summarized
report

rtt min/avg/max/mdev = 1.909/1.962/2.017/0.044 ms

 Appendix D Network Utilities 711

lin76248_app_654-722.indd   711lin76248_app_654-722.indd   711 24/12/10   4:10 PM24/12/10   4:10 PM



712 Computer Networks: An Open Source Approach

   Tracepath   utilizes the time to live (TTL) fi eld in the IP header well. It sends 

a UDP/IP query message in which TTL is set to 1, so the nearest router will imme-

diately respond to the source with an ICMP time exceeded. The source can therefore 

calculate the round trip time (RTT) to the nearest router. Similarly,   tracepath   

steps up the TTL in a query message to measure the RTTs of additional routers. With 

those RTTs, users can fi nd the bottleneck on the path from the source to the target. 

  Tracepath   can also discover the maximum transmission unit (MTU) in a path.  

  How to   tracepath   

 Using   tracepath   is easy. To examine the path to a target machine, you can simply 

use the command 

     � tracepath target_machine     

 You can add a fl ag,   -l pktlen  , to set the size of the initial query message.   Trace-
path   adjusts the message length automatically when encountering message-too-long 

rejections bouncing back from intermediate routers. An optional /  port   argument can 

be appended after the   target_machine   to specify the target port number in the 

UDP query messages. In some versions of   tracepath  , it is by default 44444, and 

in others it is chosen randomly. Some routers, unfortunately, only respond to a query 

message with a target port ranging from 33434 to 33534, which are settings in the 

classic   traceroute   utility. Therefore we suggest that you explicitly specify a port 

number (33434 is a good magic number) when you use the utility.  

  Example  

  Figure D.5  shows the results coming from   tracepath   to  www.google.com . The 

round trip time between the source and each intermediate router (and the target) 

is displayed as one line in the results. At the beginning,   tracepath   issued a 

2000-byte query message. The fi rst hop denied it and asked   tracepath   to use 

 FIGURE D.5 An example of using   tracepath  .     

$ tracepath -l 2000 www.google.com/33434
1:  Stanley.cs.nctu.edu.tw (140.113.88.181) pmtu 1500
1:  88-router.cs.nctu.edu.tw (140.113.88.254)
1:  88-router.cs.nctu.edu.tw (140.113.88.254)
2:  140.113.0.198 (140.113.0.198)
3:  140.113.0.166 (140.113.0.166)

0.543ms  asymm 54:  140.113.0.74 (140.113.0.74)
5:  140.113.0.105 (140.113.0.105)
6:  Nctu-NonLegal-address (203.72.36.2)
7:  TCNOC-R76-VLAN480-HSINCHU.IX.kbtelecom.net (203.187.9.233)   5.090ms
8:  TPNOC3-C65-G2-1-TCNOC.IX.kbtelecom.net (203.187.3.77)  23.713ms
9:  TPNOC3-P76-10G2-1-C65.IX.kbtelecom.net (203.187.23.98)   10.498ms

10: 72.14.219.65 (72.14.219.65)
11: 209.85.243.30 (209.85.243.30)
12: 209.85.243.23 (209.85.243.23)
13: 72.14.233.130 (72.14.233.130)
14: ty-in-f99.1e100.net (74.125.153.99)

Resume: pmtu 1500 hops 14 back 51

0.048ms

0.753ms  asymm 4
0.824ms
2.589ms

1.096ms

44.223ms     asymm 11
6.663ms     asymm 12
6.603ms     asymm 13

14.260ms
6.802ms     reached

5.227ms

1.904ms

lin76248_app_654-722.indd   712lin76248_app_654-722.indd   712 24/12/10   4:10 PM24/12/10   4:10 PM

www.google.com
www.google.com/33434


1500 bytes, i.e., the message “pmtu 1500” in the fi rst line. The 1500-byte messages 

are acceptable to all remaining hops. Finally, the message “asymm #” represents a 

possible asymmetric routing path found by   tracepath  .  

  Tips 

     � Traceroute   is an alternative well known in the Unix world. Due to security 

concerns, however, some Linux distributions, like Ubuntu, do not include it.  

    � Tracert   is a similar utility in the Windows platform. Instead of UDP, 

  tracert   uses ICMP Echo Request as its query messages.        

   D.3 TRAFFIC-MONITORING
 

  The implementation of a networking protocol needs to be verifi ed on the real net-

works. This section introduces tools for traffi c monitoring. Packets can be dumped to 

examine their headers and payloads in great detail, and some useful network statis-

tics and information can be collected. 

  D.3.1 Dump Raw Data –   tcpdump   
  What Is   tcpdump?   

   Tcpdump   is the most popular command-line sniffer for enabling privileged users to 

dump traffi c received on a network interface. The dumped traffi c can be printed on the 

console instantly or saved in fi les to be analyzed later. The power of   tcpdump   comes 

from using the   libpcap   library, which provides a programming interface for captur-

ing traffi c. A Windows-platform project,   WinDump  , is the porting of   tcpdump  .  

  How to   tcpdump   

 To capture everything, you can just type the command 

     � tcpdump     

 and press   Ctrl-C   to terminate capturing. A more common way to use   tcpdump   

is to assign fi ltering conditions so that only packets matching the conditions would 

be dumped. There are dozens of fi lter conditions that can be used by   tcpdump  . Here 

we introduce important conditions by using an example that might satisfy the most com-

mon capturing requirement for protocol analysis. The scenario is like this: You want to 

record the fl ows whose source or destination IP address is   target_machine   and 

TCP port number is   target_port  . Suppose the   target_machine   is on the 

network interface,   eth0  . The   tcpdump   command will be 

     � tcpdump -i eth0 -X -s 0 host target_machine and port 80     

 where the argument   -i eth0   tells   tcpdump   to trace packets passing   eth0  , the ar-

guments   -X –s 0   ask   tcpdump   to print full packets including header and payload, 

the expression   host target_machine   indicates only to capture the packets 

whose source or destination is   target_machine  , and similarly, the expression 

  port 80   limits the port number.  

 Appendix D Network Utilities 713

lin76248_app_654-722.indd   713lin76248_app_654-722.indd   713 24/12/10   4:10 PM24/12/10   4:10 PM



714 Computer Networks: An Open Source Approach

  Example  

  Figure D.6  displays the results of tracing two   ping   iterations. To limit the capture 

to only four packets, you can specify the argument,   -c 4  . There are two columns in 

which to present a captured packet: The left is presented in hex characters, and the right 

is displayed as ASCII characters. Nonprintable characters will be replaced by dots.   

  D.3.2 GUI Sniffi er –   Wireshark   
  What Is   Wireshark?   

   Wireshark   is another sniffer featuring a GUI.   Ethereal   is its original name, and 

the project was renamed to   Wireshark   in 2006.  

  How to   Wireshark   

 Starting capturing in   Wireshark   can be done by pressing the   Interfaces   

button of the   Capture   submenu on the menu bar. You can also fi nd the   Stop   button 

on that submenu. 

 The power of   Wireshark   comes from its friendly user interface. As shown 

in  Figure D.7 , there are four major areas in the main window of   Wireshark  . The 

fi rst is the fi lter bar. You can set the fi ltering constraints by either typing the fi ltering 

rules directly or using the   Expression   button. The second area shows the captured 

packets. When the cursor points to an entry, its description, such as the MAC address, 

will be shown in the third area. Finally, the fourth area displays the full packet content.    

  D.3.3 Collect Network Statistics –   netstat   
  What Is   netstat?   

   Netstat   is a command line tool that can show the connection status, statistics of 

protocol usage, and routing tables.  

 FIGURE D.6 An example of using   tcpdump  .     

Ping’s request

$  tcpdump  -i eth0-c 4 host www.google.com  -X-s 0-n
tcpdump: verbose output suppressed, use  -v or  -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 65535 bytes
13:38:38.386024 IP 192.168.1.1 > 74.125.153.106: ICMP echo request, id 28763, seq 41, length 64

0x0000: 4500 0054 0000 4000 4001 719b 8c71 58b5 E..T..@.@.q..qX.
0x0010: 4a7d 996a 0800 aaba 705b 0029 5e8e b14b J}.j....p[.)^..K
0x0020: dce3 0500 0809 0a0b 0c0d 0e0f 1011 1213 ................
0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 .............!”#
0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&’()*+, –./0123

Ping’s response

Captured packet

0x0050: 34353637                                 4567
13:38:38.392037 IP 74.125.153.106 > 192.168.1.1: ICMP echo reply, id 28763, seq 41, length 64

0x0000: 4500 0054 4c6d 0000 3301 722e 4a7d 996a E..TLm..3.r.J}.j
0x0010: 8c71 58b5 0000 b2ba 705b 0029 5e8e b14b .qX.....p[.)^..K
0x0020: dce3 0500 0809 0a0b 0c0d 0e0f 1011 1213 ................
0x0030: 1415 1617 1819 1a1b 1c1d 1e1f 2021 2223 .............!”#
0x0040: 2425 2627 2829 2a2b 2c2d 2e2f 3031 3233 $%&'()*+, –./0123
0x0050: 34353637                                 4567

lin76248_app_654-722.indd   714lin76248_app_654-722.indd   714 24/12/10   4:10 PM24/12/10   4:10 PM

www.google.com


  How to   netstat   

 The fi rst major function of   netstat   is to show the connection status. You can type 

the following command 

     � netstat -an     

 where the fl ag   -a   tells   netstat   to list the status of all protocols, and the fl ag   -n   

shows the resulting address in numerical form, which is much faster than showing 

the domain name. 

 The second function of   netstat   is to display the statistics of protocol usage, 

which can be done by 

     � netstat -s     

 The fi nal function is to present the routing tables by executing 

     � netstat -rn      

  Example  

  Figure D.8  shows the display of connection status. You can see that the machine is 

listening to many ports (with status   LISTEN  ), such as 80 (the Apache Web service), 

and there is one connection from 192.168.1.2.   

 FIGURE D.7 Screenshot of   Wireshark  .     

Captured packets

Filter bar

Brief of a packet

Detail packet
content

 FIGURE D.8 Results of   netstat  .     

$ netstat -an

Active Internet connections (servers and established)
Proto Recv-Q

LISTEN
LISTEN
ESTABLISHED

Foreign Address StateLocal Address
tcp
tcp

0
0

0
0

tcp 0 0 192.168.1.1:22 192.168.1.2:50910

Send-Q
0.0.0.0:22
0.0.0.0:80

0.0.0.0:*
0.0.0.0:*

 Appendix D Network Utilities 715

lin76248_app_654-722.indd   715lin76248_app_654-722.indd   715 24/12/10   4:10 PM24/12/10   4:10 PM



716 Computer Networks: An Open Source Approach

  Tip 

   �  The connection status is also useful as a tool to detect hacking. For example, 

the signature of a denial of service (DoS) attack is thousands of non-  LISTEN   

connections. You could also backtrace the source of attacks from the results of 

  netstat  .       

   D.4 BENCHMARKING
 

  A connected network is only considered workable when it has been tested and 

measured. In this section, a common benchmarking tool for host-to-host throughput 

analysis is presented. 

  D.4.1 Host-to-Host Throughput –   ttcp   
  What Is   ttcp?   

 Test TCP,   ttcp  , is the benchmark program for testing the TCP and UDP throughput 

between two machines. Some routers now incorporate a version of this tool, enabling 

you to easily evaluate network performance.  

  How to   ttcp   

   Ttcp   has two modes, transmit mode and receive mode, which can be specifi ed 

by the arguments   -t   and   -r  , respectively. The benchmarking process begins by 

launching   ttcp   at the receive mode on one machine, and then executing   ttcp   at 

the transmit mode on the other machine. You can feed a specifi c workload, which 

usually presents as a fi le, at the transmit-mode   ttcp  . The workload will be trans-

mitted to the receive-mode   ttcp  . The statistics are shown in both at the end of 

the transmission. The results include the throughput and the number of I/O calls 

per second.  

  Example 

 In the example shown in  Figure D.9 , the sender reads the fi le,   test_file  , as the 

workload, and transmits it to the receiver at 192.168.1.1. The receiver does not save 

the received content but discards it directly, i.e., output to   /dev/null  . The results 

show that the sender requires 12,500 I/O calls to transmit 102,400,000 bytes, and the 

throughput measured by the receiver is 723,557.59 KB/sec.   

  Tips 

   � To generate a large demo file on the sender side, you can use the command   dd   

as follows:

      • dd if=/dev/zero of=demo_file size = <size_in_512_bytes>      

    where   if=/dev/zero   tells   dd   to create a file whose content is padding 

with zero,   of=demo_file   specifies the output file name, and   size_
in_512_bytes   is a number indicating the size of the output file.  

  � To measure UDP throughput, you can specify the flag   -u   on calling   ttcp  .        

lin76248_app_654-722.indd   716lin76248_app_654-722.indd   716 24/12/10   4:10 PM24/12/10   4:10 PM



   D.5 SIMULATION AND EMULATION
 

  Developing a real network could be costly. Before the development, a less-costly per-

formance evaluation could be done. The simulation or emulation tools can be used to 

evaluate the design of a complete network or a network component. 

  D.5.1 Simulate the Network –   ns   
  What Is   ns?   

   Ns  , which began in 1989 as a variant of the REAL (Realistic and Large) network 

simulator, is a collaborative simulation platform that provides common references 

and test suites to simulate packet-level discrete events from the link layer and up for 

both wired and wireless network conditions. A few of its powerful features include 

scenario generation, which creates a customized simulation environment, and visual-

ization with the aid of   nam   (Network Animation). Notably,   ns   is implemented in two 

languages, C++ (for   ns   core) and   OTcl   (for   ns   confi guration), to balance run-time 

effi ciency and scenario-writing convenience. The project is well known as   ns-2  , 

because version 2 is its current stable release.  

  How to   ns   

 Compiling   ns   is easy because the project has a script,   install  , that can automati-

cally confi gure and compile it. Try the following commands to build   ns  : 

     � cd ns-allinone-<version>;. /install   

 where   <version>   is the version number of the   ns   project. As of June 2009, 

the most up-to-date version was 2.34.   Ns   simulates a network scenario, which is 

 FIGURE D.9 An example of using   ttcp  .     

Receiver
192.168.1.1/dev/null

$ ttcp -r > /dev/null
ttcp-r: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp
ttcp-r: socket
ttcp-r: accept from 192.168.1.2
ttcp-r: 102400000 bytes in 0.14 real seconds = 723557.59 KB/sec +++
ttcp-r: 12501 I/O calls, msec/call = 0.01, calls/sec = 90451.93
ttcp-r: 0.0user 0.0sys 0:00real 57% 0i+0d 268maxrss 0+2pf 4705+15csw

Sender
192.168.1.2

test_file

$ ttcp -t 192.168.1.1 < test_file
ttcp-t: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp -> 192.168.1.1
ttcp-t: socket
ttcp-t: connect
ttcp-t: 102400000 bytes in 0.14 real seconds = 724170.64 KB/sec +++
ttcp-t:12500 I/O calls, msec/call = 0.01, calls/sec = 90521.33
ttcp-t: 0.0user 0.1sys 0:00real 92% 0i+0d 260maxrss 0+2pf 0+16csw

 Appendix D Network Utilities 717

lin76248_app_654-722.indd   717lin76248_app_654-722.indd   717 24/12/10   4:10 PM24/12/10   4:10 PM



718 Computer Networks: An Open Source Approach

written in the syntax of   OTcl   script. Assume you have written a scenario script, 

named   demo.tcl  . You can execute the following command to simulate it:  

    � ns demo.tcl   

 A scenario would contain network type, topology, nodes, traffi c fl ows, and timing 

events. The simulation process could be recorded, so that it can be visualized anima-

tedly by an   ns   utility, network animator (  nam  ).    

  Example 

 Writing a network script with the   OTcl   script language is a bit complicated. Fortu-

nately, there are dozens of example scripts with the   ns   project. You can read them 

in the directory: 

     � ns-allinone-<version>/ ns-<version>/tcl/ex     

  Figure D.10  demonstrates the simulation results of an example,   simple.tcl  . In 

this example, four nodes are wired, two traffi c fl ows are scheduled, and the simula-

tion process is recorded and visualized by   nam  .    

  D.5.2 Emulate the Network –   NIST Net   
  What Is   NIST Net?   

 A network emulator provides simple user entry of network parameters (e.g., delay, 

loss, jitter) for emulating a wide range of network types with a small lab setup. With 

  NIST Net  , you can observe quite a few network statistics, including packet delay, 

packet reordering (due to delay variance), packet loss, packet duplication, and band-

width limitation.  Figure D.11  illustrates the network architecture of   NIST Net  . The 

 FIGURE D.10 Screenshot of   nam  .     

Step interval
control bar

Topology

Action buttons

Time line in
progress

lin76248_app_654-722.indd   718lin76248_app_654-722.indd   718 24/12/10   4:10 PM24/12/10   4:10 PM



traffi c fl ows of end points directly connecting to   NIST Net   could experience the 

impact of network parameters as if they were really passing through a large network.   

  How to   NIST Net   

   NIST Net   is composed of user-space tools and kernel modules. The kernel modules 

emulate the impact of network parameters on the data traffi c. Although presented as 

kernel modules without the needs of kernel patch, the compilation of   NIST Net   

still refers to the settings of the Linux kernel source, e.g., the content in   /usr/src/
linux/.config  . Thus, a kernel source confi guration is required before compiling 

the   NIST Net  . This can be done by typing the following command under the Linux 

kernel source directory: 

     � make menuconfig     

 After compiling and installing the   NIST Net   package, the kernel modules can be 

loaded with the command 

     � Load.Nistnet     

 Now you can use the command 

     � xnistnet   

to confi gure and monitor the   NIST Net  .   

    Example  

  Figure D.12  demonstrates the screenshot of the   xnistnet   program. You can add 

a source/destination pair and modify its network parameters with the program. The 

traffi c fl ow of the pair will experience the impact of network parameters, such as the 

delay, bandwidth, and drop rate, when passing through this machine.    

  Tip 

   � To relay data traffic, the   NIST Net   machine must be configured as routing-

enabled. This can be done by setting the value to 1 on the file   /proc/sys/
net/ipv4/ip_forward  . In other words, the command is

      • echo 1 > /proc/sys/net/ipv4/ip_forward           

 FIGURE D.11 The network architecture of   NIST Net  .     

An emulated
network

NIST NetEnd point End point

 Appendix D Network Utilities 719

lin76248_app_654-722.indd   719lin76248_app_654-722.indd   719 24/12/10   4:10 PM24/12/10   4:10 PM



720 Computer Networks: An Open Source Approach

  D.6 HACKING
 

 Hacking methodology using exploit-scanning tools is presented in this section. A 

network administrator can use those tools to identify the vulnerabilities of the ad-

ministered network.  

  D.6.1 Exploit Scanning –   Nessus   
  What Is   Nessus?   

   Nessus   is one of the most popular exploit-scanning programs used in the Linux 

community. As shown in  Figure D.13 ,   Nessus   is designed with a three-tiered archi-

tecture. The client is a GUI program that allows administrators to control and manage 

the   Nessus   daemon,   nessusd  . The exploiting methods and hacking database are 

 FIGURE D.13 The network architecture of   nessus  .     

client

nessusd

Testbed network

 FIGURE D.12 Screenshot of   NIST Net  .     

Emulated properties
for the pair

A source/destination pair

Function buttons

lin76248_app_654-722.indd   720lin76248_app_654-722.indd   720 24/12/10   4:10 PM24/12/10   4:10 PM



built into the   Nessus   daemon. The daemon also takes the responsibility of scanning 

the target network, collect scanning results, and reporting to the client.  

  How to   Nessus   

 The source of   Nessus   is composed of four parts:   nessus library  ,   libnasl  , 

  nessus core  , and the hacking database, called   plugin   in the   Nessus   world. 

To install   Nessus  , you have to download those parts from the homepage of   Nes-
sus  , and compile and install them in turn. The next step is to execute the command 

     � nessus-mkcert     

 which prepares a certifi cate used in the communication between   Nessus   client and 

daemon.  

 After successful installation, you can start up the   Nessus   daemon, i.e., 

  nessusd  , and add the fi rst valid   Nessus   administrator by executing the command 

     � nessus-adduser     

 Then you can execute the   Nessus   client, i.e.,   nessus  , on the client machine, and 

connect the client to the daemon.  

  Example 

 To check the vulnerabilities of a target machine, a   Nessus   administrator fi rst 

chooses some hacking methods using the   Nessus   client. He or she can press the 

  Plugins   button on the tab bar and select the available hacking methods on the tab 

window. A screenshot of the selection window is shown in  Figure D.14 . Next, he or 

 FIGURE D.14 Screenshot of   Nessus 2  .     

Supported hacking
methods

Tab bar showing
more functions

Action buttons

Detail hacking
methods

 Appendix D Network Utilities 721

lin76248_app_654-722.indd   721lin76248_app_654-722.indd   721 24/12/10   4:10 PM24/12/10   4:10 PM



722 Computer Networks: An Open Source Approach

she assigns the target machine on the   Target   tab window and presses the   Start 
the scan   button to start the scan. After scanning, a report window will pop up to 

report the scanning results.  

  Tips  

  � After installing the   Nessus’s   dynamic link library,   libnasl  , you will need 

to refresh the system-wide library cache. This can be done by either rebooting or 

by using the following command: 

    • ldconfig /usr/local/lib    

  � Be careful; some scanning methods might harm or crash the target system.   

  � Since the release of   Nessus 3  , Nessus was no longer open-sourced and was 

only released in binary executables. It is still free to use the latest version of 

  Nessus   in noncommercial organizations. A forked project called   OpenVAS   is 

open-sourced and under development.        

 The following books cover most of the topics mentioned 

in this appendix. The fi rst book tells you how to use GNU 

tools to manage networking. The second one provides 

hands-on instructions for Linux TCP/IP. The fi nal book, 

though it was published in 1998, is still the classic book for 

learning network programming. 

   • Tobin Maginnis,  Sair Linux and GNU Certification, 
Level 1: Networking,  John Wiley & Sons, 2001.  

  • P. Eyler,  Networking Linux, a Practical Guide to 
TCP/IP,  New Riders, 2001.  

 •  W. Richard Stevens,  UNIX Network Programming,  
Prentice Hall, 1998.    

  Online Links 
 Here we summarize the Web sites of all network utilities 

covered in this appendix. Again, these classic sites are 

likely to exist for years to come. 

    1. arp and ifconfi g,  http://www.linuxfoundation.org/en/

Net:Net-tools   

   2. host (a.k.a., bind9-host),  https://www.isc.org/

download   

   3. ping, http://directory.fsf.org/project/inetutils/  

   4. tracepath,  http://www.skbuff.net/iputils   

   5. tcpdump,  http://www.tcpdump.org/   

   6. Wireshark,  http://www.wireshark.org/   

   7. ttcp,  http://www.pcausa.com/Utilities/pcattcp.htm   

   8. WebBench 5.0, ftp://ftp.pcmag.com/benchmarks/

webbench/  

   9. The Network Simulator - ns-2,  http://www.isi.edu/

nsnam/ns/   

   10. NIST Net, http://snad.ncsl.nist.gov/itg/nistnet/  

   11. Nessus,  http://www.nessus.org/         

   FURTHER READINGS 

   Related Books 

lin76248_app_654-722.indd   722lin76248_app_654-722.indd   722 24/12/10   4:10 PM24/12/10   4:10 PM

http://www.linuxfoundation.org/en/Net:Net-tools
http://www.linuxfoundation.org/en/Net:Net-tools
https://www.isc.org/download
https://www.isc.org/download
http://directory.fsf.org/project/inetutils/
http://www.skbuff.net/iputils
http://www.tcpdump.org/
http://www.wireshark.org/
http://www.pcausa.com/Utilities/pcattcp.htm
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://snad.ncsl.nist.gov/itg/nistnet/
http://www.nessus.org/


Index

      10BASE-T,   151–152, 159–160   

   10BROAD36,   153   

   10PASS-TS,   153   

   100BASE-T2,   152   

   100BASE-TX,   152, 159–160   

   100BASE-X,   128   

   1000BASE-T,   152   

   A
A.      See  Address   

   ABM.      See  asynchronous balanced mode   

   Abstract Syntax Notation One (ASN.1),  

 490   

   AC.      See  Access Concentrator   

   accept (),   393, 426   

   Access Concentrator (AC),   149   

   access control,   228   

   access point (AP),   173   

   ACK-compression problem,   382–383, 

383 f    
   acknowledgments (ACKs),   41, 356   

       duplicate,   366  

  fast retransmit and,   366  

  loss,   357  

  MPL and,   383–384  

  partial,   384–386  

  slow start and,   365  

  SWS and,   379–380   

   ACL link.      See  asynchronous 

connectionless link   

   ACM.      See  adaptive coding and 

modulation   

   action,   17   

   act_police.c,   571   

   ad hoc network,   173   

   adaptive coding and modulation (ACM),  

 62, 111   

   ADC.      See  analog-to-digital converters   

   Additive Increase Multiplicative Decrease 

(AIMD),   29, 365   

   Address (A),   431   

   address resolution protocol (ARP),   224–

225, 267–269   

       open source implementation,   269–271  

  packet format,   268–269, 269 f    
   addressing,   127, 129–132   

       CIDR,   235  

  e-mail,   441  

  Ethernet,   153–155  

  frame format and,   129  

  global  vs.  local,   129  

  in HDLC,   143–144  

  IP layer and,   224–225  

  IP subnet,   234 f   
  IPv4,   232–233, 233 f   
  IPv6,   263  

  IPv6 global unicast,   265 f   
  IPv6 multicasting,   266 f   
  loopback,   265  

  management,   267–268  

  PPP,   146–147  

  transport layer,   339, 341–342  

  unicast,   264  

  unicast unspecified,   265  

  unicast  vs.  multicast,   130   

   Adleman,   Leonard, 601   

   admission control,   549, 550 f , 555, 

564–566   

       measurement-based,   565  

  statistics-based,   565   

   Adobe Systems,   514   

   ADSL.      See  asymmetric digital subscriber 

line   

   Advanced Encryption Standard (AES),  

 594, 601, 604, 649   

   Advanced Research Project Agency 

Network (ARPANET),   1, 428, 

440.      See also  Internet   

   AES.      See  Advanced Encryption Standard   

   AF.      See  Assured Forwarding   

   AF_INET,   392, 395   

   AF_PACKET,   399–401   

   AFSK.      See  audio FSK   

   Agent eXtensibility (AgentX),   487   

   agents,   486   

   aging mechanisms,   192   

   AH.      See  Authentication Header   

   Aho-Corasick algorithm,   636   

   AIMD.      See  Additive Increase 

Multiplicative Decrease   

   ALGs.      See  application level gateways   

   alloc_netdev (),   212–213   

   alloc_skb (),   40   

   ALM.      See  application-level multicasting   

   ALOHA,   138, 216   

   alternate mark inversion (AMI),   54–55, 

77   

   AM.      See  amplitude modulation   

   Amazon,   426   

   American National Standards Institute,  

 Electronic Industries Association, 

Telecommunications Industry 

Association (ANSI EIA/TIA), 

Standard 568, 66   

   AMI.      See  alternate mark inversion   

   amplitude,   62   

   amplitude modulation (AM),   69, 95   

   amplitude-shift keying (ASK),   55, 84–87, 

87 f    
   AMPS,   116   

   analog-to-digital converters (ADC),   57, 

64   

   ANSCOUNT,   436   

   ANSI EIA/TIA.      See  American National 

Standards Institute, Electronic 

Industries Association, 

Telecommunications Industry 

Association   

   antennas,   69, 109–110   

   antidetection mechanisms,   594   

   anti-snubbing algorithm,   533   

   anti-spam,   644–645, 647–648   

   antivirus,   647–648   

   anycast,   259   

   AP.      See  access point   

   Apache,   470–473, 470 f , 471 f , 474 f    
   API.      See  application programming 

interface   

   ap_invoke_handler (),   474–475, 475 t    
   ap_mpm_run (),   472   

   APP,   409   

   Apple,   215, 514   

   application layer,   25   

       characteristics,   426–427  

  protocols,   423 t    
   application level gateways (ALGs),   253, 

258 f    
   Application Marketplace,   419   

723

lin76248_ndx_723-744.indd   723lin76248_ndx_723-744.indd   723 24/12/10   4:30 PM24/12/10   4:30 PM



724 Index

   application programming interface (API),  

 36–37, 37 f , 340, 344, 391–402   

   application-independent programs,   33   

   application-level multicasting (ALM),  

 326, 541   

   application-specific integrated circuit 

(ASIC) hardware,   18   

   Apps.Gov,   426   

   arbitration,   125   

   Archie,   417   

   ARCOUNT,   436   

   ARM.      See  asynchronous response mode   

   AroundMe,   419   

   ARP.      See  address resolution protocol   

   ARPANET.      See  Advanced Research 

Project Agency Network   

   arp_tbl,   269   

   ARQ.      See  automatic repeat-request   

   AS.      See  autonomous system   

   ASCII,   427   

   ASIC hardware.      See  application-specific 

integrated circuit hardware   

   ASK.      See  amplitude-shift keying   

   ASN.1.      See  Abstract Syntax Notation 

One   

   Associated Press Mobile News Network,  

 419   

   Assured Forwarding (AF),   558, 560 t    
   Asterisk,   418–419, 498, 506 f    

       call flow,   507 f   
  open source implementation,   

505–509  

  PBX,   506 f    
   _ast_pbox_run (),   509, 509 f    
   asymmetric digital subscriber line 

(ADSL),   5, 171   

   asymmetric key system,   601–603, 601 f    
   asynchronous balanced mode (ABM),  

 143   

   asynchronous connectionless link (ACL 

link),   185, 185 f    
   asynchronous response mode (ARM),  

 143   

   Asynchronous Transfer Mode (ATM),  

 1, 22   

       QoS and,   546  

  stateless switching and,   6  

  switched paths of,   5   

   ATM.      See  Asynchronous Transfer Mode   

   ATM LAN emulation,   153   

   attenuation,   62   

   audio FSK (AFSK),   88   

   auditing,   638   

   authenticate to network,   146   

   authenticated state,   451   

   Authentication Header (AH),   592, 610–

611, 611 f    
       in IPSec,   612–614  

  main functions,   613 f    
   Authentication Type,   304   

   AUTHORIZATION state,   449   

   autocorrelation,   100   

   automatic repeat-request (ARQ),   71   

   autonegotiation,   160   

   autonomous system (AS),   26–27, 27 f , 
293, 294 f , 306.      See also  domains   

   Azureus,   533, 535 t    

   B
Back Orifice 2000 (BO2K),   633   

   back pressure,   138, 160   

   backbone networking,   169   

   backdoors,   633   

   backoff random generator,   165 f    
   backoffHandler (),   180   

   bandwidth,   1, 11–12, 12 f , 73, 119   

       allocation,   16, 186  

  available,   515  

  utilization,   96  

  VoIP and,   497   

   bandwidth delay product (BDP),   13–14, 

13 f , 29, 381, 390   

   Barker codes,   98–99, 99 t    
   baseband transmission,   60–61   

       broadband  vs. ,   48  

  Ethernet and,   153  

  information coding,   70   

   baseline wandering,   61–62   

   BaseRTT,   389   

   Basic Rate Interface (BRI),   78   

   basic service set (BSS),   173   

   BASK.      See  binary ASK   

   baud rate,   119   

   Bcc: field,   443–444   

   BDP.      See  bandwidth delay product   

   BE.      See  Best Effort   

   beamforming,   110–111   

   Bellman-Ford algorithm,   288, 309   

   BER.      See  bit error rate   

   Berkeley Internet Name Domain (BIND),  

 418, 437–440   

   Berkeley Packet Filter (BPF),   403   

   Berkeley Software Distribution (BSD),  

 295, 403   

   Berners-Lee,   Tim, 459   

   Best Effort (BE),   189, 564   

   BFSK.      See  binary FSK   

   BGP.      See  Border Gateway Protocol   

   bgp_update (),   312   

   BH.      See  bottom half   

   BIC,   390   

   big-endian,   130, 217–218   

   binary ASK (BASK),   86, 88 f    
   binary FSK (BFSK),   88 f    
   binary phase-shift keying (BPSK),   89, 89 f    
   BIND.      See  Berkeley Internet Name 

Domain   

   bind (),   392   

   binding applications,   391–394   

   bit   

       count,   481  

  extension,   167  

  FIN,   372  

  interleaving,   71  

  ordering,   218  

  PSH,   372  

  starting,   232  

  stuffing,   128 f   
  time,   156  

  width,   11–12, 11 f    
   bit error rate (BER),   109   

   BitComet,   534   

   BitTorrent (BT),   418–419, 520, 531–533   

       open source implementation,   533–539  

  operation overview,   532  

  operation steps,   532 f   
  peer selection,   532  

  piece selection,   532   

   block coding,   71, 73, 79–81   

   blogs,   523   

   Blossom,   Eric, 64–65   

   Bluespec System Verilog (BSV),   112   

   Bluetooth,   4, 182–185   

       IEEE 802.11  vs. ,   187, 187 t   
  protocol stack,   186 f   
  topologies,   183 f    

   BO2K.      See  Back Orifice 2000   

   Boggs,   David, 216   

   BOOTP,   273, 275–277   

   Border Gateway Protocol (BGP),   30, 

309–311   

       call graph,   313 f   
  open source implementation,   312–313  

  packet format,   310 f   
  routing table,   311 t    

   bots,   633–634   

   bottom half (BH),   206   

   BPDU.      See  bridge protocol data unit   

   BPF.      See  Berkeley Packet Filter   

   BPSK.      See  binary phase-shift keying   

   br_config_bpdu,   199   

   br_configuration_update (),   200   

   BRI.      See  Basic Rate Interface   

   bridge protocol data unit (BPDU),   

197–199, 198 f    

lin76248_ndx_723-744.indd   724lin76248_ndx_723-744.indd   724 24/12/10   4:30 PM24/12/10   4:30 PM



 Index 725

   bridging,   191–198   

       in Bluetooth,   183  

  with loops,   197 f   
  MAC,   139, 191  

  open-source implementation,   194–196  

  routing  vs. ,   226  

  switches  vs. ,   193–196   

   broadband transmission,   48, 60–61, 

119–120   

   broadcast domains,   217, 226   

   br_stp_rcv (),   199   

   BSD.      See  Berkeley Software Distribution   

   BSS.      See  basic service set   

   BSV.      See  Bluespec System Verilog   

   BT.      See  BitTorrent   

   buffers,   8   

       DMA,   206  

  latency variation and,   14  

  overflow,   629 f   
  streaming,   515   

   bulk-data transfers,   381–382   

   BYE,   409   

   C
CA.      See  Certificate Authority   

   cable TV (CATV),   5, 171   

   cache   

       coherence,   468  

  proxying,   252  

  routing,   238, 240 f , 241  

  tables,   268  

  Web,   468   

   Call Detail Record (CDR),   506   

   call graphs   

       for arp_receive (),   271 f   
  for arp_send (),   271 f   
  BGP,   313 f   
  DHCP,   277  

  FTP ALG,   258 f   
  ICMP,   282 f   
  for incoming packets,   345 f   
  IP-layer packet flows in,   229–230  

  link-layer packet flows in,   139–142  

  NAT,   257 f   
  for outgoing packets,   346 f   
  packet flows in,   230 f   
  ripd,   301 f   
  transport-layer packet flows in,  

 344–347   

   called (),   629   

   CAN,   526   

   canonical format indicator (CFI),   203   

   canonical name (CNAME),   431–432   

   capacity,   11   

   Carnegie Mellon University,   493   

   carrier extension,   167   

   carrier sense,   138   

   carrier sense multiple access (CSMA),   60   

   carrier sense multiple access with 

collision avoidance (CSMA/CA),  

 173–175   

       flowchart,   174 f   
  operation,   180–181, 181 f    

   carrier sense multiple access with 

collision detection (CSMA/CD),  

 150–151, 155–156   

       channel utilization of,   216–217  

  collision detection,   158–159  

  frame reception flow,   157 f   
  frame transmission flow,   156 f   
  open source implementation,   161–166  

  signals,   164 f   
  wireless limitations of,   175   

   CATV.      See  cable TV   

   CBT.      See  Core-Based Trees   

   Cc: field,   443   

   C&C channels.      See  command & control 

channels   

   CCK.      See  complementary code keying   

   ccTLDs.      See  country code top-level 

domains   

   CD.      See  compact disc   

   CDI.      See  channel direction information   

   CDM.      See  code division multiplexing   

   CDMA.      See  code division multiple access   

   CDMA2000,   116   

   CDQ.      See  channel quality information   

   CDR.      See  Call Detail Record   

   cellular standards,   116, 116 t    
   CERN.      See  European Laboratory for 

Nuclear Research   

   Certificate Authority (CA),   603, 616   

   CFI.      See  canonical format indicator   

   CFP.      See  contention-free period   

   channel,   low-pass, 60–61   

   channel direction information (CDI),   111   

   channel quality information (CQI),   111   

   channel state information (CSI),   110   

   channels,   54   

       access methods,   93, 94 t   
  Asterisk,   508  

  bandpass,   61  

  coding,   70–72  

  full-duplex,   381  

  H.323  vs.  SIP,   504  

  passband,   55  

  process-to-process communication,   347  

  single-hop  vs.  multi-hop,   341 f   
  utilization,   216–217  

  wireless security on,   604   

   checksum,   31, 131   

       computation,   134 f   
  CRC  vs. ,   133  

  header,   243  

  implementation,   134–135  

  IPv4 implementation,   244  

  per-segment,   348–349  

  TCP,   31, 356  

  of TCP/IP headers,   350 f   
  transport layer error control and,   342  

  UDP and,   349–350   

   child processes,   422   

   choking/unchoking algorithm,   533   

   Chord,   526–527, 528 f    
   chroot (),   437   

   chunks,   531   

   churn,   530   

   CIDR.      See  Classless Inter-Domain 

Routing   

   ciphertext,   590   

   Cisco,   204   

   citizens band,   69   

   ClamAV,   591, 634–637, 648   

   Clark,   David D., 380   

   classification,   17–18, 548   

   Classless Inter-Domain Routing (CIDR),  

 235, 235 f , 329–330   

       BGP and,   310   

   clear to send (CTS),   176   

   clients,   36–37, 37 f    
       concurrent connection-oriented,   425 f   
  in concurrent server,   422  

  iterative connectionless,   424 f   
  queuing,   422  

  Web,   459 f    
   CLOSE-WAIT state,   353   

   CLOSING state,   353   

   cloud computing,   426   

   CLS_RSVP.c.,   569 f    
   clustering,   6–7   

   CNAME.      See  canonical name   

   coaxial cables,   3, 66–67, 66 t    
   code division multiple access (CDMA),  

 55, 103–104   

       advantages of,   106  

  asynchronous,   105–106  

  synchronous,   104, 104 f    
   code division multiplexing (CDM),   60, 

106   

   code point space,   558 t    
   Code Red,   633   

   codecs   

       encapsulation,   408  

  modems  vs. ,   48  

  playback reconstruction and,   407   

lin76248_ndx_723-744.indd   725lin76248_ndx_723-744.indd   725 24/12/10   4:30 PM24/12/10   4:30 PM



726 Index

   Cohen,   Bram, 531   

   collision detection,   138   

       CSMA/CD,   155–156, 158–159  

  with propagation delay,   158 f   
  RF and,   175   

   collision domains,   159, 217, 226   

   command & control (C&C) channels,  

 633–634   

   command continuation request,   453   

   common best-effort carrier service,   22   

   Common Open Policy Service (COPS),  

 549, 628   

   compact disc (CD),   71   

   complementary code keying (CCK),   99   

   compression,   510   

       algorithms,   511–512  

  asymmetrical,   512  

  audio,   71  

  image,   71  

  lossless,   512  

  lossy,   512  

  on-the-fly,   484, 484 f   
  spatial,   511–512  

  speech,   71  

  symmetrical,   512  

  temporal,   511–512   

   condition,   17   

   congestion   

       avoidance,   365–366, 366 f , 367, 371 f   
  collapse,   363  

  loss and,   14  

  packet switching and,   28   

   congestion control,   19   

       schemes,   390  

  TCP and,   28–29, 363–368  

  TCP behaviors,   370–371  

  TCP Reno and,   368–370, 368 f , 
369 f   

  TCP Tahoe and,   363–368, 364 f , 
369 f   

  in transport layer,   343   

   congestion window (CWND),   361, 368, 

370–371   

   connect (),   393   

   connect function,   45   

   CONNECT request,   464   

   connection establishment/termination,  

 351–352, 353, 354 f    
   connection management,   351–356   

   connectionless service model,   227   

   connectivity,   1   

       host-to-host,   24  

  IP layer and,   224–225  

  requirements and,   2–5  

  solutions,   25   

   constellation diagram,   85, 86 f , 87 f    
       circular,   92 f   
  QAM,   93 f   
  rectangular,   92 f    

   content filtering,   17, 647–648   

   content replacement,   468   

   contention period (CP),   177   

   Contention Window (CW),   174–175   

   contention-free period (CFP),   176   

   Content-Transfer-Encoding: field,   446   

   Content-Type: field,   445   

   contiguous address block,   26   

   control operations,   391   

   control plane   

       address management in,   267–268  

  data plane  vs. ,   14–15  

  error reporting in,   277–279  

  implementations in,   34  

  operations,   14–16, 15 f , 29–30  

  routing and,   283   

   controllers,   2, 32, 38   

   convergence sublayer (CS),   190   

   convolutional codes,   71–72   

   convolutional encoder,   115 f    
   cookies,   394, 466   

   COPS.      See  Common Open Policy Service   

   copyright infringement,   524, 531, 534   

   Core-Based Trees (CBT),   317   

   count to infinity problem,   292   

   country code top-level domains 

(ccTLDs),   434   

   CP.      See  contention period   

   CPU time   

       DMA and,   209–210  

  from input port to output port,   45 f   
  of NAT execution,   258–259  

  from socket to driver,   42 f    
   CRC.      See  cyclic redundancy check   

   CRC-32,   135–136, 136 f    
   crosscorrelation,   100   

   cryptography,   592   

       asymmetric key system,   601–603, 601 f   
  principles,   595–598  

  symmetric key system,   595–598   

   CS.      See  convergence sublayer   

   CSI.      See  channel state information   

   CSMA.      See  carrier sense multiple access   

   CSMA/CA.      See  carrier sense multiple 

access with collision avoidance   

   CSMA/CD.      See  carrier sense multiple 

access with collision detection   

   csum,   349   

   csz_deque (),   580 f    
   csz_enque (),   579, 579 f    
   csz_qdisc_ops,   578   

   CTS.      See  clear to send   

   CUBIC,   390   

   cut-through,   193, 193 t    
   CW.      See  Contention Window   

   CWND.      See  congestion window   

   cyclic redundancy check (CRC),  

 131–132, 132 f , 342   

       checksum  vs. ,   133   

   D
DA field.      See  destination address field   

   DAB.      See  digital audio broadcasting   

   daemons,   2, 420   

       implementations,   32  

  RIP,   300–301  

  routing,   34, 298, 309  

  servers,   36–37, 37 f    
   DansGuardian,   648   

   Darwin Streaming Server (DSS), 

 418–419, 510, 514   

       block diagram,   517 f   
  modules,   516–517  

  open source implementation,   516–520  

  task handling,   518–519   

   data   

       analog v. digital,   55–57  

  binary,   427  

  conferencing,   H.323  vs.  SIP, 504  

  frame,   129  

  integrity,   592  

  loss,   in TCP, 357–358  

  rate,   73, 119  

  security,   591–592, 594  

  transfer operations,   391   

   Data Encryption Standard (DES),   592, 

594–601, 596 f , 649   

   data link escape (DLE),   128   

   Data Over Cable Service Interface 

Specification (DOCSIS),   90, 171   

   data plane   

       control plane  vs. ,   14–15  

  in IntServ,   556 f   
  operations,   15 f , 16–20, 31–32  

  protocols,   231   

   Data Transfer Protocol (DTP),   478   

   Datagram Congestion Control Protocol 

(DCCP),   406   

   datagrams.      See  packets   

   DC components.      See  direct current 

components   

   DCCP.      See  Datagram Congestion Control 

Protocol   

   DCF.      See  distribution coordination 

function   

   DCT.      See  discrete cosine transform   

lin76248_ndx_723-744.indd   726lin76248_ndx_723-744.indd   726 24/12/10   4:30 PM24/12/10   4:30 PM



 Index 727

   dead to establish,   145   

   DEC,   150–151   

   decoders,   643–644   

   decryption,   590   

       keys,   595  

  private key,   603 t    
   deep packet inspection (DPI),   18   

   defense methods,   637–639   

   deferHandler (),   180   

   deficit round robin (DRR),   574, 574 f , 
575 f    

   delay.      See  latency   

   Demilitarized Zone (DMZ),   620   

   demultiplexer (DEMUX),   93   

   DEMUX.      See  demultiplexer   

   denial of service (DoS) attacks,   393, 618, 

631–632   

       defenses against,   638–639  

  distributed,   632 f   
  SYN flooding and,   394   

   Depth First Search (DFS),   492   

   dequeue,   550, 573 f    
   DES.      See  Data Encryption Standard   

   design issues,   1   

   designated port (DP),   197   

   designated router (DR),   321   

   destination address (DA) field,   193   

   destination ID,   527   

   detection rules,   640   

   device controllers,   38   

   device drivers,   204–205   

       DMA within,   214  

  interrupt handling within,   214  

  Linux,   205–210  

  network,   in Linux, 211–213  

  standard interfaces for,   215   

   DFS.      See  Depth First Search   

   DHCP.      See  Dynamic Host Configuration 

Protocol   

   DHCP OFFER,   275 f    
   DHT.      See  distributed hash table   

   differential phase-shift keying (DPSK),  

 85, 90–91   

   Differentiated Services (DiffServ),   547, 

553, 556–562   

       architecture,   557 f   
  basic element tree,   557 f   
  failure of,   563  

  general model,   557–558  

  IntServ  vs. ,   562, 563 t   
  packet life in,   560–561   

   diffraction,   69   

   DiffServ.      See  Differentiated Services   

   DiffServ (DS) field,   558, 558 f    
   dig,   439, 440 f    

   digital audio broadcasting (DAB),   71   

   digital authentication,   592   

   digital baseband modulation.      See  line 

coding   

   digital modulation,   61–62, 85 f    
       multiplexing and,   84  

  waveforms,   86 f    
   Digital Signal 1 (DS1,   T1), 5   

   digital signal processing (DSP),   71   

   digital subscriber line (DSL),   171   

   digital versatile disc (DVD),   71   

   Dijkstra’s algorithm,   285–286, 286 f , 
287 f , 301   

   direct current (DC) components,   61   

   direct memory access (DMA)   

       buffers,   206  

  controllers,   215  

  CPU and,   209–210  

  within device drivers,   214  

  Linux device drivers and,   206–210  

  open source implementation,   207–210  

  in routers,   44   

   direct sequence CDMA (DS-CDMA),  

 103   

   direct sequence spread spectrum (DSSS),  

 96, 100–102, 101 f    
       IEEE 802.11 and,   172  

  transceiver,   102 f    
   discovery,   278   

   discrete cosine transform (DCT),   511   

   Distance Vector Multicast Routing 

Protocol (DVMRP),   317–319, 

321   

   distance vector routing,   30, 288–290   

       algorithm,   288 f , 291 f , 292 f   
  looping problem for,   290–293   

   distortion,   63   

   distributed hash table (DHT),   521, 526, 

529   

   distribution coordination function (DCF),  

 173–174   

       interleaved,   176–177  

  PCF and,   176 f    
   distribution system (DS),   173   

   diversity coding,   110   

   DIX Ethernet,   150–151   

   DLE.      See  data link escape   

   DL-MAP,   188–189   

   DMA.      See  direct memory access   

   DMZ.      See  Demilitarized Zone   

   DNS.      See  Domain Name System   

   DOCSIS.      See  Data Over Cable Service 

Interface Specification   

   Domain Name System (DNS),   252, 329, 

418   

       message,   436 f   
  protocol message format,   436–437  

  queries,   540–541  

  root servers,   434–436, 435 t    
   domains,   27, 27 f .      See also  autonomous 

system   

       locating,   429 f   
  names,   329, 428–430   

   DONE,   457   

   Doppler shift,   90   

   DoS attacks.      See  denial of service 

attacks   

   double-level hash structure,   568, 569 f    
   doubly linked list,   39   

   DP.      See  designated port   

   DPI.      See  deep packet inspection   

   DPSK.      See  differential phase-shift keying   

   DQDB,   153   

   DR.      See  designated router   

   drivers,   2, 37–38.      See also  device drivers   

       implementations,   32  

  PPP,   148–149  

  sockets to,   42, 42 f    
   DS.      See  distribution system   

   DS Code Point (DSCP),   558   

   DS field.      See  DiffServ field   

   DS1.      See  Digital Signal 1   

   DS3 (T3),   5   

   DS-CDMA.      See  direct sequence 

CDMA   

   DSCP.      See  DS Code Point   

   DSP.      See  digital signal processing   

   DSS.      See  Darwin Streaming Server   

   DSSS.      See  direct sequence spread 

spectrum   

   DTP.      See  Data Transfer Protocol   

   dual-stack,   266–267   

   DVD.      See  digital versatile disc   

   DVMRP.      See  Distance Vector Multicast 

Routing Protocol   

   dwell time,   102   

   dynamic analysis,   650   

   Dynamic Host Configuration Protocol 

(DHCP),   30, 224, 271–273   

       call graphs,   277  

  headers,   273 f   
  message types,   274 t   
  open source implementation,   

275–277  

  operation,   273–274  

  options,   274 f   
  packet format,   273 f   
  pitfalls,   330  

  state diagram,   272 f    
   dynamic mapping,   249–250   

lin76248_ndx_723-744.indd   727lin76248_ndx_723-744.indd   727 24/12/10   4:30 PM24/12/10   4:30 PM



728 Index

   dynamic pages,   470   

   Dynamic Ports,   420   

   E
EAP.      See  Extended Authentication 

Protocol   

   EBGP.      See  exterior BGP   

   echo request,   278, 279 f    
   e-commerce,   614   

   EDCA.      See  Enhanced Distributed 

Channel Action   

   EDGE.      See  Enhanced Data rates for 

GSM Evolution   

   eDonkey,   531   

   EF.      See  Expedited Forwarding   

   EFM.      See  Ethernet in the First Mile   

   EGP.      See  exterior gateway protocol   

   eight binary/ten binary (8B/10B) coding,  

 55, 80, 82–84, 82 f    
   elm,   442   

   e-mail,   440   

       addressing,   441  

  fields,   443–444  

  history of,   417  

  message body,   442  

  message delivering,   458  

  message headers,   442, 443 t , 
444 f   

  message preprocessing,   457  

  protocols,   447–453  

  system elements,   441, 441 f   
  web-based  vs.  desktop,   453   

   eMule,   531, 533   

   Encapsulation Security Payload (ESP),  

 592, 610–612   

       in IPSec,   612–614  

  main functions,   613 f   
  transport mode,   611, 611 f , 612 f   
  tunnel mode,   611   

   encoding,   H.323  vs.  SIP, 504   

   encryption,   590   

       asymmetric,   592  

  at data plane,   16–17  

  DES,   596 f   
  public key,   603 t   
  single-key,   592  

  symmetric,   592   

   End of Option List,   373   

   end-to-end,   22, 24, 341   

   Enhanced Data rates for GSM Evolution 

(EDGE),   112   

   Enhanced Distributed Channel Action 

(EDCA),   563   

   enqueue,   550, 573 f    
   envelope,   442   

   EPON.      See  Ethernet Passive Optical 

Network   

   equivalent capacity,   565   

   Ericsson,   182   

   Erlang,   Agner Krarup, 12   

   error control,   17, 18–19   

       in data-plane operations,   30–31  

  end-to-end,   18–19  

  Ethernet,   153–155  

  in framing,   130–132  

  in HDLC,   143–144  

  hop-by-hop,   18–19  

  in link layer,   127  

  per-segment,   347, 356  

  PPP,   146–147  

  transport layer,   339, 342–343  

  UDP,   348–349   

   error detection,   18   

       block coding and,   79–80  

  frame format and,   129   

   error reporting   

       in control plane,   277–279  

  ICMP and,   30  

  in IP layer,   227   

   errors   

       burst,   71  

  correction,   18, 71, 133  

  line coding and,   62  

  loss and,   14  

  recovery,   28–29, 29   

   ertPS.      See  Extended Real-Time Polling 

Service   

   ESP.      See  Encapsulation Security Payload   

   establish to authenticate,   145   

   ESTABLISHED state,   353   

   est_timer (),   567 f    
   EtherChannel,   204   

   Ethernet,   3, 125, 150.      See also  Gigabit 

Ethernet   

       1000BASE-X,   76  

  competitors,   153  

  evolution of,   150–153  

  family,   152 t   
  flow control,   160–161  

  frame format,   154 f   
  framing,   128  

  full-duplex,   159–160  

  MAC,   153–166, 161 f , f161–166  

  milestones,   151 f   
  MTU limit,   243  

  nomenclature,   153  

  performance,   216–217  

  priority in,   203   

   Ethernet in the First Mile (EFM),   167, 

169–170, 170 t    

   Ethernet Passive Optical Network 

(EPON),   169   

   ethreq,   402   

   Ettus,   Matt, 65   

   European Laboratory for Nuclear 

Research (CERN),   417, 459   

   Evernote,   419   

   EWMA.      See  exponentially weighted 

moving-average   

   Expedited Forwarding (EF),   559–560, 

560 t    
   exponentially weighted moving-average 

(EWMA),   375, 565, 566–567   

   Extended Authentication Protocol (EAP),  

 627   

   Extended Real-Time Polling Service 

(ertPS),   189   

   eXtensible Markup Language (XML),  

 459, 463–464, 470   

   eXtensible Style Language (XSL),  

 463–464   

   exterior BGP (EBGP),   309   

   exterior gateway protocol (EGP),   293   

   F
Facebook,   523   

   FACK.      See  Forward ACKnowledgment   

   fading,   62   

       multipath,   96, 108   

   false carrier,   160   

   false negatives,   594, 638   

   false positives,   594   

   Fanning,   Shawn, 524   

   fast connect,   501   

   Fast Fourier Transform (FFT),   96, 106, 

107 f    
   fast retransmit,   366, 368   

   FastTCP,   390   

   FastTrack,   525   

   FCS.      See  frame check sequence   

   FDD.      See  frequency division duplex   

   FDDI,   138, 153   

   FDM.      See  frequency-division 

multiplexing   

   FDMA.      See  frequency-division multiple 

access   

   FEC.      See  forward error correction   

   FFT.      See  Fast Fourier Transform   

   FH-CDMA.      See  frequency hopping 

CDMA   

   FHSS.      See  frequency hopping spread 

spectrum   

   FIB.      See  Forwarding Information 

dataBase   

   fiber-to-the-block (FTTB),   5, 171   

lin76248_ndx_723-744.indd   728lin76248_ndx_723-744.indd   728 24/12/10   4:30 PM24/12/10   4:30 PM



 Index 729

   fiber-to-the-home (FTTH),   171   

   FIFO.      See  first-in-first-out   

   file transfer protocol (FTP),   253, 

475–477   

       active mode  vs.  passive mode, 

 478–479, 479 f   
  ALG,   258 f   
  commands,   480 t   
  history of,   417  

  operation model,   477 f   
  out-of-band signaling and,   478  

  ports,   420  

  protocol messages,   479–481  

  replies,   480 t   
  restarted transfer with checkpoint,   481  

  session,   481 f   
  user commands,   476 t   
  virtual server,   483–484, 483 f    

   FIN bit,   372   

   FIN-WAIT-1 state,   353   

   FIN-WAIT-2 state,   353   

   Firefox,   459   

   Firewall Toolkit (FWTK),   591, 593, 

624–626   

   firewalls,   590, 618   

       application gateway-based,   593  

  application layer,   623–624  

  network/transport layer,   619–620  

  packet filter-based,   593  

  screen host,   619 f   
  screen subnet,   620 f   
  statefulness of,   649–650   

   first-in-first-out (FIFO),   546, 581–582   

   first-mile networking,   171   

   5-4-3 rule,   217   

   flags,   243, 245–246   

   flash crowd,   530   

   Flash Media Server,   514   

   flooding,   226, 525, 525 f    
   flow control,   19, 137–138   

       Ethernet,   160–161  

  in HDLC,   144  

  in link layer,   127  

  in PPP,   147  

  sliding window,   358–361, 362  

  TCP,   358–361  

  in transport layer,   343   

   flow identification,   556, 568–569, 585   

   flow label,   259–260   

   FM.      See  frequency modulation   

   forking,   420–421, 425, 508–509   

   Forward ACKnowledgment (FACK),   363, 

385, 387, 389 f    
   forward chain,   43   

   forward error correction (FEC),   71, 133   

   forwarding   

       classes,   562  

  at data plane,   16–17  

  database,   194 f   
  IP,   34, 223, 225, 239 f   
  packet,   235–237  

  pitfalls,   329  

  routing  vs. ,   15  

  tables,   15, 17  

  wire-speed,   23   

   Forwarding Information dataBase (FIB),  

 239, 240 f    
   four binary/five binary (4B/5B) coding,  

 55, 80–81, 80 t , 81 f    
   4G standards,   116   

   Fourier theory,   58   

   FQDN.      See  full qualified domain name   

   fragmentation   

       IP,   242, 244–247, 245 f , 248 f   
  IPv6,   262–263, 263 f   
  offset,   243, 245–246, 263  

  packets,   243–246   

   frame check sequence (FCS),   131   

       Ethernet,   155  

  HDLC,   144   

   Frame Relay,   23–24   

   frames,   126.      See also  maximum frame 

rate   

       CSMA/CD,   156 f , 157 f   
  Ethernet,   154 f   
  format,   129  

  LCP,   146 t   
  in MAC sublayer,   155 f   
  PAUSE,   160–161  

  reception,   network device driver, 212 f   
  tagged,   203 f   
  transmission,   network device driver, 

211 f   
  types,   in HDLC, 144–145   

   framing,   126–127   

       delimiting,   127–128  

  error control,   130–132  

  Ethernet,   153–155  

  in HDLC,   143–144, 143 f   
  PPP,   146–147  

  reliability,   132   

   free riding,   529   

   FreeBSD,   437   

   frequency division duplex (FDD),   188   

   frequency hopping,   in Bluetooth, 184   

   frequency hopping CDMA (FH-CDMA),  

 103   

   frequency hopping spread spectrum 

(FHSS),   96, 102–103, 103 f , 172   

   frequency modulation (FM),   69, 95   

   frequency words,   102   

   frequency-division multiple access 

(FDMA),   96   

   frequency-division multiplexing (FDM),  

 55, 60, 84, 95–96, 95 f , 106   

   frequency-shift keying (FSK),   55, 84–85, 

87–88   

   From: field,   443   

   FSK.      See  frequency-shift keying   

   FTP.      See  file transfer protocol   

   ftpaccess,   484   

   FTTB.      See  fiber-to-the-block   

   FTTH.      See  fiber-to-the-home   

   full qualified domain name (FQDN),   455   

   FWTK.      See  Firewall Toolkit   

   G
G.72x,   71   

   G.711,   71   

   Gallager,   R. G., 576   

   garbage-collection timer,   295   

   GARP.      See  Generic Attribute Registration 

Protocol   

   GARP Multicast Registration Protocol 

(GMRP),   192   

   gatekeepers,   498–499   

   gateways,   41–44, 43 f , 498   

   general packet radio service (GPRS),   4   

   generalized processor sharing (GPS),   

576   

   Generic Attribute Registration Protocol 

(GARP),   192   

   generic RED (GRED),   584   

   generic top-level domains (gTLDs),   434   

   gen_estimator,   566   

   GET request,   464   

   GetBulkRequest,   493   

   GetNextRequest,   492   

   GIF.      See  Graphics Interchange File   

   Gigabit Ethernet,   167   

       collisions in,   159  

  specifications,   167 f    
    Gigabit Ethernet  (Seifert),   152   

   global information,   283–284   

   global positioning system (GPS),   69   

   Global Unicast Address,   264   

   Gmail,   467   

   GMRP.      See  GARP Multicast Registration 

Protocol   

   GNU General Public License,   297   

   GNU Radio,   64–65   

   Gnutella,   525, 533   

   Google Applications,   467–468, 467 t    
   Google Apps,   426   

   Google Chrome,   459, 468   

lin76248_ndx_723-744.indd   729lin76248_ndx_723-744.indd   729 24/12/10   4:30 PM24/12/10   4:30 PM



730 Index

   Google Docs,   467   

   Google Earth,   468   

   Google Notebook,   467–468   

   Google Wave,   468   

   Gopher,   417   

   GPRS.      See  general packet radio service   

   GPS.      See  generalized processor sharing; 

global positioning system   

   Graphics Interchange File (GIF),   512   

   GRED.      See  generic RED   

   ground propagation,   68–69   

   group membership,   313, 314   

   Group Membership Interval,   316   

   group shared tree,   317   

   GSM,   116   

   gTLDs.      See  generic top-level domains   

   H
H.245,   500   

   H.261,   408   

   H.263,   500   

   H.323,   497–501   

       environment,   499 f   
  network elements,   498  

  protocol stack,   499, 499 f   
  setup procedure,   500–501, 501 f   
  SIP  vs. ,   504   

   Hamming codes,   71–72   

   handshake protocols   

       TCP,   352 f   
  three-way,   351–352   

   hard handoffs,   188   

   hard-decision algorithms,   81   

   hardware specifications,   215   

   HCCA.      See  Hybrid coordination function 

Controlled Channel Access   

   HCI.      See  host controller interface   

   HDLC.      See  High-level Data Link Control   

   headers   

       checksum,   243  

  DHCP,   273 f   
  DNS message format,   436  

  extension,   in IPv6, 261–262, 261 f , 
262 t   

  fragment,   262, 262 f   
  frame,   129  

  IPv4 packet,   241  

  IPv6,   260–261, 260 f   
  LSA format,   307 f   
  MIME,   445 t   
  operation,   492  

  OSPF format,   305 f   
  routing,   261  

  RTP,   407, 408 f   
  TCP,   261, 371–374, 372 f   

  TCP/IP,   350 f   
  UDP format,   347–348   

   head-of-line (HOL) blocking,   405   

   Hellman,   Diffie, 612   

   HELO,   447   

   Hertz,   73   

   hidden terminal problem,   175, 175 f    
   hierarchical overall,   526, 526 f    
   High-level Data Link Control (HDLC),  

 74–75, 142–145, 143 f    
   high-speed downlink packet access 

(HSDPA),   112   

   HighSpeed TCP (HSTCP),   390   

   HMAC-MD5,   259   

   HOL blocking.      See  head-of-line blocking   

   hold down timer,   292   

   HomePlug,   166   

   hooks,   621, 622 f    
   Hop Limit,   261   

   hop-by-hop argument,   24   

   hopping sequence,   183   

   host configuration,   30   

   host controller interface (HCI),   185   

   host-to-host transmission,   223   

   HSDPA.      See  high-speed downlink packet 

access   

   HSTCP.      See  HighSpeed TCP   

   HTML.      See  HyperText Markup Language   

   HTTP.      See  HyperText Transfer Protocol   

   HTTP Secure (HTTPS),   616   

   hubs,   7, 192–193   

   human-human communications,   418   

   human-machine communications,   418   

   Hybrid coordination function Controlled 

Channel Access (HCCA),  

 563–564   

   HyperText Markup Language (HTML),  

 417, 459, 463–464   

   HyperText Transfer Protocol (HTTP),  

 459, 464–466   

       evolution of,   460  

  history of,   417  

  port 80 and,   466  

  requests,   46, 464 t , 474 f   
  response status codes,   465 t   
  sessions,   465 f , 466  

  streaming,   514   

   I
IaaS.      See  infrastructure as a service   

   IANA.      See  Internet Assigned Numbers 

Authority   

   IBGP.      See  interior BGP   

   IBM,   182   

   IBSS.      See  independent BSS   

   IC.      See  integrated circuits   

   ic_bootp_recv (),   277   

   ICI.      See  inter-carrier interference   

   ICMP.      See  Internet Control Message 

Protocol   

   ICMPv6,   279, 280 t , 282   

   ICSI.      See  International Computer Science 

Institute   

   IDEA.      See  International Data Encryption 

Algorithm   

   identifiers,   242   

       IP fragmentation and,   245–246  

  transport layer,   249   

   IDS.      See  intrusion detection systems   

   IE.      See  Internet Explorer   

   IEEE 802,   130, 130 f    
   IEEE 802.1D,   197   

   IEEE 802.1Q,   202   

   IEEE 802.3,   217.      See also  Ethernet   

   IEEE 802.3ae Task Force,   168–169, 168 t    
   IEEE 802.3x Task Force,   160   

   IEEE 802.11,   172–177   

       Bluetooth  vs. ,   187, 187 t   
  CCK and,   99  

  layering,   174 t   
  MAC,   172–174  

  MAC simulation,   177–181, 178 f   
  modulation techniques,   97 t   
  RTS/CTS mechanism,   138  

  Working Group,   172   

   IEEE 802.11a,   112–115   

       convolutional encoder in,   115 f   
  OFDM and,   172  

  transmitter,   112 f    
   IEEE 802.11b,   172   

   IEEE 802.11e,   172–173, 563–564   

   IEEE 802.11g,   172   

   IEEE 802.11i,   173, 604   

   IEEE 802.11k,   173   

   IEEE 802.11n,   112, 172   

   IEEE 802.11r,   173   

   IEEE 802.16,   186, 563–564.      See also  

Worldwide Interoperability for 

Microwave Access   

   IETF.      See  Internet Engineering Task 

Force   

   IF waveforms.      See  intermediate 

frequency waveforms   

   IFFT.      See  inverse fast Fourier transform   

   IFG.      See  inter-frame gap   

   I-frame,   145   

   IFS.      See  inter-frame space   

   IGMP.      See  Internet Group Management 

Protocol   

   IGP.      See  interior gateway protocol   

lin76248_ndx_723-744.indd   730lin76248_ndx_723-744.indd   730 24/12/10   4:30 PM24/12/10   4:30 PM



 Index 731

   IMAP.      See  Internet Message Access 

Protocol   

   IMAP4.      See  Internet Message Access 

Protocol version 4   

   independent BSS (IBSS),   173   

   index number,   5   

   industrial,   scientific, and medical (ISM) 

bands, 69–70   

   (x) inetd,   421   

   information coding,   54, 70   

   information gathering,   628–629   

   infrared,   3, 69–70   

   infrastructure,   173, 485   

   infrastructure as a service (IaaS),   426   

   ingress stage,   561, 561 f    
   init_agent (),   494   

   initial sequence number (ISN),   351   

       in TCP header,   371   

   initialization vector (IV),   604   

   init_process (),   471–472   

   inode,   396   

   input port,   to output port, 44–45, 45 f    
   inquiry procedure,   183–184, 184 f    
   In-Reply-To: field,   444   

   instant messaging,   440   

   integrated circuits (IC),   71   

   Integrated Service Digital Network 

(ISDN),   5   

   Integrated Services (IntServ),   546–547, 

553–556   

       data plane in,   556 f   
  DiffServ  vs. ,   562, 563 t   
  failure of,   563  

  packet classification in,   550  

  request handling by,   555  

  request reinforcement by,   555–556  

  service types,   554, 554 t    
   Intel,   150–151, 182   

   inter-AS routing,   30   

   inter-carrier interference (ICI),   108   

   interface   

       openness of,   33  

  standardization,   for drivers, 215  

  virtual,   149   

   interference,   63   

       DSSS and,   101–102  

  in wireless links,   171   

   inter-frame gap (IFG),   156   

   inter-frame space (IFS),   174   

   interior BGP (IBGP),   309   

   interior gateway protocol (IGP),   293, 295   

   interior stage,   561–562, 562 f    
   intermediary interconnection device,   2–3   

   intermediate frequency (IF) waveforms,  

 64   

   International Computer Science Institute 

(ICSI),   364   

   International Data Encryption Algorithm 

(IDEA),   592, 595   

   International Telecommunication Union 

(ITU-T),   497   

   Internet   

       architecture,   21–31  

  connectionless design of,   5  

  flavors of,   31  

  message standards,   442–447  

  packet life in,   45–46  

  resource sharing,   27–29   

   Internet Assigned Numbers Authority 

(IANA),   265, 420, 489   

   Internet Control Message Protocol 

(ICMP),   30, 224, 230   

       ALGs and,   253  

  call graph,   282 f   
  DoS attacks and,   631  

  echo request,   279 f   
  latency in,   231 f   
  open source implementation,   280–282  

  over IP,   277 f   
  packet format,   278 f   
  protocol,   277–279  

  source node and,   277  

  types and codes,   278 t    
   Internet Engineering Task Force (IETF),  

 259   

       DHCP and,   271–272  

  NSIS and,   549  

  SIP and,   501   

   Internet Explorer (IE),   459   

   Internet Group Management Protocol 

(IGMP),   314–315, 315 f    
   Internet Message Access Protocol 

(IMAP),   440, 442   

   Internet Message Access Protocol version 

4 (IMAP4),   450–453   

       command summary,   451 t   
  responses,   452–453  

  session,   452 f    
   Internet Message Format,   440   

   Internet Protocol (IP),   22.      See also  IP 

layer   

       best-effort,   28  

  classful,   329–330  

  forwarding,   34, 223, 225, 239 f   
  fragmentation,   242, 244–247, 245 f , 

248 f   
  ICMP over,   277 f   
  multicasting,   326  

  packet switching and,   28  

  reassembly,   248 f   

  stack,   25, 25 f   
  subnets,   233–234, 234 f   
  tables,   254–256   

   Internet Protocol Control Protocol 

(IPCP),   147   

   Internet Protocol version 4 (IPv4),   223, 

232   

       addressing,   232–233, 233 f   
  checksum implementation,   244  

  fragmentation implementation,  

 246–247  

  IP subnetting in,   233–234  

  packet format,   241–243, 242 f   
  packet forwarding implementation,  

 238–241  

  transition to IPv6,   266–367   

   Internet Protocol version 6 (IPv6),  

 259–267   

       address format,   for multicasting, 266 f   
  address notation,   263  

  autoconfiguration,   266, 330  

  extension headers,   261–262, 261 f , 262 t   
  fragmentation,   262–263, 263 f   
  global unicast address format,   265 f   
  header format,   260–261, 260 f   
  NAT  vs. ,   259  

  prefix assignments,   264 t   
  transition from IPv4,   266–367   

   Internet Radio,   404   

   Internet Security Protocol (IPSec),   592, 

609–612   

       open source implementation,   612–614  

  on VPNs,   618   

   Internet service provider (ISP),   5   

   Internet Software Consortium (ISC),   437   

   internetworking,   224, 225 f    
   interoperability,   10, 20–21, 33, 485   

   interrupt   

       hardware,   37  

  at socket,   397–398   

   interrupt handling,   205–206   

       within device drivers,   214  

  open source implementation,   207–210   

   inter-symbol interference (ISI),   107   

   intra-AS routing,   30   

   Intra-Site Automatic Tunneling 

Addressing Protocol (ISATAP),  

 267   

   intrusion detection systems (IDS),   615, 

638–639   

       bottlenecks in,   639–640  

  performance and,   647–648   

   intrusion prevention systems (IPS),   639   

   IntServ.      See  Integrated Services   

   IntServ/DiffServ,   31   

lin76248_ndx_723-744.indd   731lin76248_ndx_723-744.indd   731 24/12/10   4:30 PM24/12/10   4:30 PM



732 Index

   inverse fast Fourier transform (IFFT),  

 106, 106 f    
   INVITE request,   502   

   I/O devices,   204   

   I/O ports   

       open source implementation probing,  

 207–210  

  probing,   205   

   I/O software,   204 f    
   ioctl (),   401–402   

   IP.      See  Internet Protocol   

   IP addresses   

       CIDR and,   235  

  depletion,   248  

  destination,   243  

  IPCP and,   147  

  IPv4 and,   232–233  

  notation,   232 f   
  pitfalls,   329  

  pooling,   272  

  prefix assignments,   in IPv6, 264 t   
  private,   248  

  source,   243  

  static  vs.  dynamic,   249–250   

   IP layer,   24, 223–224   

       connectivity issues,   224–225  

  control-plane protocols and,   267–268  

  packet flows,   228  

  packet flows,   in call graphs, 229–230  

  protocols,   228, 228 f   
  resource sharing and,   227–228  

  scalability and,   225–227   

   IP masquerading,   44, 253   

   IP Next Generation (IPng),   259   

   IP Telephony.      See  Voice over IP   

   ip_auto_config (),   276   

   IPCP.      See  Internet Protocol Control 

Protocol   

   ip_forward (),   281   

   iPhone,   419   

   IPMulticastListen,   316   

   IPng.      See  IP Next Generation   

   IPPROTO_TCP,   392   

   IPPROTO_UDP,   392   

   ip_queue_xmit (),   247   

   IPS.      See  intrusion prevention systems   

   IPSec.      See  Internet Security Protocol   

   IPsec VPN,   591   

   iptables,   253, 469, 621–623   

   IPv4.      See  Internet Protocol version 4   

   IPv6.      See  Internet Protocol version 6   

   irq,   208–209   

   ISAKMP/Oakley,   612   

   ISATAP.      See  Intra-Site Automatic 

Tunneling Addressing Protocol   

   ISC.      See  Internet Software Consortium   

   ISDN.      See  Integrated Service Digital 

Network   

   ISI.      See  inter-symbol interference   

   ISM bands.      See  industrial, scientific, and 

medical bands   

   ISN.      See  initial sequence number   

   ISP.      See  Internet service provider   

   ITU-T.      See  International 

Telecommunication Union   

   IV.      See  initialization vector   

   J
Jacobson,   Van, 363, 375–376   

   Jenkins,   Bob, 239   

   jitter,   575   

   Joint Photographic Experts Group 

(JPEG),   71, 408, 512   

   Joint Tactical Radio System (JTRS),  

 64–65   

   JPEG.      See  Joint Photographic Experts 

Group   

   JTRS.      See  Joint Tactical Radio System   

   Juxtapose (JXTA),   418   

   JXTA.      See  Juxtapose   

   K
Kademlia,   533   

   Kalpana Corporation,   193   

   Karn,   Phil, 375   

   Karn’s algorithm,   375   

   Kazaa,   525   

   KDC.      See  key distribution center   

   keepalive,   377–378   

   Kerberos protocol,   595   

   kernels,   2   

       components,   36 f   
  data structures,   396–397, 397 f   
  implementations,   32  

  Linux,   36  

  space,   33–34   

   key distribution center (KDC),   595   

   keys   

       decryption,   595  

  management,   612  

  private,   601, 603 t   
  public,   601, 603 t   
  selection,   by RSA, 602 f    

   kfree_skb (),   40   

   Kruskal algorithm,   285   

   L
L2CAP.      See  Logical Link Control and 

Adaptation Layer   

   L2F.      See  Layer-2 Forwarding   

   L2TP.      See  Layer 2 Tunneling Protocol   

   L2TP access concentrator (LAC),   609   

   L2TP network server (LNS),   609   

   L7-filter,   648   

   LAC.      See  L2TP access concentrator   

   LACP.      See  link aggregation control 

protocol   

   LANs.      See  local area networks   

   lasers,   68   

   Last Member Query Interval,   316   

   last-mail wireless,   47   

   latency,   1, 11, 12–14   

       consistency,   14  

  in HTTP request handling,   474 f   
  in ICMP,   231 f   
  within IP layer,   230–231  

  of network functions,   258 f   
  reducing,   540  

  streaming and,   406  

  TCP,   357–358, 398 f   
  Web server,   473–475   

   Layer 2 Tunneling Protocol (L2TP),   594, 

609, 618   

   Layer 3.      See  IP layer   

   Layer-2,   191, 201   

   Layer-2 Forwarding (L2F),   609   

   layers,   39   

   LCP.      See  Link Control Protocol   

   leased line links,   4–5   

   least significant bit (LSB),   130   

   least spanning tree,   286–287   

   least-cost path,   284–285, 287, 317–318, 

318 f    
   LED.      See  light emitting diode   

   libpcap,   403   

   library functions,   in RTP/RTCP, 340   

   light emitting diode (LED),   68   

   Limewire,   533   

   line coding,   54, 61–62, 70, 72 f    
       baseband transmission and,   72–81  

  categories,   74 t   
  schemes,   73  

  waveforms,   74 f    
   line-of-sight propagation,   68–69   

   link aggregation control protocol (LACP),  

 204   

   Link Control Protocol (LCP),   142   

       frame types,   146 t   
  PPP negotiation,   147   

   link layer,   24   

       packet flows,   139–142, 140 f   
  protocol,   33  

  tunneling,   609  

  wireless links and,   171–172   

   Link Local Unicast Address,   264   

lin76248_ndx_723-744.indd   732lin76248_ndx_723-744.indd   732 24/12/10   4:30 PM24/12/10   4:30 PM



 Index 733

   links.      See also  wired links; wireless links   

       adaptation,   62, 111  

  aggregation,   204  

  broadcast,   3  

  first-mile,   5  

  full-duplex,   3  

  half-duplex,   3  

  last-mile,   4–5  

  latency,   12–14  

  leased lines,   4–5  

  local,   4  

  point-to-point,   3  

  protocols,   126 t , 342 t   
  simplex,   3  

  standards,   4  

  states,   30  

  technologies,   4 t    
   link-state advertisement (LSA),   305   

       header format,   307 f   
  types,   306 t    

   Linux   

       BIND and,   437  

  congestion avoidance,   371 f   
  device drivers,   205–210  

  implementations,   32  

  I/O ports,   207–208  

  IP fragmentation and reassembly,   248 f   
  kernel,   36  

  kernel data structures,   396–397, 397 f   
  network device drivers in,   211–213  

  programming interfaces,   395 f   
  protocol stack,   395 f   
  slow start in,   371 f   
  socket read/write in,   395 f   
  software architecture,   33–36, 35 f   
  TC modules,   547  

  traffic control elements in,   551–553, 

552 f    
   Linux Socket Filter (LSF),   403–404   

   listen (),   392–393   

   LISTEN state,   353   

   Little,   John, 13   

   little-endian,   130, 217–218   

   Little’s result,   13, 13 f    
   LLC.      See  Logical Link Control   

   LNS.      See  L2TP network server   

   load balancing   

       BT,   534  

  OSPF and,   301  

  zones and,   430   

   local area networks (LANs),   3   

       arbitration over,   125  

  Ethernet and,   152  

  scalability of,   7   

   local information,   283–284   

   local scanning,   628   

   Logical Link Control (LLC),   153   

   Logical Link Control and Adaptation 

Layer (L2CAP),   185   

   logout state,   451   

   longest prefix matching problem,   237   

   longest queue tail drop (LQTD),   582   

   long-term evolution (LTE),   116   

       WiMAX  vs. ,   190   

   lookup time,   241   

   loops,   196, 197 f    
       distance vector routing and,   290–293  

  packet,   283   

   loss,   1, 11, 14   

   LOST-ACK state,   353   

   LQTD.      See  longest queue tail drop   

   LSA.      See  link-state advertisement   

   LSB.      See  least significant bit   

   LSF.      See  Linux Socket Filter   

   LTE.      See  long-term evolution   

   LTE-advanced,   116   

   M
m Binary,   n Levels (mBnL), 77–78   

   MAC.      See  medium access control   

   MAC mechanism.      See  message 

authentication code mechanism   

   machine-machine communications,   418   

   Mail Delivery Agent (MDA),   442   

   Mail Exchanger (MX),   432, 441   

   Mail Retrieval Agent (MRA),   442   

   Mail Transfer Agent (MTA),   442, 454   

   Mail User Agent (MUA),   442   

   make_child (),   472, 473 f    
   malicious code,   632–634   

   malware,   650   

   managed device,   487   

   managed objects,   486   

   Management Information Base (MIB),  

 485, 487–491   

       bulk transfer of objects,   493  

  trees,   492–493   

   management plane,   16   

   management protocol,   487   

   management station,   486   

   Manchester coding,   11 f , 54–55   

       differential,   77  

  polar,   76   

   MANs.      See  metropolitan area networks   

   M-ary phase-shift keying (MPSK),  

 100–101, 101 f    
   maximum burst length,   570   

   maximum frame rate,   159   

   Maximum Receive Unit (MRU),   147   

   Maximum Segment Size (MSS),   373   

   maximum transfer unit (MTU),   

242–243   

   MBGP.      See  muliprotocol BGP   

   mBnL.      See  m Binary, n Levels   

   MBone,   318   

   MCM.      See  multiple-carrier modulation   

   MCU.      See  multipoint control unit   

   MD.      See  message digest   

   MD5.      See  Message Digest algorithm 5   

   MDA.      See  Mail Delivery Agent   

   mean-squared-error (MMSE) filtering,  

 110–111   

   media,   54, 65–70   

   Media Player,   514   

   medium access control (MAC),   38, 138   

       address,   130  

  ARP and,   268  

  bridging,   139, 191  

  contention-based  vs.  contention-free,  

 138  

  Ethernet,   153–166, 161 f   
  frame,   in sublayer, 155 f   
  full-duplex,   159–160  

  IEEE 802.11,   172–174  

  IEEE 802.11 simulation,   177–181, 

178 f   
  in link layer,   127  

  pitfalls,   329  

  in PPP,   147  

  reception flow,   155–158  

  sublayer,   93  

  transmission,   155–158  

  WiMAX,   186, 190–191   

   memory access,   5   

   memory copy,   at socket, 397–398   

   memory pointer,   39   

   mesh networks,   173   

   message authentication,   604–606   

   message authentication code (MAC) 

mechanism,   605   

   message digest (MD),   534, 606   

   Message Digest algorithm 5 (MD5),   591, 

594   

       functional blocks,   606 f   
  open source implementation,   606–608   

   Message-ID: field,   444   

   Metcalfe,   Bob, 150, 216   

   metropolitan area networks (MANs),   7, 

152   

   Metz,   C., 405   

   MIB.      See  Management Information Base   

   MIB-II,   485, 488, 488 f    
       object groups,   489  

  TCP connection table,   489–491, 490 f    
   Microsoft,   215, 426, 514   

lin76248_ndx_723-744.indd   733lin76248_ndx_723-744.indd   733 24/12/10   4:30 PM24/12/10   4:30 PM



734 Index

   Microsoft Notification Protocol (MSNP),  

 466   

   Microsoft Office,   467   

   Microsoft Outlook,   453   

   microwave,   3–4, 69–70   

   MIME.      See  Multipurpose Internet Mail 

Extensions   

   MIME-Version: field,   445   

   MIMO systems.      See  multiple-inputs, 

multiple-outputs systems   

   minimum shift keying (MSK),   88   

   Mitola,   J., 63–64   

   MLT-3.      See  multilevel transmission 

3 levels   

   MMSE filtering.      See  mean-squared-error 

filtering   

   MMSE-SIC module,   110–111   

   mobile applications,   419, 419 t    
   mobility,   70   

       service continuity and,   404–405  

  wireless links and,   172   

   modems   

       cable,   3, 171  

  codecs  vs. ,   48   

   modulation techniques,   97 t    
   monitoring,   628, 638   

   Moore’s Law,   168   

   MOSPF.      See  multicast OSPF   

   most significant bit (MSB),   130   

   Motion Picture Experts Group (MPEG),  

 71, 408, 512   

   Mozilla,   453   

   MPEG.      See  Motion Picture Experts 

Group   

   MPL.      See  multiple-packet-loss   

   MPLS.      See  Multi-Protocol Label 

Switching   

   MPM.      See  Multi-Processing Module   

   MPSK.      See  M-ary phase-shift keying   

   MRA.      See  Mail Retrieval Agent   

   MRIB.      See  Multicast Routing 

Information Base   

   mrouted,   326–328, 327 f    
   MRU.      See  Maximum Receive Unit   

   MSB.      See  most significant bit   

   MSDP.      See  Multicast Source Discovery 

Protocol   

   MSK.      See  minimum shift keying   

   MSN,   498   

   MSNP.      See  Microsoft Notification 

Protocol   

   MSS.      See  Maximum Segment Size   

   MTA.      See  Mail Transfer Agent   

   MTU.      See  maximum transfer unit   

   MUA.      See  Mail User Agent   

   muliprotocol BGP (MBGP),   325   

   multicast OSPF (MOSPF),   301, 317   

   multicast routing,   313   

       control plane and,   30  

  open source implementation,   

326–328  

  protocols,   316–317   

   Multicast Routing Information Base 

(MRIB),   321–322   

   Multicast Source Discovery Protocol 

(MSDP),   325   

   multicasting   

       groups,   313–314  

  inter-domain,   315, 325  

  IP  vs.  application,   326  

  IPv6 addresses,   266 f   
  pruning,   192  

  stateless routing and,   23   

   multi-homing,   405   

   multilevel coding,   77–78   

   multilevel transmission 3 levels (MLT-3),  

 55, 78–79   

   multipath distortion,   in wireless links, 

171–172   

   multiple-carrier modulation (MCM),   106   

   multiple-inputs,   multiple-outputs 

(MIMO) systems, 55, 96, 

109–112   

   multiple-packet-loss (MPL),   363, 370   

       recovery,   385–390  

  TCP Reno and,   383–385, 384 f    
   multiplexer (MUX),   93   

   multiplexing,   55, 60, 92–96, 94 f    
       channel access methods,   94 t   
  digital modulation and,   84  

  spatial,   111   

   multipoint control unit (MCU),   498   

   Multi-Processing Module (MPM),   472   

   Multi-Protocol Label Switching (MPLS),  

 1, 22, 169   

       adoption of,   31  

  soft-state switching and,   23  

  success of,   563  

  switching and,   23–24   

   Multipurpose Internet Mail Extensions 

(MIME),   440, 442, 445–446   

       content type set,   446 t   
  example,   447 f   
  header fields,   445 t   
  IMAP4 and,   451   

   multisegment networks,   217   

   multi-streaming,   405   

   multithreading,   297   

   multi-user MIMO (MU-MIMO),  

 110–111, 111 f    

   mutt,   442   

   MUX.      See  multiplexer   

   MX.      See  Mail Exchanger   

   N
Nagle,   John, 380   

   Nagle’s algorithm,   380, 380 f    
   name resolution,   433–437, 433 f    
   Name Server (NS),   432   

   name servers,   428–430, 430 f    
   named,   439 f    
   NAPI.      See  New API   

   Napster,   524   

   NAPT.      See  network address port 

translation   

   narrowband spectrum,   98 f , 119–120   

   NAS.      See  network access server   

   NAT.      See  network address translation   

   National Chiao Tung University,   

27, 27 f    
   National Institute of Standards and 

Technology (NIST),   426   

   National Television System Committee 

(NTSC),   511   

   NCP.      See  Network Control Protocol   

   NDIS.      See  Network Driver Interface 

Specification   

   net_device,   211–212   

   Netfilter,   40, 593, 621–623, 622 f    
   netif_rx (),   141   

   netlink,   298   

   netmask,   26   

   NET_RX_ACTION,   141   

   net_rx_action (),   229   

   Net-SNMP,   418, 485, 493–496   

       commands,   494 t   
  processing flow,   495 f   
  session,   496 f    

   netstat,   485   

   NET_TX_SOFTIRQ,   141–142   

   network access server (NAS),   609   

   network address port translation (NAPT),  

 248–249, 249 f    
   network address translation (NAT),  

 43–44, 223, 228, 248   

       basic,   248–249, 249 f   
  call graph,   257 f   
  CPU time,   258–259  

  full cone,   250–251, 250 f   
  IPv6  vs. ,   259  

  open source implementation,   253–258, 

256 f   
  packet flows,   257 f   
  port restricted cone,   251, 251 f   
  restricted cone,   251, 251 f   

lin76248_ndx_723-744.indd   734lin76248_ndx_723-744.indd   734 24/12/10   4:30 PM24/12/10   4:30 PM



 Index 735

  static mapping  vs.  dynamic mapping,  

 249–250  

  symmetric,   251, 252 f   
  translation table,   249  

  traversal,   530  

  types,   250–252   

   network computing,   426   

   Network Control Protocol (NCP),   142, 

147   

   Network Driver Interface Specification 

(NDIS),   215   

   Network File System (NFS),   425   

   Network Information Center,   428   

   network interface card (NIC),   40, 

152   

   network layer.      See  IP layer   

   Network Layer Reachability Information 

(NLRI),   310   

   Network News Transfer Protocol 

(NNTP),   417   

   network pipes,   381 f    
   network to terminate,   146   

   netx_tx_action (),   141–142   

   New API (NAPI),   215   

   Next Header,   260–261   

   Next Steps in Signaling (NSIS),   549   

   nf_nat_standalone_init (),   256   

   NFS.      See  Network File System   

   nibble transmission,   164–165, 164 f    
   NIC.      See  network interface card   

   Nimda,   633   

   NIST.      See  National Institute of Standards 

and Technology   

   NLRI.      See  Network Layer Reachability 

Information   

   NNTP.      See  Network News Transfer 

Protocol   

   No Operation,   373   

   nodes,   2–3   

       in HDLC,   143  

  hierarchy of,   6–7, 6 f   
  ID,   527  

  latency,   12–14  

  mobile,   in NS-2, 181 f   
  scalability and,   6–7  

  source,   277   

   node-to-node,   341   

   noise,   63   

       crosstalk,   125  

  DSSS and,   101–102  

  line coding and,   62  

  Nyquist,   63   

   Nokia,   182   

   non-authenticated state,   451   

   non-promiscuous mode,   401   

   nonquerier,   315   

   Non-Real-Time Polling Service (nrtPS),  

 189, 564   

   non-return-to-zero (NRZ) coding,   54–55, 

61   

       4B/5B coding and,   81, 81 f   
  polar,   without self-synchronization, 

74  

  unipolar,   without self-synchronization, 

74   

   normal response mode (NRM),   143   

   NOT DONE,   457   

   Novell,   215   

   NRM.      See  normal response mode   

   nrtPS.      See  Non-Real-Time Polling 

Service   

   NRZ coding.      See  non-return-to-zero 

coding   

   NS.      See  Name Server   

   NS-2   

       IEEE 802.11 MAC simulation,  

 177–181  

  mobile nodes in,   181 f   
  source code,   179 f   
  Tcl script file,   182 f    

   NSCOUNT,   436   

   NSIS.      See  Next Steps in Signaling   

   NTSC.      See  National Television System 

Committee   

   Nyquist,   Harry, 57   

   Nyquist noise,   63   

   Nyquist-Shannon sampling theorem,   

57   

   O
OAM.      See  operations, administration, and 

maintenance   

   object identifier (OID),   487–488   

   objects,   488–489   

       bulk transfer of MIB,   493  

  ID,   527  

  instances,   488–489  

  socket event,   516–517  

  task,   516–518  

  type,   488   

   OC-192,   168   

   occupancy,   13   

   ODI.      See  Open Data-link Interface   

   OFDM.      See  orthogonal frequency-

division multiplexing   

   OFDMA.      See  orthogonal frequency-

division multiple access   

   offered load,   1, 11–12, 12 f    
   OID.      See  object identifier   

   on-off keying (OOK),   86   

   OPCODE,   436   

   Open Data-link Interface (ODI),   215   

   Open Shortest Path First (OSPF),   30, 285, 

295, 301–302   

       example,   302–304, 303 f   
  execution time,   309 f   
  header format,   305 f   
  hierarchical,   302, 302 f   
  message types,   306 t   
  open source implementation,   307–308  

  packet format,   304–305  

  Zebra implementation,   308 f    
   Open System Interconnection (OSI),   1   

   OpenCores,   82   

       Ethernet Core,   161–162  

  IEEE 802.11a,   113–114   

   openfwtk,   524   

   Openswan,   612   

   Opera,   459   

   operations,   administration, and 

maintenance (OAM), 170   

       EFM,   170   

   optical fiber,   3, 67–68   

       point-to-multipoint,   170  

  point-to-point,   170  

  single-mode  vs.  multi-mode,   68 f    
   optical technology,   547   

   optimality principle,   284   

   Organization-Assigned Portion,   130   

   Organization-Unique Identifier (OUI),  

 140   

   orthogonal codes,   105 f    
   orthogonal frequency-division multiple 

access (OFDMA),   187–188   

   orthogonal frequency-division 

multiplexing (OFDM),   55, 96, 

106–107, 107 f    
       applications,   109  

  IEEE 802.11a and,   172  

  with IFFT and FFT,   107  

  orthogonality diagram of,   108 f    
   orthogonal variable spreading factor 

(OVSF),   104, 104 f    
   orthogonality,   108   

   OSI.      See  Open System Interconnection   

   OSPF.      See  Open Shortest Path First   

   ospf_spf_calculate (),   307–308   

   OUI.      See  Organization-Unique Identifier   

   Outlook Express,   442   

   out-of-band signaling,   475, 477–479, 

534   

   output port,   input port to, 44–45, 45 f    
   overflow,   515   

       buffer,   629 f   
  queue,   565   

lin76248_ndx_723-744.indd   735lin76248_ndx_723-744.indd   735 24/12/10   4:30 PM24/12/10   4:30 PM



736 Index

   overhead,   309, 540   

   OVSF.      See  orthogonal variable spreading 

factor   

   P
P2P applications.      See  peer-to-peer 

applications   

   PaaS.      See  platform as a service   

   packets,   1, 8   

       BGP format,   310 f   
  capturing,   401–402  

  classification,   549–550  

  in congestion avoidance,   366 f   
  control,   1–2  

  control  vs.  data,   14–15  

  data structures,   39–40  

  decoding,   643–644  

  delayed duplicate,   351  

  in DiffServ,   560–561  

  discarding,   581–583  

  encapsulation,   25 f   
  filtering,   16–17, 402, 404 f   
  format,   268–369, 269 f   
  fragmentation,   243–246  

  frames  vs. ,   126  

  in gateway,   41–44, 43 f   
  ICMP format,   278 f   
  IGMP,   315 f   
  incoming,   345 f   
  ingress stage,   561  

  in-profile,   561  

  interior stage,   561–562, 562 f   
  in Internet,   45–46  

  IPv4,   241–243, 242 f   
  life of,   39–44  

  looping,   283  

  multicast,   314  

  OSPF,   304–305  

  outgoing,   346 f   
  out-of-profile,   561  

  out-of-sequence,   357–358, 360 f   
  payload,   8, 18  

  PIM format,   324, 324 f   
  in PPP drivers,   149  

  processing,   1–2, 214 t   
  reassembly,   243–246  

  RIP format,   296  

  RTCP,   408–409  

  in slow start,   365 f   
  sniffing,   401  

  storing,   351  

  transmission order,   576 f   
  in Web server,   40–41, 51 f   
  in WiMAX MAC layer,   

190–191   

   packet discarding,   581, 585   

       early drop,   582, 582 f   
  tail drop,   581–582, 582 f    

   packet flows   

       in call graphs,   230 f   
  in IP layer,   228  

  IP layer,   in call graphs, 229–230  

  link-layer,   139–142, 140 f   
  NAT,   257  

  transport-layer,   344–347   

   packet forwarding,   235–237   

       IPv4 implementation,   238–241   

   packet scheduling   

       daily usage of,   585  

  open source implementation,   578–581  

  PGPS,   576–577  

  round robin based,   574–575, 578–581  

  sorted based,   576   

   packet switching   

       circuit switching  vs. ,   7–8  

  congestion and,   28  

  IP and,   28   

   packetized generalized processor sharing 

(PGPS),   576–577   

   paging procedure,   183–184, 184 f    
   PAM.      See  pulse-amplitude modulation   

   PAN.      See  personal area network   

   Parekh,   A. K., 576   

   partial usage of sub-channels (PUSC),  

 188   

   passband modulation,   84–85   

   password cracking,   631   

   Pastry,   526   

   PASV command,   479   

   PASV response,   253   

   path loss,   171   

   path quality report,   406–407   

   path vector algorithm,   310   

   PAUSE frame,   138, 160–161   

   PAWS.      See  Protection Against Wrapped 

Sequence   

   Payload Length,   260   

   PBX.      See  Private Branch eXchange   

   PCF.      See  point coordination function   

   PCM.      See  pulse-code modulation   

   PCS.      See  Physical Coding Sublayer   

   PC/TCP,   215   

   PDU.      See  protocol data unit   

   peers,   526   

       selection,   532–533, 536–537   

   peer-to-peer (P2P) applications,   47, 418, 

520–522   

       ALM  vs. ,   541  

  architectures,   524–529  

  categories,   522 t   

  centralized,   524–525, 524 f   
  decentralized and unstructured,  

 525–526  

  decentralized but structured,   

526–529  

  performance issues,   529–531  

  popular,   522  

  scalability,   529  

  search algorithms,   521  

  virtual overlay network,   521 f    
   PEPeer,   536 f    
   PEPeerControlImpl,   535–536, 537 f    
   PEPeerManager,   536 f    
   PEPiece,   536 f    
   performance   

       hop-by-hop argument and,   24  

  measures,   1, 10–14  

  QoS and,   19  

  security and,   647–648   

   per-hop-behavior (PHB),   558–559, 560 t    
   personal area network (PAN),   183   

   P/F.      See  poll/final   

   PG.      See  process gain   

   PGPS.      See  packetized generalized 

processor sharing   

   phase,   62   

   phase-shift keying (PSK),   55, 84–85, 87 f , 
89–91   

   PHB.      See  per-hop-behavior   

   PHY layer.      See  physical layer   

   Physical Coding Sublayer (PCS),   

168   

   physical (PHY) layer,   54   

       EFM,   170, 170 t   
  Gigabit Ethernet and,   167  

  IEEE 802.11,   172  

  WAN,   168  

  WiMAX,   187   

   piconet,   183, 183 f    
   piece selection,   532, 538–539   

   PIM.      See  Protocol Independent Multicast   

   PIM-DM.      See  Protocol Independent 

Multicast dense mode   

   PIM-SM.      See  Protocol Independent 

Multicast sparse mode   

   pine,   442   

   ping,   399, 485   

   plain old telephone system (POTS),   3, 5, 

23–24   

   platform as a service (PaaS),   426   

   playback reconstruction,   406–407   

   plug-and-play,   139   

   Plurk,   523   

   PN sequence.      See  pseudo-noise sequence   

   PNG,   512   

lin76248_ndx_723-744.indd   736lin76248_ndx_723-744.indd   736 24/12/10   4:30 PM24/12/10   4:30 PM



 Index 737

   point coordination function (PCF),  

 173–174   

       DCF and,   176 f   
  interleaved,   176–177   

   point coordinator (PC),   176   

   Pointer (PTR),   432   

   Point-to-Point Protocol (PPP),   125, 142, 

145–147   

       drivers,   148–149  

  phase diagram,   145 f   
  relationships,   142 f   
  Session stage,   150  

  software architecture,   148 f    
   Point-to-Point Tunneling Protocol 

(PPTP),   594, 609   

   poison reverse,   292, 295–296   

   polar return-to-zero (polar RZ),   76   

   policing,   19, 548, 550   

   poll-based detection,   487   

   poll/final (P/F),   144   

   polymorphic code,   650   

   POP.      See  Post Office Protocol   

   POP3.      See  Post Office Protocol version 3   

   PORT command,   253   

   ports,   420–421, 421 f    
       HTTP and,   466  

  I/O,   205, 207–210  

  redirection,   252, 469  

  trunking,   204  

  UDP header format and,   347–348   

   Post Office Protocol (POP),   440, 442   

   Post Office Protocol version 3 (POP3),  

 448–449   

       commands,   450 t   
  session,   450 f    

   POST request,   464   

   postfix,   442   

   post-routing module,   44   

   POTS.      See  plain old telephone system   

   power availability,   172   

   power-line networking,   166   

   PPM.      See  pulse-position modulation   

   PPP.      See  Point-to-Point Protocol   

   PPP over Ethernet (PPPoE),   142, 

149–150   

   PPPoE.      See  PPP over Ethernet   

   PPTP.      See  Point-to-Point Tunneling 

Protocol   

   Preamble state,   162   

   precoding,   110   

   prefix,   26, 26 f , 31   

   preforking,   540   

   preprocessing   

       e-mail,   457  

  Snort,   642   

   presentation description file,   513   

   prethreading,   540   

   priority   

       values,   203 t   
  VLAN,   202–204   

   Private Branch eXchange (PBX),   505, 

506 f    
   Private Ports,   420   

   PRN sequence.      See  pseudo-random 

numerical sequence   

   process gain (PG),   98   

   process model,   33–34   

   promiscuous mode,   191, 401–402   

   propagation delay,   47   

   propagation time,   9   

   proprietary closed solutions,   32–33   

   Protection Against Wrapped Sequence 

(PAWS),   374   

   protection packages,   637 t    
   protocol data unit (PDU),   190   

       in IPv4 packet,   243  

  SNMP operations and,   491   

   Protocol Independent Multicast (PIM),  

 321–322   

       packet format,   324, 324 f   
  source specific,   323   

   Protocol Independent Multicast dense 

mode (PIM-DM),   317, 321   

   Protocol Independent Multicast sparse 

mode (PIM-SM),   317, 321, 322 f , 
323 f , 324 f    

   protocol messages,   20   

   protocol parsing,   639   

   protocol stacks,   21, 24–25   

   protocol translator,   266–267   

   protocols,   1.      See also   specific protocols    

       control,   20  

  Data,   20  

  implementation,   21  

  layered,   21  

  modules,   2  

  specifications,   20  

  standard  vs.  proprietary,   20   

   proxy servers,   252, 540   

       HTTP,   469  

  SIP,   502   

   proxying,   43   

       cache,   252  

  SNMP,   487  

  transparent,   252, 469, 469 f    
   pseudo-noise (PN) sequence,   97–98, 98 f    

       CDMA and,   105–106   

   pseudo-random numerical (PRN) 

sequence,   97   

   pseudo-streaming,   514   

   pseudoternary coding,   77   

   PSH bit,   372   

   PSK.      See  phase-shift keying   

   PSTN.      See  Public Switched Telephone 

Network   

   PTR.      See  Pointer   

   Public Switched Telephone Network 

(PSTN),   497, 505   

   pulse-amplitude modulation (PAM),   72   

   pulse-code modulation (PCM),   72, 408, 

497   

   pulse-position modulation (PPM),   72   

   pulse-width modulation (PWM),   72   

   PUSC.      See  partial usage of sub-channels   

   PUT request,   464   

   PWM.      See  pulse-width modulation   

   Q
Q.931,   500   

   QAM.      See  quadrature amplitude 

modulation   

   QDCOUNT,   436   

   qdisc element,   553 f    
   QM.      See  queuing management   

   qmail,   440, 442   

       control files,   456 t   
  data flows,   455 f   
  modules,   454 t   
  open source implementation,   454–458  

  queue subdirectories,   456 t   
  queues,   456–457, 457 t    

   QoS.      See  quality of service   

   QPSK.      See  quadrature phase-shift keying   

   QTSS.      See  QuickTime Streaming Server   

   quadrature amplitude modulation (QAM),  

 55, 84–85, 91–92, 93 f    
   quadrature phase-shift keying (QPSK),  

 89–90, 90 f    
   Quagga,   298   

   quality of service (QoS),   19–20   

       admission control and,   564–566  

  algorithms,   564  

  architectures,   553  

  components,   548 f   
  daily usage,   585  

  demand for,   546  

  flow identification and,   568–569  

  mechanisms for streaming,   510, 515  

  new technologies,   47  

  routing,   548–549  

  scope of,   547  

  stateless routing and,   23  

  VoIP and,   497  

  in wireless links,   563–564   

   quantization,   56–57   

lin76248_ndx_723-744.indd   737lin76248_ndx_723-744.indd   737 24/12/10   4:30 PM24/12/10   4:30 PM



738 Index

   querier,   315   

   queries   

       with dig,   440 f   
  DNS,   540–541  

  multiple iterative,   433–434, 433 f   
  recursive,   434  

  reverse,   432   

   queuing,   9, 9 f    
       client,   422  

  discipline,   551  

  iterative connectionless servers and,  

 424  

  overflow,   565  

  qmail,   456–457, 457 f   
  theory,   12   

   queuing management (QM),   583   

   QuickTime,   514   

   QuickTime Streaming Server (QTSS),  

 516   

   R
radio,   3, 69–70   

   radio frequency (RF),   64, 175   

   random early detection (RED),   583–584, 

585 f    
   RAS.      See  Registration Admission and 

Status   

   rate control,   339, 343, 515   

   rate mismatch,   14   

   RBT.      See  Red-Black Tree   

   RC4,   604   

   rdtscll (),   42   

   reachability,   305   

   read (),   397–398   

   readfrom (),   424   

   READMAIL,   417   

   RealNetworks,   514   

   RealPlayer,   514   

   Real-Time Control Protocol (RTCP),   340, 

408–409, 411, 500   

   Real-Time Polling Service (rtPS),   189   

   real-time Polling Service (rtPS),   564   

   real-time requirements   

       for transport layer,   343  

  transport protocols,   404–407   

   Real-Time Streaming Protocol (RTSP),  

 411, 510, 513   

       methods,   513–514  

  session handling,   519  

  state transition diagram,   519 f    
   Real-Time Transport Protocol (RTP),  

 340, 407–408, 411, 500   

       header format,   407, 408 f   
  implementation resources,   409  

  UDP and,   350   

   receive (RX) module,   161–162, 163 f    
   Received: field,   444   

   receiver report (RR),   408–409   

   receiver window (RWND),   361   

   reception   

       flow,   59–61, 59 f   
  MAC,   155–158  

  in network device drivers,   212 f , 213  

  of packet flows,   140–141, 229   

   reconstruction,   57   

   Recording Industry Association of 

America (RIAA),   524   

   recv (),   180   

   recv_timer (),   180   

   RED.      See  random early detection   

   Red-Black Tree (RBT),   439   

   Reed-Solomon codes,   71–72   

   referrals,   434   

   refraction,   67, 67 f , 69   

   Registered Ports,   420   

   registers   

       in device controllers,   38  

  device drivers and,   205   

   Register-Stop message,   323   

   Registration Admission and Status 

(RAS),   500   

   reliability   

       framing,   132  

  of IP layer,   227–228  

  in link layer,   127  

  per-flow,   356  

  TCP,   356–358, 357 f   
  transport layer,   339, 342–343  

  of wireless links,   171   

   remote function calls (RFCs),   298 t    
   Remote network MONitoring (RMON),  

 486   

   remote scanning,   628   

   rendezvous point (RP),   318, 321, 322   

   request reinforcement,   555–556   

   request to send (RTS),   176   

   request_region (),   207   

   requirements,   1   

   re-routing table,   43   

   ReSerVation Protocol (RSVP),   410–411, 

498, 555   

   resolver program,   433   

   resource records (RRs),   427, 430–432   

   resource reservation,   547, 554–555   

   Resource ReserVation Protocol (RSVP),  

 549   

   resource sharing,   1, 7–9, 22   

       Internet,   27–29  

  IP layer and,   227–228  

  requirements and,   2  

  store-and-foreward,   8   

   retransmission timeout,   366–368, 388   

   Retransmission TimeOut (RTO),   375   

   retransmission timer,   343   

   Reverse Path Broadcast (RPB),   318–321, 

319 f , 320 f    
   Reverse Path Multicast (RPM) tree,   318, 

320 f    
   RFC 822,   443–444, 451   

   RFCOMM,   185   

   RFCs.      See  remote function calls   

   RIAA.      See  Recording Industry 

Association of America   

   ring topology,   7   

   RIP.      See  Routing Information Protocol   

   ripd,   300, 301 f    
   RIPv2,   296 f    
   Rivest,   Ronald, 601   

   RLL coding.      See  run length limited 

coding   

   RMON.      See  Remote network 

MONitoring   

   roadmap,   2   

   root DNS servers,   434–436, 435 t    
   root port (RP),   197   

   round-trip time (RTT),   363   

       estimation,   376  

  retransmission timeout and,   366–368  

  TCP retransmission timer and,   375  

  TCP Vegas and,   389  

  VoIP and,   496   

   routers,   7   

       advertisement,   278  

  area border,   302  

  border,   293  

  AS boundary,   302  

  configuration,   30  

  core,   557  

  edge,   557, 561 f   
  egress,   562  

  input port to output port within,   44–45  

  multicast,   314  

  one-armed,   202 f   
  shifting complexity to,   313–315  

  software architecture in,   35–36, 35 f    
   routing,   5.      See also  multicast routing   

       AS,   294 f   
  algorithms,   16, 284  

  APNIC,   313  

  arrival times,   292  

  bridging  vs. ,   226  

  cache,   238, 240 f , 241  

  calculation,   285 f   
  in Chord,   528 f   
  connectionless,   22–24  

lin76248_ndx_723-744.indd   738lin76248_ndx_723-744.indd   738 24/12/10   4:30 PM24/12/10   4:30 PM



 Index 739

  control plane protocols and,   283  

  daemons,   34, 298  

  distance vector,   284, 288–293  

  forwarding  vs. ,   15  

  header,   261  

  hierarchical,   293–294  

  hop-by-hop,   284  

  inter-area,   302, 304  

  inter-domain,   293, 294, 305–306  

  intra-area,   302, 304 t   
  intra-domain,   294–297  

  IP layer and,   224, 225  

  link state,   284, 286–287, 287 f , 301  

  multipoint-to-mulitpoint,   283  

  operations at control plane and,   15–16  

  optimal,   285  

  path vector,   310–311  

  pitfalls,   329  

  point-to-mulitpoint,   283  

  point-to-point,   283  

  policy,   306  

  principles,   283  

  protocols,   297 f   
  QoS,   548–549  

  scalability and,   227  

  stateless,   22–24  

  switching  vs. ,   22–23   

   Routing Information Protocol (RIP),   30, 

295–296   

       daemons,   300–301  

  execution time,   309 f   
  open source implementation,   297–301  

  packet format,   296  

  routing table,   296 t   
  VLAN and,   296–297   

   routing tables,   241, 288 f    
       BGP,   311 t   
  CIDR,   235 f   
  after convergence,   291 f   
  initial,   289 f   
  intermediate,   290 f   
  lookups,   237–238  

  packet forwarding,   235–237  

  RIP,   296 t   
  RT4,   305 t    

   RP.      See  rendezvous point; root port   

   RPB.      See  Reverse Path Broadcast   

   RPM tree.      See  Reverse Path Multicast 

tree   

   RR.      See  receiver report   

   RSA,   594, 601, 602 f    
   RST segment,   355   

       IDS and,   638  

  in TCP header,   372   

   RSVP.      See  ReSerVation Protocol   

   rsvp_classify (),   569   

   RT3,   303 t , 304 t    
   RT4,   303 t , 304 t , 305 t    
   RTCP.      See  Real-Time Control Protocol   

   rtentry,   326   

   rtnetlink,   298   

   RTO.      See  Retransmission TimeOut   

   RTP.      See  Real-Time Transport Protocol   

   RTP/RTCP,   340, 500, 505   

   rtPS.      See  Real-Time Polling Service; 

real-time Polling Service   

   RTS.      See  request to send   

   RTS/CTS mechanism,   138, 175–176, 

176 f    
   RTSP.      See  Real-Time Streaming Protocol   

   RTT.      See  round-trip time   

   rules,   17–18   

       detection,   640, 644  

  Snort,   639   

   run length limited (RLL) coding,   73, 

79, 79 t    
   running code,   33   

   RWND.      See  receiver window   

   RX module.      See  receive module   

   S
SA.      See  Security Association   

   SaaS.      See  software as a service   

   SACK.      See  Selective ACKnowledgment   

   sampling,   56   

   sandbox,   650   

   SAP.      See  Session Announcement Protocol   

   scalability,   1–2, 18, 540   

       bridging  vs.  routing,   226  

  of classifiers,   18  

  of DHCP,   272  

  inter-domain routing and,   306  

  IP layer and,   225–227  

  multicast routing and,   313–314  

  number of nodes and,   6–7  

  P2P,   529  

  routing and,   227  

  solutions,   25–27   

   scanning,   628   

   scatternet,   183, 183 f    
   SC-FDE.      See  single-carrier frequency 

domain equalization   

   SC-FDMA.      See  single-carrier frequency-

division multiple access   

   scheduling,   19, 548, 550.      See also  packet 

scheduling   

       architectures,   551 f   
  fluid model,   576  

  pitfalls,   586  

  round robin based,   574–575  

  sorted based,   576  

  uplink,   189–-190, 189 t   
  WiMAX MAC and,   186   

   sch_tbf.c,   571, 573 f    
   SCO link.      See  synchronous connection-

oriented link   

   SCP.      See  Secure Copy   

   scrambling,   77   

   SDES,   409   

   SDH.      See  synchronous digital hierarchy   

   SDM.      See  spatial division multiplexing   

   SDMA.      See  space division multiple 

access   

   SDP.      See  Session Description Protocol   

   SDR.      See  software defined radio   

   sdr.      See  signal-to-data ratio   

   Secure Copy (SCP),   616   

   Secure Electronic Transaction (SET),  

 592, 594, 616–617, 617 f    
   Secure Electronic Transaction LLC,   616   

   Secure Hash Algorithm (SHA),   606   

   Secure Shell (SSH),   616   

   Secure Socket Layer (SSL),   462, 470, 

591–592, 615, 615 f    
   security,   590–591   

       access,   618–619  

  data,   591–592, 594  

  defense methods,   637–639  

  FTP,   476  

  IP layer,   228  

  P2P,   531  

  performance and,   647–648  

  protection packages,   637 t   
  system,   591, 593–594, 627–628  

  transport layer,   614–618  

  VLAN and,   200  

  wireless channel,   604  

  wireless link,   172   

   Security Association (SA),   610   

   Security Parameter Index (SPI),   610   

   Seifert,   Rich, 152   

   selected state,   451   

   Selective ACKnowledgment (SACK),  

 363–366, 384–387, 388 f    
   self-clocking,   368, 380   

   self-learning,   19 f , 126, 191–196, 194 f    
   self-synchronization,   62, 72–73   

       Manchester coding with,   77–78  

  polar RZ with,   76   

   semantics,   20   

   sender report (SR),   409   

   sendfile (),   475, 475 t    
   sendmail,   442, 454   

   send_timer (),   179–180   

   sendto (),   424   

lin76248_ndx_723-744.indd   739lin76248_ndx_723-744.indd   739 24/12/10   4:30 PM24/12/10   4:30 PM



740 Index

   sentinel characters,   127   

   sequence number,   137, 242, 356, 407   

   server data response,   453   

   server hosts,   35–36, 35 f    
   servers,   9.      See also  Web servers   

       classification of,   421–426  

  concurrency,   540  

  concurrent connectionless,   425  

  concurrent connection-oriented,   425, 

425 f   
  concurrent  vs.  iterative,   422  

  connection-oriented  vs.  connectionless,  

 422–423  

  daemon,   36–37, 37 f   
  FTP,   478–479  

  iterative connectionless,   424, 424 f   
  iterative connection-oriented,   424  

  name,   428–430, 430 f   
  parallel,   9  

  proxy,   252, 469, 502, 540  

  redirect,   502  

  root DNS,   434–436, 435 t   
  SIP,   502  

  sockets to drivers within,   42  

  starting,   421  

  types,   423–426  

  virtual FTP,   483–484, 483 f    
   service continuity,   404–405   

   service level agreements (SLAs),   553   

   service subscription,   145   

   Session Announcement Protocol (SAP),  

 502   

   Session Description Protocol (SDP),   

502   

   Session Initiation Protocol (SIP),   418, 

497, 501–505   

       commands,   503 t   
  environment,   502 f   
  H.323  vs. ,   504  

  network elements,   501–502  

  protocol stack,   502, 503 f   
  reply codes,   504 t   
  setup procedure,   503–505   

   sessions,   466   

   SET.      See  Secure Electronic Transaction   

   setsockopt (),   403   

   7-layer OSI model,   48   

   S-frame,   144–145   

   SFTP.      See  SSH FTP   

   SGML.      See  Standard Generalized 

Markup Language   

   SHA.      See  Secure Hash Algorithm   

   Shamir,   Adi, 601   

   Shannon,   Claude Elwood, 57   

   shaping,   19, 586   

   SHDSL.      See  symmetrical high-speed 

digital subscriber line   

   shield twisted pair (STP),   65   

   shift keying,   85   

   shift registers,   132   

   shortest-path tree,   284–285, 323–324   

   Shreedhar,   M., 574   

   SIC.      See  successive interference 

cancellation   

   Signal (),   517   

   signaling processing,   555   

   signaling protocol,   548–549   

   signals,   54   

       analog spectra,   58 f   
  analog vs. digital,   55–57  

  aperiodic,   58–59  

  CSMA/CD,   164 f   
  digital spectra,   59 f   
  flow,   64 f   
  jam,   157  

  out-of-band,   475, 477–479  

  periodic,   58–59  

  processing,   119  

  rate,   73   

   signal-to-data ratio (sdr),   72 f , 73   

   signal-to-interference (SIR) ratio,   105   

   signal-to-noise ratio (SNR),   57, 63   

   signatures,   18, 591   

       digital,   604–606, 605 f   
  loading,   634 f   
  matching,   635 f    

   silly window syndrome (SWS),   378–380, 

379 f    
   Simple Internet Protocol Plus (SIPP),   259   

   Simple Key management for IP (SKIP),  

 612   

   Simple Mail Transfer Protocol (SMTP),  

 417, 440, 447–448   

       commands,   448 t   
  MTA and,   442  

  replies,   448 t   
  session,   449 f    

   Simple Network Management Protocol 

(SNMP),   418, 485–486   

       architectural framework,   486–487, 486 f   
  basic operations,   491–493, 491 t   
  version 3,   494 f    

   Simple Traversal of UDP through NATs 

(STUN),   252   

   Simple Traversal of UDP through NATs 

and TCP too (STUNT),   252   

   simulations   

       event-based,   166  

  MAC,   177–181  

  with Tcl script file,   181   

   single-carrier frequency domain 

equalization (SC-FDE),   96   

   single-carrier frequency-division multiple 

access (SC-FDMA),   96   

   single-user MIMO (SU-MIMO),   110   

   sinusoidal carriers,   85   

   SIP.      See  Session Initiation Protocol   

   SIPP.      See  Simple Internet Protocol 

Plus   

   SIR ratio.      See  signal-to-interference 

ratio   

   sk_buff,   39–40, 344–345   

   SKIP.      See  Simple Key management 

for IP   

   sky propagation,   68–69   

   Skype,   404, 466, 498   

   SLAs.      See  service level agreements   

   sliding window   

       flow control,   358–361, 362  

  protocol,   137–138, 137 f   
  pseudocode,   358 f   
  TCP,   359 f , 360 f    

   slow start,   365, 365 f , 367, 371 f    
   SM.      See  spatial multiplexing   

   SMI.      See  Structure of Management 

Information   

   smooth rate control,   405–406   

   SNA.      See  Structured Network 

Architecture   

   SNDMSG,   417   

   Snell,   Willbrord, 67   

   Snell’s law,   67   

   sniffing,   628   

   SNMP.      See  Simple Network Management 

Protocol   

   snmpget,   494 f    
   snmpset,   494 f    
   snmpwalk,   494 f    
   snooping,   628   

   Snort,   44, 591, 648   

       block diagram,   641 f   
  open source implementation,   

640–644  

  rules,   639   

   SNR.      See  signal-to-noise ratio   

   SOA.      See  start of authority   

   social engineering,   629   

   social networking,   523   

   sock,   344–345   

   SOCK_DGRAM,   392, 399   

   socket,   33, 391   

       APIs,   36–37, 37 f , 344, 391–402  

  buffer,   402  

  buffer size,   372  

  connected,   426  

lin76248_ndx_723-744.indd   740lin76248_ndx_723-744.indd   740 24/12/10   4:30 PM24/12/10   4:30 PM



 Index 741

  descriptors,   422  

  to drivers,   42, 42 f   
  file descriptors,   392  

  filter,   403–404  

  function,   45  

  functions,   for TCP, 393 f   
  functions,   for UDP, 392 f   
  interrupt at,   397–398  

  listening,   426  

  manager,   437, 438 f   
  memory copy at,   397–398  

  pairs,   348  

  read/write inside out,   394–397, 395 f   
  TLI,   344   

   SOCK_RAW,   399   

   soft handoffs,   106, 188   

   soft-decision algorithms,   81   

   software architecture   

       Apache,   470 f   
  Ethernet MAC core,   161 f   
  Linux,   33–36, 35 f   
  NS-2 802.11 MAC,   178 f   
  PPP,   148 f   
  Zebra,   299 f    

   software as a service (SaaS),   426   

   software defined radio (SDR),   63–65   

   SONET.      See  Synchronous Optical 

Networking   

   SONET/SDH,   169   

   source coding,   70–71   

   source filtering,   316   

   source quench,   279   

   source tree,   36   

   source-specific multicast (SSM),   324   

   source-specific tree (SPT),   323   

   space complexity,   17   

   space division multiple access (SDMA),  

 109   

   space-time block coding (STBC),   111   

   SpamAssassin,   645–647, 645 f , 648   

   spanning tree protocol (STP),   126, 139, 

196–200   

   spatial division multiplexing (SDM),  

 60, 109   

   spatial multiplexing (SM),   109–110   

   SpeakEasy,   64–65   

   SPI.      See  Security Parameter Index   

   split horizon,   292   

   spoofing,   627   

   spread spectrum (SS),   70, 96–97, 98 f , 
99–100   

   spread spectrum multiple access (SSMA),  

 103   

   spreading sequence,   97   

   SPT.      See  source-specific tree   

   Squid,   469, 624, 625 f    
   SR.      See  sender report   

   SSH.      See  Secure Shell   

   SSH FTP (SFTP),   616   

   SSL.      See  Secure Socket Layer   

   SSL/TLS protocol,   615–616   

   SSM.      See  source-specific multicast   

   SSMA.      See  spread spectrum multiple 

access   

   SSRC.      See  Synchronization Source 

Identifier   

   ssthresh,   365   

   Standard Generalized Markup Language 

(SGML),   463   

   standard programming interfaces,   

344   

   start of authority (SOA),   431   

   starting bits,   232   

   state transitions,   352–356, 354 f , 355 f    
   statefulness   

       in application-layer protocols,   427  

  of firewalls,   649–650  

  in HTTP,   466  

  spectrum of,   23 f    
   static mapping,   249–250   

   status operations,   391   

   status response,   452   

   STBC.      See  space-time block coding   

   Steiner trees,   317–318, 318 f    
   Stewart,   R., 405   

   store-and-forward,   193, 193 t    
   STP.      See  shield twisted pair; spanning 

tree protocol   

   Stream Control Transmission Protocol 

(SCTP),   405   

   streaming,   406, 418–419, 510   

       buffers,   515  

  components,   511 f   
  HTTP,   514  

  latency,   406  

  latency variation and,   14  

  protocol stack,   513 f   
  protocols,   512–514  

  QoS control mechanisms,   510, 515  

  synchronization mechanisms,   

515–516  

  video,   14   

   string matching,   18   

   strongSwan,   612   

   Structure of Management Information 

(SMI),   489   

   Structured Network Architecture (SNA),  

 33   

   STS-x.      See  synchronous transport signal   

   stubs,   302   

   STUN.      See  Simple Traversal of UDP 

through NATs   

   STUNT.      See  Simple Traversal of UDP 

through NATs and TCP too   

   subcarriers,   188   

   sub-channels,   188   

   Subject: field,   444   

   subnets,   26, 26 f , 225–227   

       IP,   233–234, 234 f   
  mask,   234  

  VLAN  vs. ,   201   

   successive interference cancellation 

(SIC),   110–111   

   SU-MIMO.      See  single-user MIMO   

   Sun Microsystems,   418   

   supergroups,   6, 27 f    
   switches,   5, 7, 191.      See also  bridging   

       bridging  vs. ,   193–196  

  nonblocking,   217  

  one-switch deployment,   202 f   
  routing  vs. ,   22–23  

  7-layer OSI model and,   48  

  soft-state,   23  

  stateless,   6  

  two-switch deployment,   201 f   
  wire-speed,   217   

   SWS.      See  silly window syndrome   

   symbol rate,   119   

   symbols,   59   

   symmetric key system,   595–598   

   symmetrical high-speed digital subscriber 

line (SHDSL),   171   

   SYN   

       bit,   371  

  cookies,   394  

  flooding attack,   394   

   synchronization,   54, 61–62   

       block coding and,   79–80  

  inter-object,   515–516  

  inter-stream,   515–516  

  intra-stream,   515–516  

  mechanisms for streaming,   515–516  

  streaming,   510   

   Synchronization Source Identifier 

(SSRC),   408   

   synchronous connection-oriented link 

(SCO link),   185, 185 f    
   synchronous digital hierarchy (SDH),   

169   

   Synchronous Optical Networking 

(SONET),   96, 169   

   synchronous transport signal (STS-x),   5   

   SYN-RECEIVED state,   353   

   SYN-SENT state,   353   

   syntax,   20   

lin76248_ndx_723-744.indd   741lin76248_ndx_723-744.indd   741 24/12/10   4:30 PM24/12/10   4:30 PM



742 Index

   system   

       calls,   33  

  security,   591, 593–594, 627–628  

  vendors,   32   

   T
T1.      See  Digital Signal 1   

   T3.      See  DS3   

   table-lookup operations,   5   

   TACS,   116   

   tags,   HTML, 463   

   Target Hardware Address,   269   

   task manager,   437, 438 f    
   task scheduling,   516   

   tasklet,   206, 209   

   TC.      See  traffic control   

   TCA.      See  traffic conditioning agreement   

   Tcl script file,   181, 182 f    
   TCP.      See  Transmission Control Protocol   

   TCP Reno,   363–364   

       congestion control,   368–370, 368 f , 
369 f   

  MPL problem,   383–385   

   tcp_cong.c,   367   

   tcpdump,   399, 403   

   TCP-friendliness,   405–406   

   TCP-friendly rate control (TFRC),   406   

   TCP/IP architecture,   24–25, 54   

   TCP/IP headers   

       checksum calculations of,   350 f   
  compression,   147   

   tcp_keepalive_timer (),   377   

   tcp_opt,   396   

   tcp_probe_timer (),   377   

   tcp_recvmsg (),   397   

   tcp_reno_cong_avoid (),   367   

   tcp_sendmsg (),   398   

   tcp_slow_start (),   367   

   tcp_write_xmit (),   362   

   TDA.      See  triple duplicate ACK   

   TDD.      See  time division duplex   

   TDM.      See  time-division multiplexing   

   TDMA.      See  time-division multiple access   

   telecom,   10   

   telecommunications,   10   

   telnet,   378–379, 417–418   

   10 Gigabit Ethernet,   168, 168 t    
   terminals,   H.323, 498   

   TFRC.      See  TCP-friendly rate control   

   think-client heavy-server concept,   426   

   third-party closed solutions,   32–33   

   threads,   422   

       DSS,   518  

  forking,   508–509  

  libraries,   472   

   3Com,   215   

   3DES.      See  Triple-DES   

   3G,   5, 116, 190   

   throughput,   1, 11–12, 12 f    
       utilization  vs. ,   47–48  

  Web server,   473–475   

   Thunderbird,   442, 453   

   TIFF,   512   

   TIGER,   628   

   time complexity,   17   

   time division duplex (TDD),   188–189, 

189 f    
   time exceeded message,   279   

   Time Stamp Counter (TSC),   42   

   time-division multiple access (TDMA),  

 95   

   time-division multiplexing (TDM),   55, 

60, 84, 93–95, 95 f    
   timeouts,   295, 366–368, 388   

   timers   

       functions,   374 t   
  manager,   437, 438 f   
  TCP,   374–377  

  TCP keepalive,   377–378  

  TCP persist,   376–378  

  TCP retransmission,   376   

   timestamps,   373, 376   

       playback reconstruction and,   407  

  RTP,   407  

  in simulations,   166   

   time-to-live (TTL),   243   

   TIME_WAIT state,   353   

   tit-for-tat,   532–533   

   TLDs.      See  top-level domains   

   TLI socket.      See  transport layer interface 

socket   

   TLS.      See  Transport Layer Security   

   To: field,   443   

   token bucket,   570–571   

       leaky,   570 f , 571 f   
  open source implementation,   571–573  

  usage of,   585   

   Token Bus,   150, 153   

   Token Ring,   138, 150, 153   

   token stream,   570   

   top half,   206   

   top-level domains (TLDs),   428, 429 t , 434   

   TOS.      See  type of service   

   Toshiba,   182   

   total internal reflection,   67, 67 f    
   TRACE request,   464–465   

   traceroute,   399, 485   

   traffic   

       engineering,   16  

  estimator,   566–567  

  long file transfer,   420  

  P2P applications and,   520  

  parameters,   19  

  short interactive,   420  

  UDP and,   350  

  VLAN,   203 t    
   Traffic Class,   260   

   traffic conditioning agreement (TCA),  

 559   

   traffic control (TC),   17, 19   

       estimator,   566  

  in Linux,   551–553, 553 f   
  module,   44, 547–548   

   TRANSACTION state,   449   

   transactions,   378–380   

   transmission.      See also  baseband 

transmission; broadband 

transmission   

       completion,   576  

  delay,   47  

  digital modulation,   61–62  

  flow,   59–61, 59 f   
  host-to-host,   223  

  impairments,   62–63  

  line coding,   61–62  

  MAC,   155–158  

  multicarrier,   106  

  in network device drivers,   211 f , 213  

  nibble,   164–165, 164 f   
  order,   of packets, 576 f   
  packet flow in,   141–142, 229  

  system models,   217  

  time,   9  

  waves,   69–70   

   Transmission Control Protocol (TCP),  

 22, 351   

       abnormal cases in,   357–358  

  binding applications through,   391–394  

  bulk-data transfers in,   381–382  

  bypassing,   399  

  checksum,   31, 356  

  congestion control,   28–29, 363–368, 

370–371  

  connection establishing,   45–46  

  connection management and,   351–356  

  connection-oriented servers and, 

422–423

connection table,   in MIB-II, 489–491, 

490 f   
  connection table,   lexicographical view, 

492 f   
  connection table,   tabular view, 491 f   
        data transfer reliability of,   356–358  

  enhancement,   378–385  

  error recovery and,   28–29  

lin76248_ndx_723-744.indd   742lin76248_ndx_723-744.indd   742 24/12/10   4:30 PM24/12/10   4:30 PM



 Index 743

  evolution,   339, 363  

  FACK,   363, 385, 387, 389 f   
  flow control,   358–361  

  FTP and,   476  

  headers,   261, 371–374, 372 f   
  keepalive timer,   377–378  

  with large bandwidth-delay product,  

 390  

  MPL recovery in,   385–390  

  NewReno,   363–364, 385, 386 f   
  options,   373–374, 373 f   
  persist timer,   376–378  

  problems,   378–385, 378 t   
  reliability,   357 f   
  Reno  vs.  Tahoe,   370  

  retransmission timer,   376  

  SACK,   363–364, 384–387, 388 f   
  sliding window protocol and,   137–138, 

359 f , 360 f , 362  

  slow start and congestion avoidance,  

 367  

  socket functions for,   393 f   
  state transitions,   352–356, 354 f   
  steps,   382 f   
  streaming in,   406  

  Tahoe,   363–368, 364 f , 369 f   
  timer management,   374–377  

  UDP and,   349–350  

  Vegas,   363, 387–390  

  version statistics,   364   

   transmit (TX) module,   161–164, 162 f    
   Transmit Opportunity (TXOP),   564   

   transport layer,   24, 339–342   

       bypassing,   399–401  

  error control,   339, 342–343  

  identifier,   249  

  packet flows,   344–347  

  security,   614–618   

   transport layer interface (TLI) socket,   344   

   Transport Layer Security (TLS),   615   

   transport protocols,   342 t    
   trap-based detection,   487   

   trie data structure,   237, 238 f    
   triple duplicate ACK (TDA),   366   

   Triple-DES (3DES),   591, 594, 597   

       CPU time and,   259  

  functional blocks,   598 f   
  hardware,   598–601  

  main functional block,   599 t   
  pitfalls,   649   

   Tripwire,   638   

   Trojans,   633   

   truncated binary exponential back-off,  

 157   

   TSC.      See  Time Stamp Counter   

   TTL.      See  time-to-live   

   tunneling,   266–267   

   turbo codes,   71–72, 116   

   twisted pair,   3, 65–66, 65 f , 66 t    
   Twitter,   523   

   2B1Q.      See  two-binary, one-quaternary   

   two-binary,   one-quaternary (2B1Q), 78, 

78 t    
   2G,   116   

   two-level hashing,   237   

   TX module.      See  transmit module   

   TXOP.      See  Transmit Opportunity   

   type of service (TOS),   242 f , 558   

   U
UAC.      See  User Agent Client   

   UAS.      See  User Agent Server   

   UDP.      See  User Datagram Protocol   

   U-frame,   145   

   UGS.      See  Unsolicited Grant Service   

   UHF.      See  ultra high frequency   

   UL-MAP,   188–189   

   ultra high frequency (UHF),   69   

   ultraband,   119–120   

   unchoking,   533   

   underflow,   515   

   Uniform Resource Identifier (URI),  

 460–461, 460 f , 461 f    
   Uniform Resource Name (URN),   460, 

460 f , 462–463, 463 f    
   Universal Resource Locator (URL),  

 459–462, 460 f , 462 f , 462 t    
   Universal Serial Bus (USB),   75   

   Universal Software Radio Peripheral 

(USRP),   65   

   University of California at Davis,   493   

   UNIX   

       BIND and,   437  

  RIP and,   295  

  standard programming interfaces,   344   

   unreliable connectionless transfer 

protocol,   347   

   unshielded twisted pair (UTP),   65–66   

   Unsolicited Grant Service (UGS),   189, 

564   

   UPDATE state,   449   

   upper layer protocol,   243   

   URG bit,   372   

   Urgent pointer,   372   

   URI.      See  Uniform Resource Identifier   

   URL.      See  Universal Resource Locator   

   URN.      See  Uniform Resource Name   

   USB.      See  Universal Serial Bus   

   USENET,   417   

   User Agent Client (UAC),   501   

   User Agent Server (UAS),   501   

   User Datagram Protocol (UDP),   22, 

347   

       binding applications through,   391–394  

  bypassing,   399  

  checksum in,   31  

  connectionless servers and,   422–423  

  error control,   348–349  

  error recovery and,   29  

  evolution of,   339  

  format,   347 f   
  header format,   347–348  

  real-time traffic in,   350  

  SNMP and,   492  

  socket functions for,   392 f   
  streaming in,   406  

  TCP checksum and,   349–350   

   user space,   33   

   USRP.      See  Universal Software Radio 

Peripheral   

   utilization,   12, 47–48   

   uTorrent,   533   

   UTP.      See  unshielded twisted pair   

   V
Varghese,   G., 574   

   variable-binding list,   492   

   variable-value pairs,   492   

   VCO.      See  voltage-control oscillator   

   vendors,   32   

   Version Number,   260   

   VFS.      See  Virtual File System   

   VFT.      See  virtual finish timestamp   

   video,   408, 510   

   video conferencing,   406–407   

   video streaming,   14   

   virtual carrier sense,   176   

   virtual circuit table,   22   

   Virtual File System (VFS),   396   

   virtual finish timestamp (VFT),   576–577, 

579   

   virtual LAN (VLAN),   200–204   

       broadcast domains,   217  

  collision domains and,   217  

  deployment,   202 f   
  priority,   202–204  

  RIP and,   296–297  

  subnet  vs. ,   201  

  traffic types,   203 t    
   virtual overlay network,   521, 521 f    
   Virtual Private Network (VPN),   591–592, 

618   

   virtual system time (VST),   576–577   

   viruses,   633   

   VLAN.      See  virtual LAN   

lin76248_ndx_723-744.indd   743lin76248_ndx_723-744.indd   743 24/12/10   4:30 PM24/12/10   4:30 PM



744 Index

   Voice over IP (VoIP),   406–407, 418, 

496–497, 498, 505, 505 f    
   voltage-control oscillator (VCO),   88   

   VPN.      See  Virtual Private Network   

   VST.      See  virtual system time   

   vulnerabilities,   629–631, 630 t    
   Vuze,   534   

   W
W3C.      See  World Wide Web Consortium   

   WAIS.      See  Wide-Area Information Server   

   WaitKeyState,   599   

   WAN Interface Sublayer (WIS),   168   

   WANs.      See  wide area networks   

   Washington University,   482   

   wavelength-division multiple access 

(WDMA),   96   

   wavelength-division multiplexing 

(WDM),   55, 96, 169   

   WDM.      See  wavelength-division 

multiplexing   

   WDMA.      See  wavelength-division 

multiple access   

   Web 2.0,   523   

   Web browsers,   459   

   Web caching,   468   

   Web servers,   459 t    
       Apache,   470–473  

  latency,   473–475  

  packet life in,   40–41, 41 f   
  throughput,   473–475   

   Webmail,   453, 453 f    
   weighted fair queuing (WFQ),   576, 578 f , 

586   

   weighted round robin (WRR),   574, 586   

   Well Known Ports,   420   

   WEP.      See  wired equivalent privacy   

   WFQ.      See  weighted fair queuing   

   wide area networks (WANs),   3   

       Ethernet and,   152  

  scalability of,   7  

  10 Gigabit Ethernet and,   168   

   Wide-Area Information Server (WAIS),  

 417   

   wideband,   119–120   

   Wi-Fi Alliance,   604   

   Wi-Fi Protected Access (WPA),   604, 627   

   Wikipanion,   419   

   Wikipedia,   419, 523   

   Willard codes,   99, 99 t    
   WiMAX.      See  Worldwide Interoperability 

for Microwave Access   

   WiMAX-m,   116   

   Window Scale Factor,   373–374   

   window sizing,   361, 361 f , 410   

   Windows Live Messenger,   466   

   Windows Media Services,   514   

   Wired Equivalent Privacy (WEP),   173, 

604   

   wired links,   3–4   

       point-to-point copper,   170  

  technologies,   4 t    
   wireless intrusion/prevention system,   640   

   wireless LAN (WLAN).      See also  IEEE 

802.11   

       evolution of,   172–173  

  reliability,   342   

   wireless links,   3–4   

       link layer and,   171–172  

  omnidirectional,   4  

  QoS in,   563–564  

  technologies,   4 t   
  WEP and,   604   

   wireless propagation,   68–69   

   wireless roaming,   173   

   Wireshark,   247, 399   

   wire-speed processing,   3   

   WIS.      See  WAN Interface Sublayer   

   WLAN.      See  wireless LAN   

   World Wide Web (WWW),   378, 417, 459   

   World Wide Web Consortium (W3C),   463   

   Worldwide Interoperability for 

Microwave Access (WiMAX),   5, 

69, 186–191   

       LTE  vs. ,   190  

  MAC,   186  

  MAC packet flow,   190–191  

  OFDMA,   187–188  

  TDD subframe,   188–189  

  3G  vs. ,   190   

   worms,   633   

   WPA.      See  Wi-Fi Protected Access   

   write (),   398   

   write function,   46   

   WRR.      See  weighted round robin   

   wu-ftp,   475   

   wu-ftpd,   482–485, 482 f , 484 t , 630   

   WU-FTPD Development Group,   482   

   Wu-Manber algorithm,   636   

   X
X.25,   1, 23–24   

   Xerox,   150–151   

   Xerox Network Systems (XNS),   295   

   Xerox PARC Universal Protocol,   295   

   XLink.      See  XML Linking Language   

   XML.      See  eXtensible Markup Language   

   XML Linking Language (XLink),   464   

   XML Pointer Language (XPointer),   464   

   XNS.      See  Xerox Network Systems   

   X/Open TI (XTI),   344   

   XPointer.      See  XML Pointer Language   

   XSL.      See  eXtensible Style Language   

   Xterm,   631   

   XTI.      See  X/Open TI   

   Y
Yacc.      See  Yet Another 

Compiler-Compiler   

   Yet Another Compiler-Compiler (Yacc),  

 483   

   YouTube,   406, 514   

   Z
Zebra,   297–298   

       client/server model,   299 f   
  implementation of OSPF,   308 f   
  RFCs supported by,   298 t   
  software architecture,   299 f    

   zero-copy,   475   

   zones,   428–430    

lin76248_ndx_723-744.indd   744lin76248_ndx_723-744.indd   744 24/12/10   4:30 PM24/12/10   4:30 PM


	Cover
	Title Page
	Copyright
	Contents
	Preface
	Chapter 1 Fundamentals
	1.1 Requirements for Computer Networking
	1.1.1 Connectivity: Node, Link, Path
	Historical Evolution: Link Standards
	Historical Evolution: ATM Faded
	1.1.2 Scalability: Number of Nodes
	1.1.3 Resource Sharing
	Principle in Action: Datacom vs. Telecom

	1.2 Underlying Principles
	1.2.1 Performance Measures
	Principle in Action: Little’s Result
	1.2.2 Operations at Control Plane
	1.2.3 Operations at Data Plane
	1.2.4 Interoperability

	1.3 The Internet Architecture
	1.3.1 Solutions to Connectivity
	Principle in Action: Constantly Challenged Statelessness
	1.3.2 Solutions to Scalability
	1.3.3 Solutions to Resource Sharing
	1.3.4 Control-Plane and Data-Plane Operations
	Principle in Action: Flavors of the Internet Architecture

	1.4 Open Source Implementations
	1.4.1 Open vs. Closed
	1.4.2 Software Architecture in Linux Systems
	1.4.3 Linux Kernel
	1.4.4 Clients and Daemon Servers
	1.4.5 Interface Drivers
	1.4.6 Device Controllers

	1.5 Book Roadmap: A Packet’s Life
	1.5.1 Packet Data Structure: sk_buff
	1.5.2 A Packet’s Life in a Web Server
	1.5.3 A Packet’s Life in a Gateway
	Performance Matters: From Socket to Driver within a Server
	Performance Matters: From Input Port to Output Port within a Router
	Principle in Action: A Packet’s Life in the Internet

	1.6 Summary
	Common Pitfalls
	Further Readings
	Frequently Asked Questions
	Exercises

	Chapter 2 Physical Layer
	2.1 General Issues
	2.1.1 Data and Signal: Analog or Digital
	Principle in Action: Nyquist Theorem vs. Shannon Theorem
	2.1.2 Transmission and Reception Flows
	2.1.3 Transmission: Line Coding and Digital Modulation
	2.1.4 Transmission Impairments
	Historical Evolution: Software Defined Radio

	2.2 Medium
	2.2.1 Wired Medium
	2.2.2 Wireless Medium

	2.3 Information Coding and Baseband Transmission
	2.3.1 Source and Channel Coding
	2.3.2 Line Coding
	Open Source Implementation 2.1: 8B/10B Encoder

	2.4 Digital Modulation and Multiplexing
	2.4.1 Passband Modulation
	2.4.2 Multiplexing

	2.5 Advanced Topics
	2.5.1 Spread Spectrum
	2.5.2 Single-Carrier vs. Multiple-Carrier
	2.5.3 Multiple Inputs, Multiple Outputs (MIMO)
	Open Source Implementation 2.2: IEEE 802.11a Transmitter with OFDM
	Historical Evolution: Cellular Standards
	Historical Evolution: LTE-Advanced vs. IEEE 802.16m

	2.6 Summary
	Common Pitfalls
	Further Readings
	Frequently Asked Questions
	Exercises

	Chapter 3 Link Layer
	3.1 General Issues
	3.1.1 Framing
	3.1.2 Addressing
	3.1.3 Error Control and Reliability
	Principle in Action: CRC or Checksum?
	Principle in Action: Error Correction Code
	Open Source Implementation 3.1: Checksum
	Open Source Implementation 3.2: Hardware CRC-32
	3.1.4 Flow Control
	3.1.5 Medium Access Control
	3.1.6 Bridging
	3.1.7 Link-Layer Packet Flows
	Open Source Implementation 3.3: Link-Layer Packet Flows in Call Graphs

	3.2 Point-to-Point Protocol
	3.2.1 High-Level Data Link Control (HDLC)
	3.2.2 Point-to-Point Protocol (PPP)
	3.2.3 Internet Protocol Control Protocol (IPCP)
	Open Source Implementation 3.4: PPP Drivers
	3.2.4 PPP over Ethernet (PPPoE)

	3.3 Ethernet (IEEE 802.3)
	3.3.1 Ethernet Evolution: A Big Picture
	Historical Evolution: Competitors to Ethernet
	3.3.2 The Ethernet MAC
	Open Source Implementation 3.5: CSMA/CD
	Historical Evolution: Power-Line Networking: HomePlug
	3.3.3 Selected Topics in Ethernet
	Historical Evolution: Backbone Networking: SONET/SDH and MPLS
	Historical Evolution: First-Mile Networking: xDSL and Cable Modem

	3.4 Wireless Links
	3.4.1 IEEE 802.11 Wireless LAN
	Principle in Action: Why Not CSMA/CD in WLAN?
	Open Source Implementation 3.6: IEEE 802.11 MAC Simulation with NS-2
	3.4.2 Bluetooth Technology
	3.4.3 WiMAX Technology
	Historical Evolution: Comparing Bluetooth and IEEE 802.11
	Historical Evolution: Comparing 3G, LTE, and WiMAX

	3.5 Bridging
	3.5.1 Self-Learning
	Historical Evolution: Cut-Through vs. Storeand-Forward
	Open Source Implementation 3.7: Self-Learning Bridging
	3.5.2 Spanning Tree Protocol
	Open Source Implementation 3.8: Spanning Tree
	3.5.3 Virtual LAN
	Principle in Action: VLAN vs. Subnet

	3.6 Device Drivers of a Network Interface
	3.6.1 Concepts of Device Drivers
	3.6.2 Communicating with Hardware in a Linux Device Driver
	Open Source Implementation 3.9: Probing I/O Ports, Interrupt Handling, and DMA
	Open Source Implementation 3.10: The Network Device Driver in Linux
	Performance Matters: Interrupt and DMA Handling within a Driver
	Historical Evolution: Standard Interfaces for Drivers

	3.7 Summary
	Common Pitfalls
	Further Readings
	Frequently Asked Questions
	Exercises

	Chapter 4 Internet Protocol Layer
	4.1 General Issues
	4.1.1 Connectivity Issues
	4.1.2 Scalability Issues
	Principle in Action: Bridging vs. Routing
	4.1.3 Resource Sharing Issues
	4.1.4 Overview of IP-Layer Protocols and Packet Flows
	Open Source Implementation 4.1: IP-Layer Packet Flows in Call Graphs
	Performance Matters: Latency within the IP Layer

	4.2 Data-Plane Protocols: Internet Protocol
	4.2.1 Internet Protocol Version 4
	Open Source Implementation 4.2: IPv4 Packet Forwarding
	Performance Matters: Lookup Time at Routing Cache and Table
	Open Source Implementation 4.3: IPv4 Checksum in Assembly
	Open Source Implementation 4.4: IPv4 Fragmentation
	4.2.2 Network Address Translation (NAT)
	Principle in Action: Different Types of NAT
	Principle in Action: Messy ALG in NAT
	Open Source Implementation 4.5: NAT
	Performance Matters: CPU Time of NAT Execution and Others

	4.3 Internet Protocol Version 6
	Historical Evolution: NAT vs. IPv6
	4.3.1 IPv6 Header Format
	4.3.2 IPv6 Extension Header
	4.3.3 Fragmentation in IPv6
	4.3.4 IPv6 Address Notation
	4.3.5 IPv6 Address Space Assignment
	4.3.6 Autoconfiguration
	4.3.7 Transition from IPv4 to IPv6

	4.4 Control-Plane Protocols: Address Management
	4.4.1 Address Resolution Protocol
	Open Source Implementation 4.6: ARP
	4.4.2 Dynamic Host Configuration
	Open Source Implementation 4.7: DHCP

	4.5 Control Plane Protocols: Error Reporting
	4.5.1 ICMP Protocol
	Open Source Implementation 4.8: ICMP

	4.6 Control Plane Protocols: Routing
	4.6.1 Routing Principles
	Principle in Action: Optimal Routing
	4.6.2 Intra-Domain Routing
	Open Source Implementation 4.9: RIP
	4.6.3 Inter-Domain Routing
	Open Source Implementation 4.10: OSPF
	Performance Matters: Computation Overhead of Routing Daemons
	Open Source Implementation 4.11: BGP

	4.7 Multicast Routing
	4.7.1 Shifting Complexity to Routers
	4.7.2 Group Membership Management
	4.7.3 Multicast Routing Protocols
	Principle in Action: When the Steiner Tree Differs from the Least-Cost-Path Tree
	4.7.4 Inter-Domain Multicast
	Principle in Action: IP Multicast or Application Multicast?
	Open Source Implementation 4.12: Mrouted

	4.8 Summary
	Common Pitfalls
	Further Readings
	Frequently Asked Questions
	Exercises

	Chapter 5 Transport Layer
	5.1 General Issues
	5.1.1 Node-to-Node vs. End-to-End
	5.1.2 Error Control and Reliability
	5.1.3 Rate Control: Flow Control and Congestion Control
	5.1.4 Standard Programming Interfaces
	5.1.5 Transport-Layer Packet Flows
	Open Source Implementation 5.1: Transport-Layer Packet Flows in Call Graphs

	5.2 Unreliable Connectionless Transfer: UDP
	5.2.1 Header Format
	5.2.2 Error Control: Per-Segment Checksum
	Open Source Implementation 5.2: UDP and TCP Checksum
	5.2.3 Carrying Unicast/Multicast Real-Time Traffic

	5.3 Reliable Connection-Oriented Transfer: TCP
	5.3.1 Connection Management
	5.3.2 Reliability of Data Transfers
	5.3.3 TCP Flow Control
	Open Source Implementation 5.3: TCP Sliding-Window Flow Control
	5.3.4 TCP Congestion Control
	Historical Evolution: Statistics of TCP Versions
	Open Source Implementation 5.4: TCP Slow Start and Congestion Avoidance
	Principle in Action: TCP Congestion Control Behaviors
	5.3.5 TCP Header Format
	5.3.6 TCP Timer Management
	Open Source Implementation 5.5: TCP Retransmission Timer
	Open Source Implementation 5.6: TCP Persist Timer and Keepalive Timer
	5.3.7 TCP Performance Problems and Enhancements
	Historical Evolution: Multiple-Packet-Loss Recovery in NewReno, SACK, FACK, and Vegas
	Principle in Action: TCP for the Networks with Large Bandwidth-Delay Product

	5.4 Socket Programming Interfaces
	5.4.1 Socket
	5.4.2 Binding Applications through UDP and TCP
	Principle in Action: SYN Flooding and Cookies
	Open Source Implementation 5.7: Socket Read/Write Inside Out
	Performance Matters: Interrupt and Memory Copy at Socket
	5.4.3 Bypassing UDP and TCP
	Open Source Implementation 5.8: Bypassing the Transport Layer
	Open Source Implementation 5.9: Making Myself Promiscuous
	Open Source Implementation 5.10: Linux Socket Filter

	5.5 Transport Protocols for Real-Time Traffic
	5.5.1 Real-Time Requirements
	Principle in Action: Streaming: TCP or UDP?
	5.5.2 Standard Data-Plane Protocol: RTP
	5.5.3 Standard Control-Plane Protocol: RTCP
	Historical Evolution: RTP Implementation Resources

	5.6 Summary
	Common Pitfalls
	Further Readings
	Frequently Asked Questions
	Exercises

	Chapter 6 Application Layer
	Historical Evolution: Mobile Applications
	6.1 General Issues
	6.1.1 How Ports Work
	6.1.2 How Servers Start
	6.1.3 Classification of Servers
	Historical Evolution: Cloud Computing
	6.1.4 Characteristics of Application Layer Protocols

	6.2 Domain Name System (DNS)
	6.2.1 Introduction
	6.2.2 Domain Name Space
	6.2.3 Resource Records
	6.2.4 Name Resolution
	Historical Evolution: Root DNS Servers Worldwide
	Open Source Implementation 6.1: BIND

	6.3 Electronic Mail (E-Mail)
	6.3.1 Introduction
	6.3.2 Internet Message Standards
	6.3.3 Internet Mail Protocols
	Historical Evolution: Web-Based Mail vs. Desktop Mail
	Open Source Implementation 6.2: qmail

	6.4 World Wide Web (WWW)
	6.4.1 Introduction
	6.4.2 Web Naming and Addressing
	6.4.3 HTML and XML
	6.4.4 HTTP
	Principle in Action: Non-WWW Traffic Over Port 80 or HTTP
	Historical Evolution: Google Applications
	6.4.5 Web Caching and Proxying
	Open Source Implementation 6.3: Apache
	Performance Matters: Throughput and Latency of a Web Server

	6.5 File Transfer Protocol (FTP)
	6.5.1 Introduction
	6.5.2 The Two-Connection Operation Model: Out-of-Band Signaling
	Historical Evolution: Why Out-of-Band Signaling in FTP?
	6.5.3 FTP Protocol Messages
	Open Source Implementation 6.4: wu-ftpd

	6.6 Simple Network Management Protocol (SNMP)
	6.6.1 Introduction
	6.6.2 Architectural Framework
	6.6.3 Management Information Base (MIB)
	6.6.4 Basic Operations in SNMP
	Open Source Implementation 6.5: Net-SNMP

	6.7 Voice over IP (VoIP)
	6.7.1 Introduction
	Historical Evolution: Proprietary VoIP Services—Skype and MSN
	6.7.2 H.323
	6.7.3 Session Initialization Protocol (SIP)
	Historical Evolution: H.323 vs. SIP
	Open Source Implementation 6.6: Asterisk

	6.8 Streaming
	6.8.1 Introduction
	6.8.2 Compression Algorithms
	6.8.3 Streaming Protocols
	Historical Evolution: Streaming with Real Player, Media Player, QuickTime, and YouTube
	6.8.4 QoS and Synchronization Mechanisms
	Open Source Implementation 6.7: Darwin Streaming Server

	6.9 Peer-to-Peer Applications (P2P)
	6.9.1 Introduction
	Historical Evolution: Popular P2P Applications
	Historical Evolution: Web 2.0 Social Networking: Facebook, Plurk, and Twitter
	6.9.2 P2P Architectures
	6.9.3 Performance Issues of P2P Applications
	6.9.4 Case Study: BitTorrent
	Open Source Implementation 6.8: BitTorrent

	6.10 Summary
	Common Pitfalls
	Further Readings
	Frequently Asked Questions
	Exercises

	Chapter 7 Internet QoS
	Historical Evolution: The QoS Hype around 2000s
	7.1 General Issues
	7.1.1 Signaling Protocol
	7.1.2 QoS Routing
	7.1.3 Admission Control
	7.1.4 Packet Classification
	7.1.5 Policing
	7.1.6 Scheduling
	Open Source Implementation 7.1: Traffic Control Elements in Linux

	7.2 QoS Architectures
	7.2.1 Integrated Services (IntServ)
	7.2.2 Differentiated Services (DiffServ)
	Principle in Action: Why Both DiffServ and IntServ Failed
	Principle in Action: QoS in Wireless Links

	7.3 Algorithms for QoS Components
	7.3.1 Admission Control
	Open Source Implementation 7.2: Traffic Estimator
	7.3.2 Flow Identification
	Open Source Implementation 7.3: Flow Identification
	7.3.3 Token Bucket
	Open Source Implementation 7.4: Token Bucket
	7.3.4 Packet Scheduling
	Open Source Implementation 7.5: Packet Scheduling
	7.3.5 Packet Discarding
	Open Source Implementation 7.6: Random Early Detection (RED)
	Principle in Action: QoS Components in Daily Usage Today

	7.4 Summary
	Common Pitfalls
	Further Readings
	Frequently Asked Questions
	Exercises

	Chapter 8 Network Security
	8.1 General Issues
	8.1.1 Data Security
	8.1.2 Access Security
	8.1.3 System Security

	8.2 Data Security
	8.2.1 Principles of Cryptography
	Open Source Implementation 8.1: Hardware 3DES
	Principle in Action: Secure Wireless Channels
	8.2.2 Digital Signature and Message Authentication
	Open Source Implementation 8.2: MD5
	8.2.3 Link Layer Tunneling
	8.2.4 IP Security (IPSec)
	Open Source Implementation 8.3: AH and ESP in IPSec
	8.2.5 Transport Layer Security
	Historical Evolution: HTTP Secure (HTTPS) and Secure Shell (SSH)
	8.2.6 Comparison on VPNs

	8.3 Access Security
	8.3.1 Introduction
	8.3.2 Network/Transport Layer Firewall
	Open Source Implementation 8.4: Netfilter and iptables
	8.3.3 Application Layer Firewall
	Open Source Implementation 8.5: FireWall Toolkit (FWTK)
	Principle in Action: Wireless Access Control

	8.4 System Security
	8.4.1 Information Gathering
	8.4.2 Vulnerability Exploiting
	8.4.3 Malicious Code
	Open Source Implementation 8.6: ClamAV
	8.4.4 Typical Defenses
	Principle in Action: Bottleneck in IDS
	Principle in Action: Wireless Intrusions
	Open Source Implementation 8.7: Snort
	Open Source Implementation 8.8: SpamAssassin
	Performance Matters: Comparing Intrusion Detection, Antivirus, Anti-Spam, Content Filtering, and P2P Classification

	8.5 Summary
	Common Pitfalls
	Further Readings
	Frequently Asked Questions
	Exercises

	Appendices
	A: Who’s Who
	A.1 IETF: Defining RFCs
	A.2 Open Source Communities
	A.3 Research and Other Standards Communities
	A.4 History
	Further Readings

	B: Linux Kernel Overview
	B.1 Kernel Source Tree
	B.2 Source Code for Networking
	B.3 Tools for Source Code Tracing
	Example: Trace of Reassembly of IPv4 Fragments
	Further Readings

	C: Development Tools
	C.1 Programming
	C.2 Debugging
	C.3 Maintaining
	C.4 Profiling
	C.5 Embedding
	Further Readings

	D: Network Utilities
	D.1 Name-Addressing
	D.2 Perimeter-Probing
	D.3 Traffic-Monitoring
	D.4 Benchmarking
	D.5 Simulation and Emulation
	D.6 Hacking
	Further Readings


	Index



